THE DECOMPOSITION OF MATRIX-VALUED MEASURES
James B. Robertson and Milton Rosenberg

1. INTRODUCTION

By an m X n - matvix-valued measure on a o-algebra # over  we shall mean
a function M from £ into the set of all m X n matrices over the complex numbers
such that for every disjoint sequence of sets A}, A,, *** in & with union A,

M(A) = E;::l M(Ay). A B-measurable L X m-matrix-valued function on Q will be
a function & from £ into the set of all £ X m matrices such that the entries

®;; (w) = [@(w)]ij are #B-measurable. We shall define the integral S ddM for a
2

suitable class of ¢ X m-matrix~valued functions with respect to an m X n-matrix-
valued measure. Such measures and integrals are important in the spectral analysis
of multivariate, weakly stationary, stochastic processes (see Masani [8, Section 8]).
It was our interest in this subject that led us to the present study, and in Section 7 we
shall indicate how our results apply to this theory.

The primary purpose of this paper is to define and study appropriate notions of
the total variation of a matricial measure and of the absolute continuity, Radon-
Nikodym derivative, and singularity of one matricial measure with respect to
another, and to prove matricial versions of the Hahn-Jordan decomposition, Radon-
Nikodym theorem, and Lebesgue decomposition. We are able to obtain a reasonably
complete theory, but only by renouncing seemingly reasonable definitions. The Hahn-
Jordan decomposition of a matrix-valued measure into nonnegative hermitian
matrix-valued measures is best viewed not as a finite sum of such measures, but as
an integral thereof. Even for a complex-valued measure M, this seems to have been
overlooked; but, of course, if M is real-valued, it yields the usual decomposition
(Section 4). To get the Radon-Nikod§m theorem, we have to define absolute contin-
uity in terms of certain derivatives of the measures rather than in terms of the
measures themselves (Section 5). If two matrix-valued functions are equal almost
everywhere with respect to a matrix-valued measure M, and if N is absolutely con-
tinuous with respect to M, it does not necessarily follow that the functions are equal
almost everywhere with respect to N. This is because matrix multiplication is not
commutative. Unless we exercise great care in the definition of Radon-Nikodym
derivatives, the Radon-Nikodym derivatives of two equivalent measures will not al-
ways turn out to be inverses of one another. Here the notion of generalized inverse
due to Penrose [10] is very useful (Section 2). The usual notion of the carrier of a
measure must be supplanted by that of a projection matrix-valued function, which is
the matricial analogue of the indicator function (Section 6). There is not just a single
Lebesgue decomposition of one measure with respect to another, but to each meas-
ure of a certain class there corresponds a distinct decomposition (Section 6). This
has helped to clarify certain problems arising in the orthogonal decomposition of
stochastic processes (Section 7).

Hardly any work seems to have been done on the problem of obtaining a Radon-
Nikod§ym derivative and a Lebesgue decomposition of one operator-valued measure
with respect to another. Even for vector-valued measures, the literature is scanty
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[3], [4], [11]. In [3, p. 545], N. Dinculeanu and C. Foiag construct under restrictive
conditions a “weak derivative” & of a vector-valued (not matrix-valued) measure M
with respect to a real measure p. In [11], M. M. Rao investigates the more general
case of two vector measures M and N valued in two distinct Banach spaces. Under
restrictive conditions, he obtains a Liebesgue decomposition

N(B) = SB &dM + N(B N E),

where E is a set such that M is zero on every measurable subset of E. (His as-
sumptions imply the Bochner-integral representability of M and of N.) In complete
contrast to Rao’s result, our absolutely continuous and singular parts of N with re-
spect to M are not concentrated on disjoint sets [see (6.14)].

In this paper, we have restricted our results to the case of finite matricial
measures on o-algebras. (Elsewhere, we hope to extend our results to the case of
o -finite matricial measures.) Further, we have only dealt with the derivative
dN-dM* [see (5.4)], which should properly be called a left-hand devivative, By an
obvious dual procedure (using the adjoint measure) we can obtain a theory of »ight-

hand derivatives dM™ -dN with reference to integrals of the form S dM - P,
B

The generalized inverse due to Penrose [10] plays an important role in our work.
In Section 2 we establish several results concerning it. Section 3 is devoted to the
fundamentals of matricial measures and integrals.

We thank the referee for suggesting several improvements, and especially for
* some results on generalized inverses.

2. GENERALIZED INVERSES

Throughout the paper, vectors and matrices will have complex entries. Matrices
will be denoted by capital letters, and vector spaces by script letters.
R(A) = {y: y = xA} will denote the 7ange of A, and #(A) = {x: xA =0} will denote
the null space of A. As usual, A* will denote the conjugate transpose of A. By a
projection we shall mean a matrix J such that J2 = J. The matrix J is said to be a
projection onto A along 4 if J is a projection such that #(J) = A and #(J) = AN
(see Halmos [5, Section 83] for usage). If it is intended that J is an orthogonal pro-
jection (that is J* = J = J2), we shall specifically say so. In particular, P_, will de-
note the orthogonal projection onto 4. .« 1 will denote the orthogonal complement
of .#. The Euclidean norm of A is defined by |A| g = Vitrace (AA¥).

The concept of the generalized inverse of a linear operator has been in the folk-
lore of operator theory (see for example von Neumann [9] and Hestenes [6, Section
3]). The corresponding concept for matrices was introduced by Penrose, who proved
the following theorem [10, p. 406]:

2.1 THEOREM. Let A be any m Xn matrvix. Then there exists a unique n X m
matrvix X such that

4

A

]

AXA, X

XAX,

(AX)* = AX, (XA)* = XA.
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The matrix X in this theorem is called the generalized inverse of A, and it will
be denoted by A¥,

The generalized inverse of A may be written in the following two useful forms:

# _ -1
(2.2) A% =P AT L

where A-l is the multivalued inverse of A (that is, yA~! can be any x such that
XA =y), and
(2.3) Af = A¥H,

where H is any hermitian matrix such that AA*H = P%(A*) = P,/V(A)L .

The verification that A#, given by either (2.2) or (2.3), satisfies the conditions of
Theorem 2.1 is routine, and we omit it.

The following properties follow immediately if (for example) we use (2.2) and the
fact that #(A™) = #(A)' and that #(A¥) = #(A)L. We omit the proofs.

# - _
(24) AA* =P =P L.

(2.5) A¥A =P

R(A) ~ TH(aF¥)L"
(2.6) (AT)* = A,
(2.71) (A% = (aAt)*,

(2.8) If #(A)=4(B)*, then (AB)* = BFA#,
(2.9) ®(A)C ®(B) if and only if AB¥B=A,

(2.10) Let H be hermitian and G = AHA*., Then #(H) C #(A) if and only if
AtG(A®)* = H.

The next two propositions concern the continuity properties of the generalized
inverse; 2.11 is due to Penrose [10, page 408], and 2.12 follows from (2.4), (2.5),
(2.7), and 2.11.

2.11 LEMMA. If A is a malvix and € > 0, then there exists a 6 > 0 such that
| a¥ - B*|z <& whenever |A - B|g < 6 and rank (A) = rank (B).

2.12 LEMMA. If A, — A, then the following conditions

— *F *# — -
(@) A% — A#, (b) AKF — A¥ (c) Paay) = Paay @ Byay = By

arve equivalent.

The next two propbsitions concern projections. The proof of 2.13 is straight-
forward, and we omit it.

2.13 LEMMA. The following conditions are equivalent:
(a) AB =0.
(b) There exists a projection J along N (B) such that AJ = 0.
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(c) For all projections along N (B), AJ = 0.
2.14 LEMMA. Let A and B be m Xq and n X q matvices such that

€% = R(B)+®(A)*  and RB) N (#A)') = {0}.

Then J = A*(BA*)#B is the projection onto R(B) along R(A)*L.
Proof. Using Theorem 2.1, we can easily verify that J is a projection. It also
follows that
#(J) C #(B) and H(J) D H(A*) = R(A)".

The proof will therefore be completed if we show that rank (B) < rank (J). But by
Theorem 2.1, BJA* = BA* and hence rank (BA*) < rank (J). But clearly,
rank (B) = rank (BA*), since #(A*) N ®&(B) = {0}. =

Nonnegative hermitian matrices play a central role in our development, and we
present here some facts concerning them.

2.15 LEMMA. Let H be an n X n nonnegative hermitian matvix. If A is a ma-
trix such that #(A) N A(H) = {0}, then

¢" = R(AHY) + #(A)"  and  @(AHY) 0 (#(A)Y) = {o0}.

Proof. Since H is hermitian, e/V(H#) =.#(H). Hence, by hypothesis,
R(A) ﬂJV(H#) = {O}, and so rank (AH#) = rank (A). Hence

dim #(AH") + dim #(A)* = n,

and it is sufficient to show that #(AH™) N (#(A)') = {0}. If x = yA and xH" L x,
then, since H? is nonnegative hermitian, x is in A4 (H") N #(A) = {0}. Thus
R(AH™) N (#(A)')={0}. m

2.16 THEOREM. Let H be an n X n nonnegative hevmitian matvix, and let A
and B be matrices such that R(A) C ®#(H), R(B) C #(H). Then AHTB* =0 if and
only if there exist nonnegative hermitian matrices M and N such that

1) #z(A) ceM), (i) #B)cRN), (iii)) #M) n»N) = {0}, (iv) H=M+N.

Proof. Suppose M and N are nonnegative hermitian matrices satisfying (i) to
(iv). Since HH = P gy, (iv) yields the relations

M = ME*H = ME'M + MHEF N,

Therefore (iii) implies that MH# N = 0. Multiplying by M* and N¥, we see that
P vyH? Pgp() = 0. Hence, using (i) and (ii), we get the equations

AH*B* = (AP ) HY (BP o) = A (P HT Popn) B* = 0.
(M) (N) (M) (

Now suppose Z(A), #(B) € #(H), and AH? B* = 0. Multiplying by A¥ and ~B#*,
we find that Pgg(a) B Pog(p) = 0. Let .« = #(AH?)* N #(H). Then %(B) C ..
Further, Pgp(a)H¥ Py = 0, and R (AHY) + i = #(H). Also, ®(A)N . = {0}, since
if x is in both, then xH¥ L x and x € @2(H¥) n#(H?F) = {0}. Since
R(A) C #(H) = ®(H?), dim #(A) = dim #(AH"). Thus
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dim #(A) + dim ..« = dim #(H),

and hence #(A) + 4 = #(H). Now let J denote the projection onto R(A) along
A+ N (H). Then Pgu) - J is the projection onto A along R(A)+ #(H). We can
then verify that

M =HJ = (HJ)H#(HJ)* and N = H(P%(H) -J) = H(P%(H) -~ J)H#(H(P%(H) - I)*
have the desired properties. m

We close this section with a statement of the polar decomposition.
2.17 LEMMA. Suppose (i) A is an m Xn matrix, (ii) S = VA¥A, and
(iii) W = AS*. Then W is a partial isometry, and
R(W) = #(A), (W) = #(A)

* — — =
WH*W = Pgpp), WW*= P oayts A=WS.

3. MATRICIAL INTEGRALS

In the sequel, #. denotes a o -algebra of subsets of an abstract set . A #-
measurable m X n - matvix-valued function on § is a function & from  into the
set of all m X n matrices such that the entries ®;;(w) = [®(w)];; are B-measurable.

3.1 LEMMA. If & is a B-measurable m X n-matvix-valued function of Q, then
3% is a B-measurable n X m-matrix-valued Sfunction on 2.

Proof. This follows from [4] if we note that ®&* is nonnegative hermitian, and
that we may therefore construct a #-measurable H for (2.3).

If & is a #-measurable m X n-matrix-valued function on 2, and if 1 is a non-
negative o -finite measure on &, we define (for B € &)

oo o ]

provided S ®;5 du exists for all i and j. The set of all such & will be denoted by
B

L; (B, #, p). In discussing certain examples below, we shall need the following
lemma.

3.2 LEMMA. Let ® be an n X n nonnegative hermitian matrix-valued function

on 2 such that SB@du exists. Then
(a) for almost all w in B, JV(S cbdu) C H2(w));
B

(b) for almost all w in B, #(®(w)) C %(S <I>d,u) ;
B

(c) if for almost all w in B, R(2(w)) C M, where A is a subspace of €™, then

,%(SB d)dp.) C .
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Proof. It is clear that for any vector x constant with respect to w,

X'.S‘ & du - x* =S (x®x*)du. .
B B

Since x®x* > 0, with equality if and only if x is in A4(®), we see that
X € ./V(S @du) if and only if x € A (®(w)) for almost all w in B. This implies
B
(a). The conclusion (b) follows if we take orthogonal complements. Similarly, since
R(®(w)) C A is the same as 4+ C A4 (®(w)), we obtain (c). m
M is called an m X n - matvix-valued measure on & if M is a function from %

o0
into the set of all m X n matrices, and if M(A) = 2J;_; M(Ay) whenever A), A,, -
is a disjoint sequence of sets in # whose union is A. Obviously, M = [Mij] is a
matrix-valued measure if and only if each of its entries M;j; is a complex-valued
measure on &. If p is a nonnegative o -finite measure on &£, we say that M is
absolutely continuous with respect to p (M < u) if each entry M;; is absolutely
continuous with respect to p. In this case, MLL will denote the #-measurable

m X n - matrix-valued function whose entries are the Radon-Nikodym derivatives of

the elements M;; with respect to p. Clearly, M(B) = S My, dp.
B

In {12, 3.1], Rosenberg defined and studied 5 é-dM -¥ for an n X n-nonnega-
B

tive hermitian matrix-valued measure M. We now extend his definition to arbitrary
matrix-valued measures M. Let & and ¥ be #-measurable k Xm- and n X ¢ -
matrix-valued functions on €, and let M be an m X n - matrix-valued measure on .
If p is a nonnegative, o-finite measure on #. such that M < p, and if

S (& M, - \If)ij du exists for all i and j, then we define
5 /

SB & dMY¥ = [ SB (@-Mh'\ll)ijd,u].

If v is another measure, then
SB (@M ¥);5dp = SB (@ M4 ¥)j5d(p + v) = SB (@ M), ¥);5dv,

by the usual chain rule for Radon-Nikodym derivatives. Thus S &dMV is inde-
‘ B
pendent of the choice of . In case ¥(w) is the identity matrix for almost all w, we

shall simply write S $ dM; S dMV¥ is defined similarly.
B B

The proof of the following result is easy, and we omit it.
3.3 THEOREM. (a) Lel M be an m X n- matrix-valued measure on #, and &
a #B-measuvable L X m - matrix-valued function on Q@ such that SQ ® dM exisis.

Let N(B) = ‘S‘ ®dM (B € #B). Then N is an £ X n- matvix-valued measure,
B
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(b) If ¥ is a B-measurable k X { - matrix-valued function on Q@ and N is as in
(a), then for each B € A, S ¥ dN exists if and only if S ¥ &dM exists. If the two
B B

integrals exist, they are equal.

4, TOTAL VARIATION AND THE HAHN-JORDAN DECOMPOSITION

There are several ways of defining the total variation of a complex-valued
measure (. The form we have chosen to generalize is as follows: Let v be any
nonnegative measure such that ¢ < v. (For example v may be the sum of the total
variations of the real and imaginary parts of p.) Then the total variation of p is
given by

4.1) | (B) = SB l%‘i av (B e B).

We have not investigated what form the resulting theory will take for a different
definition of |pu|.

4.2 LEMMA. Let M be an n X m - matrix-valued measure on &, and let U be a
nonnegative measure such that M << . Then

(a) w/M'uI MLL is in Ly(Q, B, 1), and
(b) S w/M'*M' dy. is independent of |, for all B € AB.
Proof. (a) Of course by M'* {, We mean the unique nonnegative hermitian

matrix H such that H? M'ﬁ“ M!i Thus looking at the diagonal elements of the
product, we see that

|5, |<\/Z) My, 12 < Z‘ M,

and that the last quantity is in L(®Q, %, u). Since H is clearly measurable, it is in
Ll(ﬂ, B, ).

(b) Let p and v be two positive measures such that M < p and M < v; then
i + v is also a positive measure such that M K< g + v, and p < p + v and
v L u+ v. We shall show that

S /Mi* dy_ = S \/MH’_'_V Mh+vd(H+V),

and the theorem will follow by symmetry. But the last equality follows by the usual
chain rule for Radon-Nikodym derivatives. m

We are thus led to define the fotal matricial variation |M| of an n X m - matrix-
valued measure M as the m X m nonnegative hermitian matrix-valued measure such

that |M|(B) = SB VM - M|, du, for each B € # and for some nonnegative measure
it on # suchthat M < p.



360 JAMES B. ROBERTSON and MILTON ROSENBERG

As is easily seen, #(|M|},) = 22(M},) a.e. i, and a convenient choice of p is
trace |M| . Now let o = trace |M! . By the polar decomposition 2.17, there exists a
partial isometry V(w) such that Mg (w) = V(w) - ]M['o(w). It is clear from the con-
struction that V and |M|('; are measurable. By integration we therefore get the fol-
lowing proposition.

4.3 HAHN-JORDAN DECOMPOSITION. Let M be any m X n- matvix-valued
measure. Then M(B) = S vd|M| (B € ®), wheve V is partial-isometry valued and

B
|M| is the total matricial variation of M.

When M is a complex-valued measure, V reduces to a complex-valued function
with absolute value 1 for all w. The Hahn-Jordan Decomposition becomes

M(B) = S eid(w) d|M|, where ¢ is a real-valued function. When M is real-valued,

. B
eid(®) takes only the values +1, and M(B) = [M] (BNA)- IMI (B N A'"), where
A = {w: eid(w) = 1} is the carrier of the positive part of M. We thus recover the
classical form.

It is easy to see that even if S ¥ dM = 0 for all B € &, the function ¥ need not
B

vanish a.e. M. Example:

- W

M(B) = SB[CIU Z)’Z:ldw, T (w) =[w2 ""] (w € [0, 1], B c [0, 1]).

This suggests the introduction of a new notion of equivalence of matrix-valued func-
tions with respect to a matrix-valued measure, based on the following lemma.

4,4 LEMMA. Let M be an m X n- matrvix-valued measuve, and let . be a non-
negative measure such that M < .. Also, let J,;, be a B-measurable m X n -
matrix-valued function such that J (w) is a projection along N (M;L (w)) for almost
all w (u-measure). Then, for each B-measuvable | X m - matvix-valued function

d, S ®dM = 0 for all B € &B. if and only if & 'JIJ =0 a.e. .
B
This lemma follows immediately from 2.13 and the fact that A4(J “(w)) = N#(M ,'l(w))
for almost all w (i-measure).

Let o(M) = trace |M|; then o(M) is a nonnegative measure such that M < o (M).
Let J3= Mgy M&#(M) . By (2.4), Jy4(w) is the orthogonal projection onto
JV(M('T(M)(w))l, and hence #(J \g(w)) = A (Mg (p)(w)). Hence, by 4.4, &dM =0

B

for all B in & if and only if & -Jy;=0 a.e. c(M).

We now define M-equivalence. If & and ¥ are ¢ X m- and k X m - matrix-
valued functions, respectively, then we say that & and ¥ are equivalent wilh respect
toM (& =¥ (mod M)) if and only if & -Jp=T I a.e. 0(M).

4,5 THEOREM. (a) If S & dM exists and ® =¥ (mod M), then S ¥ dM exists

B B

and S <I>dM=5 ¥ dM.
B B

(b) S (® - ¥)dM = 0 for all B in B if and only if & =¥ (mod M).
B
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5. ABSOLUTE CONTINUITY AND THE RADON-NIKODYM THEOREM

A direct generalization of absolute continuity would amount to the assertion that
N is absolutely continuous with respect to M if N(B) = 0 whenever B € # and
|M] (B) = 0. But this definition is inadequate for our purposes; for instance, it does
not distinguish between matrices of different ranks. A more appropriate definition:
N is absolutely continuous with respect to M (N < M) if

2(|N|(B)) ¢ #(|M|(B)) for all B in 4.

It is clear that if N < M, then N is absolutely continuous with respect to- M in the
first sense mentioned above. Also, the following elementary properties are easily
verified for either concept.

5.1 LEMMA. (a) The relation <K is veflexive and transitive.
(b) N KM if and only if N < |M|.
() N <M if and only if |N| < M.

This concept of absolute continuity is still not strong enough to yield a Radon-
Nikodym theorem, as the following example shows.

5.2 Example. Let 1 be Lebesgue measure on the family & of Borel subsets of
Q = [0, 1], and let

M(B’=55[i32]“‘d“’)' N(B)=[(1)(1)]°u(B) (B < B).

Using 3.2(a), we easily see that #(M(B)) = %2 = #(N(B)) for B € # such that
w(B) > 0, and that Z(M(B)) = {0} = #(N(B)) if ©(B) =0. Thus N < M. But there is
no 2 X 2 - matrix-valued function & such that N;',, =&- ML'L, since N ,1'1 has rank 2 and

M'['L has rank 1. Thus there is no & such that N“(B) = S ® -dM for all B € &#.
B

We now infroduce a stronger concept. We say that N is strongly absolutely con-
tinuous with respect to M (N < M) if and only if there exists a nonnegative meas-
ure o such that N <<y, M < pu, and .%’(Nh(w))g %(Mb(w)) for almost all w (u-
measure). By methods similar to those used in the proof of 4.2, it can be shown that
if N KM, then for any nonnegative measure p such that N < u, M < u, we have
the inclusion %(N;'L (w)) %(Mh(w)) for almost all w (p-measure). It is also easy
to verify that the assertions of Lemma 5.1 are valid for the relation <. The fol-
lowing lemma gives some of the other properties.

5.3 LEMMA. (a) If N, P<&K M and if A and B are constant matrices such that
AN + BP is defined, then AN + BP << M.

(b) F N<KM, then N K M.

The proof of (a) is straightforward, and (b) follows from 3.2 and the fact that
R (M), (w)) = %(lMl'u(w)) for almost all w (u-measure).

For the concept of strong absolute continuity, the Radon-Nikodym theorem holds,
and in fact becomes almost a triviality:

5.4 RADON-NIKODYM THEOREM. Let M and N be ¢ xn- and m X n -
matvix-valued measuves on B. N KL M if and only if there exists an ¢ X m -
matyix-valued function & such that & is in L,(Q, B, M) and such that
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N(B) = SB ®-dM for all B in #B. This & is unique (mod M); in fact,
® = N;,_ . (MiL)# (mod M), where p is any nonnegative measuve such that M < .

Proof. The uniqueness of & (mod M) follows from 4.5(b). The assertion that

N(B) = SB $-dM for all B in & is clearly equivalent to the relation N, = @M}l

a.e. (., which implies %(N"J‘(w))g %(M"L (w)) for almost all w (w-measure). Sup-
pose, therefore, that #(Nj,(w)) € #(M),(w)) for almost all w (u-measure), and let
d = NL'L . (M;L)#. Then

— t 1 3 ] - 1 - f
@dM—‘S‘ N, M du-—S N, P ydp = S N, dy = N(B). =
S i [T L rTR(M,,) 1

If N <& M, we therefore define the Radon-Nikodym derivative AN -dM¥* of N
with respect M by the condition (dN-dM¥#)(w) = N;'L(w) "My, (w)¥ up to sets of pu-
measure zero.

Next we wish to extend the classical result that if v < y, then p < p if and
only if (%uli> 0 a.e. p, and that in this event % =1/ (%) .

5.5 THEOREM. Let M and N be matrix-valued measuves on #B such that
NKLM. Then M K N if and only if

rank (dN - dM#(w)) = rank (M} (»)) a.e. p,

and in this event dM - dN¥ = (AN - dM#)#,

Proof. If M K N, then Z(Nj,(w)) = %(ML'L (w)) ==/V(M;l(w)#)l for almost all w
(z-measure). Thus rank (dN - dM*(w)) = rank (M;L (w)*) = rank (M}, (w)) for almost all
w (p-measure) as desired. Suppose next that rank (dN - dM#) = rank (M;'L) a.e. [,
Since #(N},) € #(M|)* a.e. u, it follows that 22(N},) = #(M})* a.e. . Thus
e9?(M.,'l) = %(NLL) a.e. U, and hence M << N. The formula for dM - dN* follows from
(2.8) and (2.6). m

Unfortunately, it is not the case that if N<K M &K N and & =dN- dM# (mod M),
then &% = dM -dN" (mod N). This is shown in the next example:

5.6 Example. Let @ = {1} consist of one point, and set

1 0 3 0 1 -1
N{1}=[ } “M{1}=[ ‘l, {1} =1, <I>=[ :l o =
0 0 2 0 0 0 -

-

DOt DOl

Then N = &M but M # &7 N, and hence @ = dN-dM" (mod M) but
& # aM - dAN* (mod N).

Relé.ted to this behavior is the fact that the conditions & =¥ (mod M) and
N << M do not imply that ® =¥ (mod N), as is shown by the following example.

5.7 Example. In example 5.6, ® =N (mod N), but ® #N (mod M). To see this,
note that K = N is a projection such that A#(K) =#(N) and & K = N-K, while
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J = 113 2 i:l is a projection such that A (J) =4 (M) but &-J # N-J. Thus, taking

¥ = N, we see that ® #% (mod M) even though & =¥ (mod N) and M < N.
However, we do have the following positive result.

5.8 THEOREM. If & =¥ (mod M) and N K M, and if N,,(w) and M“(co) are
novrmal matvices for almost all w (iL-measure), tken & = ¥ (mod N).

Proof. Clearly, .%(N"lf(w)) C .%(M‘*(w)) for almost all w (x-measure), since for
a normal matrix N, #Z(N) = #(N*). Hence JV(Mu(w)) C ,/V(N‘u(w)) for almost all w
(u-measure). Therefore, if @ - P‘A,(M )L = - .A’(M;L)l a.e. U, then

<I>P P AL \I'P 1 a.e, u. =
H(N,) H(N,)

We close this section with a brief discussion of the Besicovitch derivatives (see
[1]). The following example shows that in general the Besicovitch pointwise proce-
dure (or the more abstract derivation procedure using nets; see [13, p. 152]) is not
satisfactory.

5.9 Example. Suppose that (i) ¢, M, and N are defined as in Example 5.2,
(ii) for each w € (0, 1], the BY (n > 1) are symmetric neighborhoods of w such that
u(Bf;’) — 0, (iii) DIIYI(w) = M(B?)/u(BY), Dlg(w) = N(BY)/(B®). Then it follows from
[13, p. 151] that

iim DM Mj a.e. 4 and lim DY = N, a.e. p.

n — oo n ~—co
One would expect that
N(BY)- M(BY)* = DN(w) - DM(w)*

converges to N (w) - M' (w)* for almost all w (w-measure). Unfortunately, this is
not so, for,

rank {N(BY)-M(BY)*} = 2,  rank {N}(w)-M; ()} =

and hence by 2.12 D}}’I# does not converge a.e. (.

The following theorem provides a sufficient condition for Besicovitch differentia-
bility.

5.10 THEOREM. Left M and N be matrix-valued measuves on the o-algebra %
of all Borel subsets of Euclidean k-space Q. Let B® be open spheves with common
center w and with radii r,, — 0, and suppose that with the notation of 5.9(iii),

Iim rank Dﬁ’l = rank M, a.e. u,
n —coo

where U is any nonnegative measuve on B such that M, N K . Then N K M im-
plies
lim NBY)MBY) = (@N-dMT)(w) a.e. p.

n —» 00

The proof follows immediately from 2.12. We note that in general
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lim inf rank D! > rank My,

n — oo

and that if ML has full rank a.e. u, then the condition is automatically satisfied.

6. SINGULARITY AND THE LEBESGUE DECOMPOSITION

If M and N are complex-valued measures, then M and N are mutually singular
(M 1 N) if and only if there exists a nonnegative measure p such that M, N <
and %I g—g =0 a.e. pu. The following matricial definition is therefore reasonable.

6.1 Definition. If M and N are matrix-valued measures, then M and N are
mutually singulay (M L N) if and only if there exists a nonnegative measures u

such that
M, NKp and 2(My)0 2N,) = {0} a.e. p.

As we have shown above (see 4.2), ,%(Mh) is essentially independent of u, since

. — vt A
M“+V—M“d(“+y)a.e.u+1/.

Hence, if M L N and p is any nonnegative measure such that M, N <y, then
2(M},) n 2(N}) = {0} a.e. p.

Unfortunately, Definition 6.1 is inadequate for our purposes: as will be seen
from the next example, it does not insure the uniqueness of a Lebesgue decomposi-
tion.

6.2 Example. Let © = {1} have one point, and set

, M{1} =

N{1} =

I

DO =
o=
NN T

Then we can write two distinct decompositions N = N; + N, with N; << M and
N, 1 M, namely

and N{1} =

W= D=
© o=

1
N{1} = .
2

Wl o
= O

The following definition does yield a urnigue Lebesgue decomposition, as we shall
see in Theorem 6.7.

6.3 Definition. Let H be a nonnegative hermitian matrix-valued measure, and
let M and N be matrix-valued measures on #. Then we shall say that M and N
are mutually H-singular (M L N) if and only if M, N <K H and

(6.4) S (dM - dHF)dH (AN - aB")* = 0 for all B in &. .
B
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1t is easy to verify that if 1 isa nonnegative measure and H & 1, then (6.4) is
equivalent to each of the two conditions

(6.5) (aM - dH") B}, @n-aat)* = 0 a.e. 1,
(6.6) M;‘lH]{le{f =0a.e. .

The following result clarifies the connection between the two concepts of singu-
larity.

6.7 LEMMA. Let M and N be matrix-valued measures on AB. Then the follow-
ing conditions ave equivalent:

(a) M L N.
(b) M Ly N, where H= | M| + IN|.

(c) Therve exists a nonnegative hermitian matvix-valued measure H on B such
that M- Ly N.

Proof. Let (a) hold. Then
‘%(Mﬁ):%(lMliL) a.e. U, %(N;‘L)=¢%’(]Nlh) a.e. p, Hp= | M|, + |N|p, a.e. b

Thus 2(|M|},) 0 #(N|},) = {0} a.e. p, and using 2.16 and (6.6), we see that
M Ly N. Thus (b) holds.
That (b) implies (c) is trivial.
To show that (c) implies (a), we note that
2My,) S R(H) a.e. p, Z(N,) € ®(H}) a.e. L,
;f =0a.e. p (by(6.6)).
Hence %(M:u) N .%’(N;L) = {0} a.e. p, by 2.16. ®

& i A
My HH—N

The following four elementary properties of singularity are easy to establish, and
we shall omit their proofs.

(6.8) M Ly N if and only if N Ly M.

(6.9) If M Ly R, N LR, and A and B ave constant matrices such that
AM + BN is defined, then AM + BN 1y R.

(6.10) If M Ly N and R KM, then R 1y N.
(6.11) If M Lz N and M <K N, then M = 0.

Next we discuss the concept of the «carrier” of a matrix-valued measure. If v
is a complex-valued measure and [ is a nonnegative measure such that v < u, then

the carrier of v with respect to p is the set C = { w: %—;—(w) # 0} , which is only

defined up to null sets (u.-measure). Now we can deal just as readily with the indi-
cator function l¢ of C, instead of C. The appropriate generalization of an indicator
function is a projection-valued function. Now let M be a matrix-valued measure,
and let H be a nonnegative hermitian matrix-valued measure such that M << H. We
shall now define a projection-valued function that will correspond to the indicator
function of the carrier of M with respect to H. First we need the following result,
which follows from 2.15.
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6.12 LEMMA. Let M and H be defined as in 6.3, and let 7 = trace H. Then
(a) #(aM - aH?) N (2(ML)L) = {0} a.e. 7,
(b) #(aM - dH") + (R(ML)1) = CP a.e. 7.

Lemma 6.12 yields the existence of a projection Jgy \(w) onto Z(dM - dH#(w))
along # (M (w))* for almost all w (7-measure). We shall call J 1, M the H-carrier
Junction of M. It can be expressed in the explicit form

(6.13) Ty pp(w) = My (w)* (My (@) Hi (w)¥ ML () ) M () H (w)* for almost all
(7-measure).
6.14 LEBESGUE DECOMPOSITION. Lef M and N be malrix-valued measures
on B, and let H be a nonnegative heymitian matrix-valued measure on .% such that

M, N <« H and 5 (dN . dH )J dH exists. Then

(i) there exist unique matvix valued measures N, and Ng on & such that
(@) N=N,+Ng, (b) N;<KM, (c) NgiyM;
(ii) for all B € B, N, and Ng are given by the formulas

N,(B) = SB (aN-dHF) Iy \ydH, N(B) = SB (aN - dB*) (1 - Ty 1) dH .

Proof. The uniqueness follows easily from the properties (6.8) to (6.11). It
therefore remains to show that N, and Ny as defined in (ii) satisfy (a), (b), and (c)
of (i). (a) is obvious. To prove that N; << M and Ny Ly M, we must show that

RN, ;) C #ML)  and Ni . -HF.M*=0 a.e. 7,
where 7 =trace H. We see that N} , = N; H)#Jpy yH, and thus

RN, ) C Ry \Hy) = @My HFHL) = 2(M)) ae. 7,
the last equality being since #£(M. ) C #(H;) a.e. 7. Likewise,

N, HFMF = N HF@Q- Iy WHEFM ae 7.

But H; HIJ#M';" = (M7 - ng(le ))* = M!;l< a.e. 7, since #(M7) C #(H}). Also,
(I-Jg My =0 a.e. 7, since I - Jy ) is a projection onto (M7 )* = #M(M)). =

In [2, IV, Theorem 2] Cramér obtained the Lebesgue decomposition of a nonnega-
tive hermitian measure with respect to Lebesgue measure over the real line. This
is an easy consequence of our last theorem.

6.15 COROLLARY (CRAMER’S THEOREM). Let N be a nonnegative hevymitian
matvix-valued measuve, and let . be a nonnegative o -finite measure on the family
of Borel subsetls of (-, ©). Then theve exist unique matvicial measures N, and N
such that N =N, + Ny, Ny K pI, Ng L pl, and N, and Ng ave nonnegative hermi-
tian measures. ,

Proof. It is sufficient to show that with M = I, the N,; and N given in Theo-
rem 6.14 are independent of H. Let H be defined as in 6.14, and let 7 = trace H.
Then, a.e. T,
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g Q1

I if = #0,

J =

H,M

oodu
0 if 7= =0,
and thus
N,(B) = S NLHFH AT (B e B).

au
Bn(dT;eo)

But if % #0, then H¥ H! =I; since M} =g—;1 and M < H. Therefore

N,(B) = N(B N (3—’; #0 )) . That the last quantity is independent of 7 follows from
the fact that N<K 7. ®

7. APPLICATIONS TO STOCHASTIC PROCESSES

In this section, we shall indicate briefly how the ideas developed in this paper
help to illuminate some results in the theory of multivariate, weakly stationary
stochastic processes. We assume that the reader is familiar with the subject (see
[8], for example).

The following two results are stated by Masani [8; 8.7, 8.8]:
7.1 THEOREM. Suppose that (i) f, g € HY, (ii) & = (g | M), (ii1) ®p € Ly My
is the isomovph of g, in other words,
A 27
g =), ®,dEf, .
Then

() Mg(B) = Mge(B) = | @gamy (B c @),
B
) Mga(B) = | spamgal = | agamg (B e ).
B B

7.2 COROLLARY. g is subovdinate to f if and only if theve exists ® in LZ,MH
such that for each B € #

- - %
M (B) = SBq)def, M g(B) = SB@defzb .

In these results, the functions &3 and & are not identified. In the light of our
earlier discussion, we now see that they are essentially Radon-Nikodym derivatives,
in fact, that

$5 = dM

, 55 MY (mod Mgy), & = dM s dMY; (mod Mg .
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Our concept of singularity likewise enables us to state a multivariate generaliza-

tion of results due to Kolmogorov [7, Theorems 12, 14],

7.3 THEOREM. Let x,y, and z be q-variate weakly stationavy stochastic

processes such that x =y +2z. Let My, My, and M, denote their spectral meas-
ures. If y and z are orthogonal processes, then y and 2z ave subovdinate to X if
and only if M, L, M,. If y and z are subovrdinate to X, then y and z are orvtho-

gonal if and only if M, L, M,.
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13.
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