EXISTENCE OF EXACT SOLUTIONS OF SINGULAR
ORDINARY DIFFERENTIAL EQUATIONS NEAR
THEIR APPROXIMATE SOLUTIONS

Homer G. Ellis

With suitable restrictions on the functions u and F, the improper initial-value
problem associated with

(1) y = F(L)u
and
(1) y(0+4) = 0

has the solution tu for every number t satisfying
(2) t = F(t).
If for the more general differential equation

(3) y'(x) = f(x, y(x))

there exist u and F such that (3) is in some sense asymptotic at 0 to (1), then one
may ask for which solutions t of (2) there exists a solution of (3) that is asymptotic
at 0 to tu in some useful manner. A partial answer to this question is more or less
implicit in [2], the conclusion there being roughly that if (3) is dominated by an equa-
tion of the form (1) with a nonnegative F, via a certain set of inequalities and inter-
vening functions, then to each solution t of (2) there corresponds a solution y of (3)
on a deleted right-hand neighborhood of 0 that satisfies |y| <t ]ul . This inequality
does not imply, however, that y is asymptotic to tu in any very strong sense, and
indeed the foregoing result does not even imply that different solutions t give rise to
different solutions y. The purpose of the present paper is to show how one can apply
the existence theory in [2] to obtain a more satisfactory, though still incomplete,
answer to this question.

It will be more straightforward to eliminate (1) from the problem by thinking of
the improper integral equation equivalent to (3) and (1'), namely

) y= )t yeax,

as having approximate solutions, in a sense that must be made precise, and then ask-
ing for exact solutions asymptotic to these approximate solutions. This eliminates u
and t as used above; however, they will appear again with different meanings when
the theorems of [2] are applied.

Let P be the complex plane, and P_ its one-point compactification. Suppose
that the function f: (0, ©) X P — P00 satisfies the Carathéodory condition that every
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restriction of f to a cross-section (0, ») X {z} is measurable, while almost every
restriction of f to a cross-section {x} X P is continuous; this condition ensures
that if y: (0, ©) — P and y is measurable (in particular, if y is continuous), then
f(x, y(x)) is measurable as a function of x (see [1, p. 665] or [2]). Let us now give
precision to the notion of an approximate solution of (4). The definition will be
shortened if we understand the phrase “h is integrable from 0+ to x,” when applied
to a function h: (0, a] » P and a number x in the bounded interval (0 a], to mean

that if 0 <& <x, then h is Lebesgue-integrable from & to x, and limg_, +5 h

exists and is finite. This limit will be denoted by .S‘

Definition 1. The statement that yg is an aepproximate solution with tolevance
function €, on the bounded interval (0, a], of the improper integral equation

y SO+ f(x, y(x))dx

means that
(i) yq: (0, a] - P,
(ii) yo(0+) =0
(iii) yo is absolutely continuous,
(iv) f(x, yo(x)) is integrable from 0+ to a, and
(v) €: (0, a] — [0, »), and if x € (0, a], then

(5) 7 1!, yolxNax' - yol)| < s

0+

Given an approximate solution y, of (4), one can place various restrictions on
the behavior of f in the vicinity of the graph of yg, measuring these restrictions in
terms of the tolerance function €. The restriction described in the following defini-
tion is of this nature, and it has the advantage of being satisfied in many cases of in-
terest, yet being strong enough to imply the existence of an exact solution of (4) near
the given approximate solution.

Definition 2. If yg is an approximate solution with tolerance €, on the bounded
interval (0, a], of the improper integral equation

y = So+ f(x, y(x))dx,

then f is said to be restricied in growih near yg if and only if there exist a non-
negative function H on (0, a] X [0, «), a finite-valued, nonnegative function K, and a
number t > 1, such that

(i) if x € (0, a], then H(x, 0) = 0 and H(x, r) is nondecreasing in r,

(ii) if (x, w) € (0, a] X P, then

(6) [£(x, vo(x) + W) - i(x, yox))| < H(x, |w]),
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(iii) if (x, s) € dom K, then

1) S; Hx', se(x)dx' < K(x, 8)e(x) ,

where

dom K = (0, a] x {s > 0: the integrand in (7) is integrable from 0+ to at,
and

(iv) if x € (0, a], then (x, t) € dom K and

(8) 1+K(x,t) <t.

We are now in position to formulate a theorem that embodies the promised re-
sult.

THEOREM. Suppose yqg is an approximate solution with tolevance function €, on
the bounded interval (0, a], of the improper integral equation

y = SO+ f(x, y(x))dx.

Suppose furthey that H, K, and t salisfy the conditions in Definition 2, so that f is
restricted in growth neav yoy. Then on the interval (0, a] there exists an exact
solution y of this equation such that

q
(v - vo) @ - (v - o) )] < Sp £(x, yox))dx - (yo(@) - yo(p))

(9)

q
+ | Hex, te()ax
p
if 0<p<q<a,and |yx) - yox)| <te(x) if 0 <x<a.
Proof. Define a function G: (0, ©) X P — Py, by
f(x, yo(x) + w) - yo(x)  if y, is differentiable at x,

G(x, w) =
0 otherwise.

Let Gg(x) = G(x, 0) and Kg(x) =1, for 0 < x < a, and let u=¢. Then, because of
conditions (ii), (iii), and (iv) of Definition 1, G is integrable from 0+ to a, and in
view of (5) we see that if x € (0, a], then

X
S, oo

0+

(10)

§. st yolxax - o] < o6 = Koleut.
+

From (6) it follows that if (x, w) € (0, a] X P, then

(11) IG(X, w) - GO(X)I < H(x, ‘w|).
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The existence of the functions Gg, u, Ko, H, and K with the postulated proper-
ties, including in particular the three inequalities (10), (11), and (7) with u in place
of ¢, guarantees that the function G satisfies Hypothesis A of [2] (and in fact it is
almost tantamount to this assertion). Further, the existence of the number t satis-
fying (8), with the 1 replaced by Kp(x), says that G is “restricted in growth some-
where near 0,” as defined in [2]. Since yg is absolutely continuous, so that y{ is
measurable, and f satisfies the Carathéodory condition, it follows that G satisfies
the Carathéodory condition. This, together with the restrictedness in growth of G
somewhere near 0, constitutes satisfaction of the hypothesis of Theorem 2 of [2].
The conclusion of that theorem is that there exists a continuous function

¢: (0, a] —» P such that ¢ = 5 G(x, ¢(x))dx,
0+

q
), o

q
+ S‘ H(x, tux))dx if 0<p<qg<a,
P

P

|o(a) - ¢(p)| <

and |¢(x)| <tu(x) if 0 <x<a. If y=yo+ ¢ then we may use y to verify the con-
clusion of the present theorem, thus completing the proof.

If ypo and yo are two approximate solutions of (4) for which the hypothesis of the
theorem is true, and their tolerance functions &€ and £* satisfy the conditions
€= o(lyo yol) and g* = 0(|y0 y$|), then the corresponding exact solutions y and
y* are distinct; for if y = y*, then

lvo - v8| < |y - vol + |y* - v§| < te +t¥e* = o(|yo - v§]),

which is impossible.

An example particularly apt for illustrating this theorem is the case in which (3)
reads

2
(12) y'x) =1 +[C+p(X)][X§(£)] ,

where ¢ € P, p: (0, ©) — P, p(0+) =0, p is integrable on every bounded subset of
(0, ), and up[] (x) = 5up(q ] lp| >0 if 0 < x. Here the analogues of (1) and (2) are

(13) y'(x) = 1+c|:-3%")]
and
(14) t = 1+ct2.

If m is a solution of (14), then mx is a solution of (13); therefore, by taking
yo(X) = mx on any bounded interval (0, a], we get an approximate solution of (4) with

X
a convenient tolerance given by &(x) = [m? | S lpll. A suitable H is given by
0+

H(x, r) = |c+p(x)||:2 lm]§+(§)2],

and a suitable X by
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K(x, 8) = a(x)s + f(x)s%,

X 1 x!
2 2mp{x' — !
,, fem p(xn(x. S npn)dx
£ Tel
0+

where

and

SX lm2c+m2p(x')|(;}'_ S; ||p||)2dX'
7 ol |

H and K are easily seen to satisfy (i), (ii), and (iii) of Definition 2.

Now consider the number p defined by

N 1( T ol
— dxl
. o+ X'\ Yoi P )
p = lim sup .

S W 1

0

Note that 0 < p <1 in all cases, and that p = 0 except for rather pathological func-
tions p. Inany case, if |c|p < 1/2|m|, then

limsupa(x) <1 and limBkx) =0,

so that for a sufficiently small a there exists a number t > 1 for which (iv) of
Definition 2 holds; hence the improper integral equation

X . 2
y(x) = x+ So+ [e + p(x")] [Z;({?f_) dx'

X
has a solution y on (0, a] such that |y(x) - mxl <t ]mzl S "p" =o(x), and y
0+

also satisfies (12) almost everywhere, as well as (1'). I |c|p > 1/2|m|, then the
theorem gives no information, under the particular choice of a tolerance function &
that was made above.

Finally, the theorem presented here could without difficulty be extended to in-
clude the case where the function f maps into a finite-dimensional Banach space, or
even an infinite-dimensional Banach space in which a reasonable integral is defined.
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