MINIMUM CONVEXITY OF A HOLOMORPHIC FUNCTION
J. E. McMillan

1. Let w = f(z) be a holomorphic function defined in the open unit disc D. An
arc at 1 is a curve A C D such that A U {1} is a Jordan arc. We say that f has an
asympiotic value at 1 provided there exists an arc A at 1 on which f has a finite or
infinite limit at 1. Let A be an arc at 1, parametrized by z(t) (0 <t < 1), and de-
fine a family &, as follows: H € # 5 if and only if H is a closed half-plane in the
finite w-plane W and there exists ty (0 <ty < 1) such that f(z(t)) € H if to <t <1.

If Hy = @, we set Fp = W; otherwise, we set Fp = ﬂ H, where the intersection is
taken over all H € s¢, . (The set Fp was essentially defined by K. Knopp; see [1,
p. 113].)

THEOREM 1. Either f has an asymplotic value at 1, or therve exists an arc o
at 1 such that Fo C F A for each arc A at 1.

Remark. If f is bounded on an arc A at 1, then F , is the convex hull of the
cluster set of f on A at 1.

LEMMA 1. Suppose that f does not have an asympitotic value at 1. Suppose that
Lg s a straight line in W such that Lg does not contain the projection of any
branch point of the Riemann suvface & onto which f maps D, and such that
f(Ag) N Ly =@ for some arc Ay at 1. Let Hy be the closed half-plane that is
bounded by Lg and contains f(Ag). Let A be an arbitrary arc at 1, and let S be the
smallest connected subset of Lg that contains f(A) N Lo. Then there exists an arc
A' at 1 such that

f(A") C (f(A) N Hy) U 8.

Proof. Let J be a Jordan curve suchthat 1 € J, JCDU {1}, and the interior
domain A of J contains Ay and A. Since f has no asymptotic value at 1, each com-
ponent of the set

A=A{z:z¢€ A, f(z) € LO}

is a crosscut of A neither endpoint of which is 1. If A = @, then f(A) C Hy - Ly,
and in this case we let A' = A.

Suppose that A # @. If there exists a sequence {ck} of components of A such
that, for each k, cy lies in the component of A - cy;) bounded away from 1 (that is,
Cit+] Separates cy from 1), then Ag N cx # @ for large k, contrary to the assump-
tion that f(A,) N L, = @. Thus some component X of A is not separated from 1 by
any other component of A. Let U be the component of A - A that has A on its
boundary and is not bounded away from 1. Any arc at 1 that is contained in A in-
tersects U. In particular, A intersects U, and consequently f(U) € Hg - L. Let
A" be an arc at 1 such that A" C A and the initial point of A" isin U. If A" C U,
let A'=A". Otherwise, let y; (i=1, 2, ---) be the finitely or infinitely many com-
ponents of A that are on the boundary of U and intersect A". Note that if there are
infinitely many vy;, the diameter of y; tends to 0 as i — «, For each i, let v} be
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the (possibly degenerate) closed subarc of y; such that the endpoints of y! are on
A" and A" N y; C yj. It is easy to see that there exists anarc A' at 1 such that

arcanonu(Uy).

Note that f is one-to-one on 7y} and that under f the endpoints of y{ correspond to
points in S. Thus each rectilinear segment f(y{) is contained in S, and the proof of
Lemma 1 is complete.

Proof of Theorem 1. Suppose that f has no asymptotic value at 1. Define a
family o as follows: H € & if and only if H is a closed half-plane in W and there
exists an arc A at 1 such that f(A) C H. We need only consider the case where
# # @. Choose a sequence {H,} of closed half-planesin W such that for each n
the interior Hg of H,, contains some H € &, such that the boundary of H, does not

contain the projection of any branch point of &, and such that n H,= ﬂ H, where
the last intersection is taken over all H € &. Let

n
v, =[] HY .
j=1

We define inductively a sequence {A,} of arcs at 1 such that f(A,) C V. Let A;
be an arc at 1 such that f(A;) € V;. Suppose that A, _; is an arc at 1 such that
f(A,,.1) C V,_; (n>1). Choose an H € & such that H C HJ. Let L be a straight

line in Hg - H that does not contain the projection of any branch point of &, and let

A, be an arc at 1 such that f(Ag) C H. Applying Lemma 1 (with A = A, _;), we see
that there exists an arc A at 1 such that

f(A,) C (f(A,_;) NHY US,

where S is the smallest connected subset of Lg that contains f(A,-1) N Lg. Clear-
ly, SCcv,.1 N Hg =V, and we see that f(A,) C V. Let U, be the component of
£-1(v_) (that is, of the set {z: f(z) € V,}) that contains A,.

We prove that U,y € U, (n > 1), Since V41 C Vg, it suffices to prove that for
each n, U, N Uyy; # @. Suppose that for some n, U, N Upyi = @. Join the initial
points of A, and A,;; with a Jordan arc y that lies (except for its endpoints) in
D - (A, U Ap,+1), and let J denote the Jordan curve composed of y, Ap, and Apt].
Let A denote the interior domain of J, and let A be an arc at 1 that is contained in
A and in the boundary of U,. By considering the simple nature of the boundary of
Vi, we see that if V, is unbounded, then f is one-to-one on A and consequently
tends to a limit on A at 1. Hence V, is bounded. Again, since f does not have a
limit on A at 1, there exists wo € W and a sequence {zyx} C A such that z — 1
and f(zy) = wg. Let L be a half-line that begins at wg, does not intersect V,, and
does not contain the projection of any branch point of &. For each k, let 8y denote
the component of f-1(L) that contains z; . Then By N By =@ if zy # z;,. By rou-
tine arguments, only finitely many By can intersect y. Hence some By tends to 1,
and on this By, f tends to a limit at 1. Since this contradicts the hypothesis of the
theorem, we see that Upt) C Uy,

Now let @ be an arc at 1, parametrized by z(t) (0 <t < 1), and with the property
that for each n there exists t; such that z(t) € U, if to <t <1l. Then Fyu C H,

(n > 1), and consequently Fy C ﬂ H, where the intersection is taken over all
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H € o. Clearly, F, C Fp for each arc A at 1, and the proof of Theorem 1 is com-
plete.

2. A simple curve in D parametrized by z(t) (0 <t < 1) is an asymptotic path
of f for the (finite or infinite) value a provided |z(t)| — 1 and f(z(t)) » a as t — 1.
The end of an asymptotic path @ is @ N C, where the bar denotes closure and C is
the unit circle. Define the class  as follows: f € «/ if and only if f is a non-
constant holomorphic function defined in D, f has an asymptotic value at each point
of a set that is dense on C, and the end of each asymptotic path of f consists of a
single point of C.

Suppose that f € A/, let & be the Riemann surface onto which f maps D, and
define the families &£ and £ as follows: L € £ if and only if L is a straight line
in W that does not contain the projection of any branch point of ¥. L € £ if and
only if L € £ and there exists a sequence {c,} of components of £~1(L) (that is, of
the set {z f(z) € L}) such that ¢, — 1 in the following sense: each c, is a cross-
cut of D that joins a point of {eif: 0< 6 <w/2} to a point of {eif: -7/2 < 0 <0},
and the diameter of ¢, tends to 0 as n — «. The following theorem contains an
earlier theorem of the author [2, Theorem 1].

THEOREM 2. Suppose that f € A,. Then either { has an asymplotic value at
1, or theve exists an avc @ at 1 such that the following two statements hold:

(I) Fy C Fa for each arc A at 1.
(I1) If L € & and both components of W - L intersect ¥, then L € Zg.

LEMMA 2. Suppose that f € Ay and L € £. Then, for each positive number ¢,
the diameters of at most finitely mcmy components of £-1(L) are greater than ¢.

Proof, This lemma was proved in [2]; here we sketch a simpler proof. Suppose
that the conclusion is false. Then there exist an arc y C C and a sequence {yn} of
pairwise disjoint Jordan arcs such that vy, C £-1(L) and y, — y in such a way that
each arc at a point of the interior y° of y intersects all but finitely many y,. We
shall repeatedly use the fact that f is one-to-one on each y,. If f had the asymp-
totic value « at a pomt ¢ € y9, then one component of y - {¢ } would be contained
in the end of an asymptotic path of f for the value « contrary to the assumption
that f € . Thus there exist distinct points {; € 'y (j =1, 2) such that at {;, f
has a finite asymptotic value a;. If aj =a;, then the subarc of v joining {; and ¢,
is contained in the end of an asymptotic path of {f for the value a. Thus a; #a,. We
can construct a Jordan curve J in D that is partitioned into four (closed) subarcs
Ij (=1,2,3,4) suchthat Iy NT3=¢, T'y U T3 cf-1(L), and

(ry;) < {w: |w-a3] < fa; -az{/3}  (=1,2).

There exists zg € I'} such that f(zg) = (a; + a2)/2. Let L' be a straight line through
f(zg) that is distinct from L, does not intersect f(T'2) U f(F4) and does not contain
the projection of any branch pomt of &. The component of £~1(L') that contains zg
crosses I'; but does not intersect J - {zg}. Since its ends must tend to C, this is
impossible. The proof of Lemma 2 is complete.

Proof of Theorem 2. Suppose that f does not have an asymptotic value at 1. By
Theorem 1, there exists an arc @ at 1 such that (I) holds. Suppose that
Le Z-2,. Applying Lemma 2 and the argument used to find U in the proof of
Lemma 1, we see that the point 1 is (curvilinearly) accessible through D - f~1(L),
and consequently Fy intersects at most one component of W - L. Thus (II) holds,
and the proof of Theorem 2 is complete.
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Remark. If f € A p and £ does not have an asymptotic value at 1, then for each
arc a at 1, the statements (1) and (II) are equivalent. In the proof of Theorem 2,
we saw that (I) implies (II). We sketch the proof that (II) implies (I). Let Hy be a
closed half-plane such that for some arc A at 1, f(A) C Hy. Choose any L € & that
does not intersect Hg, and let H be the closed half-plane bounded by L such that
Hp C H. If Fy does not intersect H, we can use the argument used to construct A’
in the proof of Lemma 1 to construct an arc at 1 on which f tends to «. Thus Fg,
intersects H. If Fy ¢ H, we choose L' € £ such that L' N H = # and both com-
ponents of W - L' intersect F, . By (IT), L' € £q, and this is inconsistent with the
relation f(A) N L' = @. Hence F, C H for each such H, and Fy C Hg. Thus (II)
implies (I).
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