ON THE GROUP OF AUTOMORPHISMS OF A FINITE-DIMENSIONAL TOPOLOGICAL GROUP

Dong Hoon Lee and Ta-Sun Wu

Let G be a locally compact topological group, and let A(G) be the group of all (bicontinuous) automorphisms of G. There is then a natural topology in A(G) under which A(G) is a topological group. However, this group is not necessarily locally compact. In fact, some otherwise rather well-behaved groups G (such as infinite-dimensional tori) fail to have a locally compact A(G). The main purpose of this work is to show that if G is a connected, locally compact, finite-dimensional topological group, then A(G) is locally compact and is, moreover, a Lie group.

The word *group* will always mean a topological group, and the identity element of a group will be denoted by 1.

1. PRELIMINARIES

Here we collect some standard definitions and some more or less well-known facts.

1.1. The group A(G) corresponding to a locally compact group G is topologized as follows: For a compact subset C of G and a neighborhood U of 1 in G, let W[C, U] be the set of all $\theta \in A(G)$ such that $\theta(x)x^{-1}$ and $\theta^{-1}(x)x^{-1}$ lie in U for all $x \in C$. Then, as C runs through all compact subsets of G, and G through all neighborhoods of 1 in G, the sets G is a topological group.

If G is a compact group, then this topology coincides with the so-called compact open topology, and if moreover G is a Lie group, then this is the same as the relative topology on the subspace A(G) of a general linear group $GL(n, \mathbb{R})$ ($n = \dim G$). In general, however, the topology we defined above is stronger than the compact open topology on A(G). We also remark that if G is connected and locally connected, then the compact subsets C in W[C, U] may be assumed to be connected.

1.2. Let G be a connected, locally compact group. Then G is locally the product of a compact group K and a local Lie group L_ℓ^* , with K and L_ℓ^* normalizing each other. That is, there exists a neighborhood U of 1 in G such that

$$U = K \times L_{\ell}^*$$
 and $[K, L_{\ell}^*] = \{1\}$,

where, for subsets A and B of G, [A, B] denotes the commutator subgroup of A and B. Since G is connected, the relation $G = KL^*$ holds, where L^* is the subgroup of G defined by

$$L^* = \bigcup_n L_\ell^{*n}.$$

Received September 26, 1967.

T.-S. Wu acknowledges support from NSF Grant GP-7527.

Clearly, K and L* are both normal in G; but we also note that L* is not necessarily closed in G. There exists a connected Lie group structure on L*, which is uniquely determined by the local Lie group L_{ℓ}^* and which we shall denote by L. The inclusion map

$$\lambda: L \rightarrow G$$

is clearly continuous, and $\lambda(L) = L^*$.

Suppose now that G is, in addition, finite-dimensional. It is well known (see [3], for example), that we can then choose K to be totally disconnected. Let D^* denote the intersection of K and L^* , and put $D = \lambda^{-1}(D^*)$. Then, since $K \cap L^*_{\ell} = \{1\}$, D is a discrete, closed, normal subgroup of L and hence is central in L. Finally, we note that $\lambda(L) = L^*$ is dense in G.

2. MAIN RESULTS

2.1. THEOREM. Let G be a connected, locally compact, finite-dimensional group. Then there exist a connected Lie group L and monomorphisms

$$\lambda: L \to G$$
 and $\phi: A(G) \to A(L)$

of topological groups such that, for each $\theta \in A(G)$, the following diagram commutes:

$$G \xrightarrow{\theta} G$$

$$\lambda \uparrow \qquad \uparrow \lambda$$

$$L \xrightarrow{\phi(\theta)} L$$

Proof. Let $U = K \times L_{\ell}^*$, L^* , and L be related as in Section 1.2, and let $\theta \in A(G)$. Let V be a neighborhood of 1 in G such that $V \cup \theta(V) \subset U$, and consider the local decomposition (as in 1.2)

$$V = K' \times L_{\ell}^{*}$$
.

The connectivity of L_{ℓ}^{i*} implies that $\theta(L_{\ell}^{i*}) \subset L_{\ell}^{*}$. Since L_{ℓ}^{i*} is open in L_{ℓ}^{*} (and hence in L), the bicontinuous local isomorphism

$$\theta \colon \mathbf{L}_{\ell}^{!*} \to \mathbf{L}_{\ell}^{*}$$

induces an automorphism $\phi(\theta) \in A(L)$, which is uniquely determined by θ . It is clear then that the diagram commutes, for each $\theta \in A(G)$, and that ϕ is a homomorphism (algebraically).

To prove the continuity of ϕ , let W[C, N] be a basic neighborhood of 1 in A(L), where C is a compact, connected subset of L, and where N is a neighborhood of 1 in L. Since L is a Lie group, we may assume that there exists a neighborhood V of 1 in G such that $\lambda(N)$ is the local Lie group that occurs in its decomposition. That is, V can be written as

$$V = K_1 \times \lambda(N)$$
,

for some totally disconnected, compact group K_1 . Since λ is continuous, $\lambda(C)$ is compact and connected. We claim now that the neighborhood $W[\lambda(C), V]$ of the identity in A(G) is mapped into W[C, N] by ϕ . In fact, let $\theta \in W[\lambda(C), V]$. Then, for every $x \in C$, we have the relations

$$\theta \lambda(x) \lambda(x^{-1}) \in V$$
 and $\theta^{-1} \lambda(x) \lambda(x^{-1}) \in V$.

But $x \to \theta \lambda(x)\lambda(x^{-1})$ and $x \to \theta^{-1}\lambda(x)\lambda(x^{-1})$ are continuous functions from the connected set C into V. Hence, $\theta \lambda(x)\lambda(x^{-1})$ and $\theta^{-1}\lambda(x)\lambda(x^{-1})$ are in $\lambda(N)$ for every $x \in C$. Noting that $\lambda \phi(\theta) = \theta \lambda$, we conclude that $\phi(\theta)(x)x^{-1} \in N$ and $\phi(\theta)^{-1}(x)x^{-1} \in N$ for all $x \in C$, and it follows that $\phi(\theta) \in W[C, N]$. Since ϕ is continuous at the identity, ϕ is continuous.

Finally, it remains to show that ϕ is one-to-one. But this follows immediately from the fact that $\lambda(L) = L^*$ is dense in G (see 1.2) and that θ is the identity map on L^* if $\theta \in \text{Ker } \phi$.

2.2. LEMMA. Let G and U = $K \times L_{\ell}^*$ be related as in Section 1.2, and let

$$A'(G) = \{ \theta \in A(G); \theta(K) \subset K \}.$$

Then A'(G) is an open subgroup of A(G).

Proof. We may assume that L_ℓ^* is so small that it contains no nontrivial compact subgroup. Thus K is the maximal compact subgroup contained in U. Hence A'(G) coincides with the set

$$\mathscr{A} = \{ \theta \in A(G) : \theta(K) \subset U \}.$$

But the latter is open in A(G), so that A'(G) is open in A(G).

2.3. LEMMA. Let $A_D(L)$ (respectively, $A_{D*}(G)$) be the subgroup of A(L) (respectively, of A'(G)) consisting of all $\tau \in A(L)$ (of all $\theta \in A'(G)$) that leave every element of D (of D^*) point-wise fixed. Then $A_{D*}(G)$ is topologically isomorphic with $A_D(L)$ under ϕ . In particular, $A_{D*}(G)$ is a Lie group.

Proof. Let $\theta \in A_{D^*}(G)$. Then $\phi(\theta) \in A_{D}(L)$. To see this, note first that $\phi(\theta) = \lambda^{-1} \theta \lambda$, by Theorem 2.1. Thus

$$\phi(\theta)(\mathrm{d}) = \lambda^{-1} \, \theta \lambda(\mathrm{d}) = \lambda^{-1} \, \lambda(\mathrm{d}) = \mathrm{d} \quad \text{for } \theta \, \in \, \mathrm{A}_{\mathrm{D}} * (\mathrm{G}) \, .$$

Hence $\phi(\theta) \in A_D(L)$.

Now let $\tau \in A_D(L)$. Then $\tau(d) = d$, for all $d \in D$. Let θ_{τ} be defined by

$$\theta_{\tau}(x) = \begin{cases} x & \text{if } x \in K, \\ \lambda \tau \lambda^{-1}(x) & \text{if } x \in \lambda(L) = L^*, \end{cases}$$

where K and L satisfy the conditions in Section 1.2. Since $\theta_{\tau}(d^*) = d^*$ for $d^* \in D^*$, $\theta_{\tau} \in A_{D^*}(G)$. From the definition, it is clear that $\tau \to \theta_{\tau}$ is continuous and that $\phi(\theta_{\tau}) = \tau$. Thus $A_{D^*}(G)$ and $A_{D}(L)$ are isomorphic (topologically) under ϕ .

Since $A_D(L)$ is a closed subgroup of the Lie group A(L), it follows that $A_D(L)$ and $A_{D^*}(G)$ are both Lie groups.

2.4. LEMMA. Let $A'(L) = \{ \tau \in A(L); \tau(D) \subset D \}$. Then $A_D(L)$ is an open subgroup of A'(L).

Proof. Since D is a discrete central subgroup of L, D is finitely generated (see [2], for example). Let $C = \{d_1, d_2, \cdots, d_n\}$ be a set of generators of the central subgroup D of L, and let N be a neighborhood of 1 in L such that $D \cap N = \{1\}$. To show that $A_D(L)$ is open in A'(L), it suffices to show that

$$W[C, N] \cap A'(L) \subset A_D(L)$$
.

Let $\tau \in W[C, N] \cap A'(L)$. Then

$$\tau(d_i)d_i^{-1} \in D \cap N = \{1\} \quad (1 \leq i \leq n).$$

Therefore $\tau(d_i) = d_i$ $(1 \le i \le n)$, and since the d_i form a set of generators of D, $\tau(d) = d$ for all $d \in D$. Consequently, $\tau \in A_D(L)$.

2.5. THEOREM. Let G be a connected, locally compact, finite-dimensional group. Then A(G) is a Lie group.

Proof. It suffices to show that the Lie group $A_{D*}(G)$ is open in A(G). Since A'(G) is open in A(G) (Lemma 2.2), it is then enough to show that $A_{D*}(G)$ is open in A'(G). To see this, note first that $\phi(A'(G)) \subset A'(L)$. It is also clear that $A_D(L)$ and $A_{D*}(G)$ are normal in A'(L) and A'(G), respectively. Thus ϕ induces a monomorphism of topological groups:

$$\hat{\phi}$$
: A'(G)/A_D*(G) \rightarrow A'(L)/A_D(L).

Since $A_D(L)$ is open in A'(L) (Lemma 2.4), it follows that $A'(L)/A_D(L)$ is discrete. Hence the continuity of $\hat{\phi}$ implies that $A'(G)/A_{D*}(G)$ is discrete, and this proves that $A_{D*}(G)$ is open in A'(G).

2.6. COROLLARY. Let G be a finite-dimensional, compact, connected abelian group. Then A(G) is discrete.

REFERENCES

- 1. M. Gotô, On the group of automorphisms of a locally compact connected group. Mem. Amer. Math. Soc. No. 14 (1955), 23-29.
- 2. K. H. Hofmann, Einführung in die Theorie der Liegruppen. Teil I. Mathematical Institute of the University, Tübingen, 1963.
- 3. D. Montgomery and L. Zippin, *Topological transformation groups*. Interscience Publishers, New York, 1955.

Case Western Reserve University Cleveland, Ohio 44106