MINIMUM CONVEXITY OF A HOLOMORPHIC FUNCTION

J. E. McMillan

1. Let w = f(z) be a holomorphic function defined in the open unit disc D. An $\operatorname{arc} \operatorname{at} 1$ is a curve $A \subset D$ such that $A \cup \{1\}$ is a Jordan arc. We say that f has an asymptotic value at 1 provided there exists an arc A at 1 on which f has a finite or infinite limit at 1. Let A be an arc at 1, parametrized by z(t) $(0 \le t < 1)$, and define a family \mathscr{H}_A as follows: $H \in \mathscr{H}_A$ if and only if H is a closed half-plane in the finite w-plane W and there exists t_0 $(0 \le t_0 < 1)$ such that $f(z(t)) \in H$ if $t_0 \le t < 1$. If $H_A = \emptyset$, we set $F_A = W$; otherwise, we set $F_A = \bigcap H$, where the intersection is taken over all $H \in \mathscr{H}_A$. (The set F_A was essentially defined by K. Knopp; see [1, p. 113].)

THEOREM 1. Either f has an asymptotic value at 1, or there exists an arc α at 1 such that $F_{\alpha} \subset F_A$ for each arc A at 1.

Remark. If f is bounded on an arc A at 1, then F_A is the convex hull of the cluster set of f on A at 1.

LEMMA 1. Suppose that f does not have an asymptotic value at 1. Suppose that L_0 is a straight line in W such that L_0 does not contain the projection of any branch point of the Riemann surface $\mathscr S$ onto which f maps D, and such that $f(A_0) \cap L_0 = \emptyset$ for some arc A_0 at 1. Let H_0 be the closed half-plane that is bounded by L_0 and contains $f(A_0)$. Let A be an arbitrary arc at 1, and let S be the smallest connected subset of L_0 that contains $f(A) \cap L_0$. Then there exists an arc A' at 1 such that

$$f(A') \subset (f(A) \cap H_0) \cup S$$
.

Proof. Let J be a Jordan curve such that $1 \in J$, $J \subset D \cup \{1\}$, and the interior domain \triangle of J contains A_0 and A. Since f has no asymptotic value at 1, each component of the set

$$\Lambda = \{z: z \in \triangle, f(z) \in L_0\}$$

is a crosscut of \triangle neither endpoint of which is 1. If $\Lambda = \emptyset$, then $f(\triangle) \subset H_0 - L_0$, and in this case we let A' = A.

Suppose that $\Lambda \neq \emptyset$. If there exists a sequence $\{c_k\}$ of components of Λ such that, for each k, c_k lies in the component of Δ - c_{k+1} bounded away from 1 (that is, c_{k+1} separates c_k from 1), then $A_0 \cap c_k \neq \emptyset$ for large k, contrary to the assumption that $f(A_0) \cap L_0 = \emptyset$. Thus some component λ of Λ is not separated from 1 by any other component of Λ . Let U be the component of Δ - Λ that has λ on its boundary and is not bounded away from 1. Any arc at 1 that is contained in Δ intersects U. In particular, A_0 intersects U, and consequently $f(U) \subset H_0$ - L_0 . Let A'' be an arc at 1 such that $A'' \subset A$ and the initial point of A'' is in U. If $A'' \subset U$, let A' = A''. Otherwise, let γ_i ($i = 1, 2, \cdots$) be the finitely or infinitely many components of Λ that are on the boundary of U and intersect A''. Note that if there are infinitely many γ_i , the diameter of γ_i tends to 0 as $i \to \infty$. For each i, let γ_i' be

Received April 5, 1967.

the (possibly degenerate) closed subarc of γ_i such that the endpoints of γ_i' are on A" and A" $\cap \gamma_i \subset \gamma_i'$. It is easy to see that there exists an arc A' at 1 such that

$$A' \subset (A'' \cap U) \cup \left(\bigcup_{\gamma_i'} \right).$$

Note that f is one-to-one on γ_i^l and that under f the endpoints of γ_i^l correspond to points in S. Thus each rectilinear segment $f(\gamma_i^l)$ is contained in S, and the proof of Lemma 1 is complete.

Proof of Theorem 1. Suppose that f has no asymptotic value at 1. Define a family \mathscr{H} as follows: $H \in \mathscr{H}$ if and only if H is a closed half-plane in W and there exists an arc A at 1 such that $f(A) \subset H$. We need only consider the case where $\mathscr{H} \neq \emptyset$. Choose a sequence $\{H_n\}$ of closed half-planes in W such that for each n the interior H_n^0 of H_n contains some $H \in \mathscr{H}$, such that the boundary of H_n does not contain the projection of any branch point of \mathscr{S} , and such that $\bigcap H_n = \bigcap H$, where the last intersection is taken over all $H \in \mathscr{H}$. Let

$$V_n = \bigcap_{j=1}^n H_j^0.$$

We define inductively a sequence $\{A_n\}$ of arcs at 1 such that $f(A_n) \subset V_n$. Let A_1 be an arc at 1 such that $f(A_1) \subset V_1$. Suppose that A_{n-1} is an arc at 1 such that $f(A_{n-1}) \subset V_{n-1}$ (n > 1). Choose an $H \in \mathscr{H}$ such that $H \subset H_n^0$. Let L_0 be a straight line in H_n^0 - H that does not contain the projection of any branch point of \mathscr{S} , and let A_0 be an arc at 1 such that $f(A_0) \subset H$. Applying Lemma 1 (with $A = A_{n-1}$), we see that there exists an arc A_n at 1 such that

$$f(A_n) \subset (f(A_{n-1}) \cap H_n^0) \cup S$$
,

where S is the smallest connected subset of L_0 that contains $f(A_{n-1}) \cap L_0$. Clearly, $S \subset V_{n-1} \cap H_n^0 = V_n$, and we see that $f(A_n) \subset V_n$. Let U_n be the component of $f^{-1}(V_n)$ (that is, of the set $\{z: f(z) \in V_n\}$) that contains A_n .

We prove that $U_{n+1} \subset U_n$ (n > 1). Since $V_{n+1} \subset V_n$, it suffices to prove that for each n, $U_n \cap U_{n+1} \neq \emptyset$. Suppose that for some n, $U_n \cap U_{n+1} = \emptyset$. Join the initial points of A_n and A_{n+1} with a Jordan arc γ that lies (except for its endpoints) in D - $(A_n \cup A_{n+1})$, and let J denote the Jordan curve composed of γ , A_n , and A_{n+1} . Let Δ denote the interior domain of J, and let λ be an arc at 1 that is contained in Δ and in the boundary of U_n . By considering the simple nature of the boundary of V_n , we see that if V_n is unbounded, then f is one-to-one on λ and consequently tends to a limit on λ at 1. Hence V_n is bounded. Again, since f does not have a limit on λ at 1, there exists $w_0 \in W$ and a sequence $\{z_k\} \subset \lambda$ such that $z_k \to 1$ and $f(z_k) = w_0$. Let L be a half-line that begins at w_0 , does not intersect V_n , and does not contain the projection of any branch point of \mathscr{S} . For each k, let β_k denote the component of $f^{-1}(L)$ that contains z_k . Then $\beta_k \cap \beta_{k'} = \emptyset$ if $z_k \neq z_{k'}$. By routine arguments, only finitely many β_k can intersect γ . Hence some β_k tends to 1, and on this β_k , f tends to a limit at 1. Since this contradicts the hypothesis of the theorem, we see that $U_{n+1} \subset U_n$.

Now let α be an arc at 1, parametrized by z(t) ($0 \le t < 1$), and with the property that for each n there exists t_0 such that $z(t) \in U_n$ if $t_0 \le t < 1$. Then $F_\alpha \subset H_n$ (n > 1), and consequently $F_\alpha \subset \bigcap$ H, where the intersection is taken over all

H \in \mathscr{H} . Clearly, $F_{\alpha} \subset F_{A}$ for each arc A at 1, and the proof of Theorem 1 is complete.

2. A simple curve in D parametrized by z(t) $(0 \le t < 1)$ is an asymptotic path of f for the (finite or infinite) value a provided $|z(t)| \to 1$ and $f(z(t)) \to a$ as $t \to 1$. The end of an asymptotic path α is $\overline{\alpha} \cap C$, where the bar denotes closure and C is the unit circle. Define the class \mathscr{A}_p as follows: $f \in \mathscr{A}_p$ if and only if f is a nonconstant holomorphic function defined in D, f has an asymptotic value at each point of a set that is dense on C, and the end of each asymptotic path of f consists of a single point of C.

Suppose that $f \in \mathscr{A}_p$, let \mathscr{G} be the Riemann surface onto which f maps D, and define the families \mathscr{L} and \mathscr{L}_0 as follows: $L \in \mathscr{L}$ if and only if L is a straight line in W that does not contain the projection of any branch point of \mathscr{G} . $L \in \mathscr{L}_0$ if and only if $L \in \mathscr{L}$ and there exists a sequence $\{c_n\}$ of components of $f^{-1}(L)$ (that is, of the set $\{z\colon f(z)\in L\}$) such that $c_n\to 1$ in the following sense: each c_n is a crosscut of D that joins a point of $\{e^{i\theta}\colon 0<\theta<\pi/2\}$ to a point of $\{e^{i\theta}\colon -\pi/2<\theta<0\}$, and the diameter of c_n tends to 0 as $n\to\infty$. The following theorem contains an earlier theorem of the author [2, Theorem 1].

THEOREM 2. Suppose that $f \in \mathcal{A}_p$. Then either f has an asymptotic value at 1, or there exists an arc α at 1 such that the following two statements hold:

- (I) $\mathbf{F}_{O} \subset \mathbf{F}_{A}$ for each arc A at 1.
- (II) If $L \in \mathcal{L}$ and both components of W L intersect F_{α} , then $L \in \mathcal{L}_0$.

LEMMA 2. Suppose that $f \in \mathcal{A}_p$ and $L \in \mathcal{L}$. Then, for each positive number ϵ , the diameters of at most finitely many components of $f^{-1}(L)$ are greater than ϵ .

Proof. This lemma was proved in [2]; here we sketch a simpler proof. Suppose that the conclusion is false. Then there exist an arc $\gamma \subset C$ and a sequence $\{\gamma_n\}$ of pairwise disjoint Jordan arcs such that $\gamma_n \subset f^{-1}(L)$ and $\gamma_n \to \gamma$ in such a way that each arc at a point of the interior γ^0 of γ intersects all but finitely many γ_n . We shall repeatedly use the fact that f is one-to-one on each γ_n . If f had the asymptotic value ∞ at a point $\xi \in \gamma^0$, then one component of $\gamma - \{\xi\}$ would be contained in the end of an asymptotic path of f for the value ∞ , contrary to the assumption that $f \in \mathscr{A}_p$. Thus there exist distinct points $\xi_j \in \gamma^0$ (j = 1, 2) such that at ξ_j , f has a finite asymptotic value a_j . If $a_1 = a_2$, then the subarc of γ joining ξ_1 and ξ_2 is contained in the end of an asymptotic path of f for the value f and f are construct a Jordan curve f in f that is partitioned into four (closed) subarcs f and f are construct a Jordan curve f in f and f are construct a Jordan curve f in f and f and f and f and f and f are construct a Jordan curve f and f and f and f and f and f are construct a Jordan curve f and f and f and f are construct a Jordan curve f and f and f are construct a Jordan curve f and f and f and f are construct a Jordan curve f and f are construct a Jordan curve f and f are construct a Jordan curve f and f are construct and f and f are construct an f and f are construct a Jordan curve f and f are construct an f and

$$f(\Gamma_{2j}) \subset \{w: |w - a_j| < |a_1 - a_2|/3\}$$
 (j = 1, 2).

There exists $z_0 \in \Gamma_1$ such that $f(z_0) = (a_1 + a_2)/2$. Let L' be a straight line through $f(z_0)$ that is distinct from L, does not intersect $f(\Gamma_2) \cup f(\Gamma_4)$, and does not contain the projection of any branch point of \mathscr{S} . The component of $f^{-1}(L')$ that contains z_0 crosses Γ_1 but does not intersect $J - \{z_0\}$. Since its ends must tend to C, this is impossible. The proof of Lemma 2 is complete.

Proof of Theorem 2. Suppose that f does not have an asymptotic value at 1. By Theorem 1, there exists an arc α at 1 such that (I) holds. Suppose that L $\in \mathscr{L} - \mathscr{L}_0$. Applying Lemma 2 and the argument used to find U in the proof of Lemma 1, we see that the point 1 is (curvilinearly) accessible through D - f⁻¹(L), and consequently F_{α} intersects at most one component of W - L. Thus (II) holds, and the proof of Theorem 2 is complete.

REFERENCES

- 1. K. Knopp, Zur Theorie der Limitierungsverfahren. Math. Z. 31 (1930), 97-127 and 276-305.
- 2. J. E. McMillan, A boundary property of holomorphic functions. Math. Ann. 173 (1967), 275-280.

University of Wisconsin-Milwaukee Milwaukee, Wisconsin 53201