MAXIMAL LINEAR MAPPINGS AND SMOOTH SELECTION
OF MEASURES ON CHOQUET BOUNDARIES

Bertram Walsh

1. This paper answers a question raised by L. Bungart and H. Bauer [2, p. 155]
concerning the algebra A(D) of functions that are holomorphic in a bounded open set
D C C® and continuous in D. Roughly, the question is whether we can select posi-
tive, mutually absolutely continuous representing measures for the points of D in a
smooth manney, and in a way that keeps the measures concentvated on the Choquet
(minimal) boundary of D. Bungart showed that such a selection is possible if we re-
place “Choquet boundary” by «Silov boundary” and interpret “smooth” to mean
(norm-) harmonic. In his dissertation [6] (see also [5]), Hinrichsen showed that we
can even replace “smooth” by “holomorphic,” provided we make the obviously neces-
sary change from “positive” to “complex,” and alternatively, that we can replace
“smooth” by “pluriharmonic” and merely change “positive” to “real.”

We shall show here that the original question has an affirmative answer if we in-
terpret “smooth” to mean “harmonic,” and that with this interpretation of smooth-
ness, we can replace “representing measures” with “Jensen measures” provided we
thicken the Choquet boundary sufficiently to make it capable of supporting Jensen
measures at all [4]. Most of the theorems below belong to the study of vector lat-
tices; the argument that selects the measures as harmonic functions of the points
they represent pivots on two facts: the bounded harmonic functions on D form an
order-complete vector lattice, and the maximality techniques that produce scalar
measures concentrated on distinguished boundaries can be adapted to linear map-
pings taking their values in order-complete vector lattices. Proofs that resemble
closely the arguments used in working with scalar measures will be sketched rather
than given in detail.

We follow [10] in terminology and notation for vector spaces (especially ordered
vector spaces), and we shall often use [10] in place of primary references. Similar-
ly, we shall follow [1] for integration theory, and [7] for the approach to the Choquet
boundary that has become standard. However, our Choquet-boundary arguments will
follow those of [4], since these are more general and can be used in the construction
of Jensen measures. We shall need three further notational conventions: if E and
F are ordered (real) vector spaces and T: E — F is a linear mapping, T will be
called order-bounded if it is a difference of positive linear mappings. If L is an
order-complete vector lattice, then the subspace of L* consisting of all F € L* for
which

(sup & F) = 1im {, F)
fed

whenever & is an upward-directed majorized subset of L will be called the order
subdual of L and denoted by L, ; the cone of nonnegative elements of L, will be
called LI . (We have chosen these definitions in order to eliminate unnecessary
discussions of existence and uniqueness of positive decompositions.) Finally, if a
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topological space is present in a context, the cone of bounded lower-semicontinuous
functions on that space will be denoted by ¢ (the bounded upper-semicontinuous
functions will therefore constitute - ).

2. We begin with three lemmas. Each is based on the observation that the proof
of its special case in which L = R uses only the fact that R is an order-complete
vector lattice. The first two are theorems of Riedl [8, pp. 112-118], recalled here
for the reader’s convenience; for the third we sketch a proof.

(2.1) LEMMA [8, Theorem 9.2]. Let E be a veal vector space, L. an order-
complete vector lattice, and p: E — L a function satisfying the two conditions

p(x+y) < px)+ p(y),
ple-x) = a'p(x) forall x,y€ E and 0< o € R.

Let U be a linear mapping defined on a subspace F C E, with Ux < p(x) for every
X € F. Then there exists a linear mapping T: E — L that extends U and also salis-
fies the condition Tx < p(x) for all x € E.

(2.2) LEMMA. Let X be a compact Hausdorff space, B a subspace of % pg(X)
containing the constants, and U: B — L a positive linear mapping of B into an
order-complete vector lattice L. Then theve exists an extension of U to €R(X),
say T: €r(X) — L, that is also a positive linear mapping.

This lemma can be deduced from its predecessor: set e = U(1) € L, and let
p(f) = |£| -e for f € @R(X). Things look more familiar at this point if we observe
that (with X, B, U, T, and e as in the last lemma) the inequalities

el << e) -

imply that - || e < Uf < |f| - e for each f € B, and thus that U takes its values in

the union of order-intervals Uy er [-@ e, @-e]. This set (called L, [10, p.

232]) is itself an order-complete vector lattice (with the relativized lattice opera-
tions) in the relativized order; in fact, it is an order-complete Banach lattice when
normed by the gauge of [-e, e] (see [1, p. 31, no. 13]). L. is an .(AM)-space with
unit e in the sense of Kakutani [10, p. 246], and so it is isomorphic as an (AM)-
space with unit to a suitable %R(Z) with unit 1, Z being a compact Hausdorff space.
T as constructed above must also take its values in L., and it can be regarded as a
linear mapping from #gr(X) to €g(Z) that sends 1 to 1 and is positive; thus it is
continuous, with operator norm 1. Norm-continuity makes it simpler to prove the
next lemma; it will also be needed (along with norm-completeness of L) in the
proof of (2.6) below. Z is extremally disconnected, because L is order-complete;
we observe that any measure on Z that is normal in the sense of Dixmier [3, p. 156]
isin (L),.

(2.3) LEMMA. Let X be a compact Hausdovff space, L. an ovder-complete vec-
tor lattice, and T: €R(X) — L a positive linear transformation. For g € 4, define a
mapping T: § — L by

Tg = sup{Tf| g > f e er(X)}.

Then T extends T, is positively homogeneous, additive, and monotone on g, and
thus has a unique linear extension to the subspace ¥ - § of RX. T has the further
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property that if 8 is an upward-divected family of elements of ¥ with supremum
h € 4, then the velation

(*) Th = sup{Tg| g e 6}

holds (along with its obvious dual for - ). Finally, if e = T(1), F € (L,.),, and
L =T'F e M(X), then

Sgdu = F(Tg)

for every ge I - 4.

Proof (after [1, Chapter IV, Section 1, Theorems 1 and 2]). We may assume that
L = L., so that T is Banach-lattice-valued and norm-continuous. Then (*) certainly
holds if ® C ¢R(X) and h € €R(X), for under these circumstances & converges to
h in the uniform norm, by the Dini theorem, and the supremum of a convergent up-
ward-directed family in L, is its norm limit. The evident monotonicity of T im-
plies that Th > sup {Tgl g€ ® } in general; therefore it suffices to prove the re-
verse inequality. To this end, set

8‘g={f|g2f€ @r(X)} for each ge ©, 8‘=_U Ty
g€@

Then § is directed upward with limit h, so that again Th > sup {Tf| f € §}. But
here the reverse inequality also holds, because for any continuous f; < h the set
{fo N f }f ¢ & converges upward to f; and all the functions involved are continuous;

therefore
T(f,) = sup{T(, Af)| fe §} < sup{TE| fe T}.

Taking the supremum on f3, we see that Th < sup {_’ffi fe §}. Finally, for each _
f € § thereis some g€ @ with f € 3, in other words, with f <g, so that Tf < Tg
and thus Tf < sup {Tgl ge ® }, whence taking the supremum on f gives
Th=sup{Tf| fe §} <sup{Tg|ge ©}.

That T is positively homogeneous is obvious; that it is additive follows from (*)
and the observation that if g;, g, € &, then the family
{t;+1,| g, > £, € &r(X), i=1, 2}

converges upward to g; + g, pointwise. Finally, if F € (Le),l; and p = T'F, then for
each g € 4

F(Tg) = Flsup{Tf| g > f e ¥x(X)}] = lim {F(Tf)| g > fe @x(X)}

= lim, {Sfdp.| g>fe %R(X)} = Sgd,u,

by the defining property of the order subdual and the definition of the scalar integral
of a function in ¢.

We now place ourselves in the setting of Edwards’ paper [4], and more specif-
ically in the setting of [4, Section 3]; accordingly, we assume that there is given a
min-stable separating wedge ¥ of continuous real-valued functions on the compact
Hausdorff space X, that is, a cone (possibly improper) of functions distinguishing the
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points of X and closed under the operation /\; we assume that ¢ contains the con-
stant functions. As in [4, p. 303], the Stone-Weierstrass theorem implies that the
sublattice ¥ - ¢ of @R(X) is dense. Diverging slightly from Edwards’ approach
(and coming closer to that of [7]), we adopt the following definition.

(2.4) Definition. For any f € @R(X), the G-upper envelope of f, denoted by f, is
the (pointwise) infimum of the family of all functions in ¢ that dominate f: if
Y= {g] f<ge 9}, then £(x) = infgefgfg(x).

It is clear that f € -# for each f. Since ¥ isa wedge, the map f — fis posi-
tively homogeneous, monotone and sublinear, and thus

a-fg a-f for each f and each 0 > a ¢ R.

Moreover, the min-stability condition implies that the family ¢ of functions is di-
rected downward with limit f, and consequently (by the dual of (*) in (2.3) above)
T(f) = inf geG, Tg whenever T: ’E?R(X) — L is a positive linear mapping of % (X)

into an order-complete vector lattice L (see [4, p. 304]).

We now define an ordering for positive linear mappings T: #j(X) — L (where L
is an ordered vector space) by analogy with the ordering used for measures in the
usual Choquet boundary treatments:

(2.5) Definition. If T and T, are positive linear mappings of €R(X) into an
ordered vector space L, then T > T, means that T;(g) < T,(g) for every g € 9.

Just as in the scalar case, we see that if f € ¥ N -%, then T; > T, implies
T,(f) = T,(f). In particular, T;(1) = T,(1) whenever T; and T, are comparable
under >, which means that they both take their values in the subspace L, of L,
where e = T;(1) = T,(1). We have already observed that T; and T, are norm-
continuous from ¢ Rr(X) into L, if the latter is normed by the gauge of [-e, e] (pro-
vided that that gauge is a norm, as it will be if L is an order-complete lattice); thus
(with the same proviso), just as in the scalar case, the density of ¢ - ¢ in Er(X)
implies that whenever T, > T, and T, > T;, then T, and T, must be equal.
Transitivity of > is just as easy to prove as in the scalar case. And now that the
order > is defined, it is meaningful to talk about positive linear mappings that are
maximal with respect to it; these maximal objects can be obtained, as usual, by
Zornification.

(2.6) PROPOSITION. If U: ¢r(X) — L is a positive linear mapping whose vange
is a complete vector lattice, then there exists a >-maximal positive lineayr mapping

T> U.

Proof. It will suffice to show that if 8 is a >-upward-directed set of positive
linear mappings >-—larger than U, then 8 has a >-supremum. In order to do
this, define T: ¢ — L by Tg = inf {Vg[ Ve } for each g € 9. Then T is clearly
positively homogeneous, and a straightforward argument using the upward-directed-
ness of B (that is, the downward-directedness of each {Vg] Ve }) will show that
T is additive. T therefore has a unique linear extension to the subspace 4 - ¢ of
@Rr(X), and since this extension (which we shall also call T) is positive and
T(1) =e = U(1), T can be extended, by denseness of § - ¢, its own continuity (with
L, normed by the gauge of [-e, el ), and norm-completeness of L., so that it is de-
fined on all of ¥ R(X). The definition of T on ¢ insures that T is the >>-supremum
of B,




MAXIMAL LINEAR MAPPINGS 55

One would now like the maximal mappings to take the same values on the upper
envelopes of continuous functions as on the functions themselves. The mappings are
not defined on upper envelopes in general, since upper envelopes are not continuous
in general; but since the extensions T of (2.3) are defined on bounded upper-semi-
continuous functions, the following result is the appropriate one.

(2.7) PROPOSITION. If T is a >-maximal linear mapping from € R (X) into an
ovder-complete vector lattice L, then Tf = T(T) for every f € &R (X).

Proof (after [7, Proposition 4.2]). Fix f € € (X), and define the linear mapping
U: Rf — L by U(a-f) = a -T(f); define a function p: ¥x(X) — L by p(h) = T(). It is
clear that p is sublinear, and if 0 < «a € R, then

U(a-f) = @ T{) = T(a-f) = T(a 1) = pla-f),
while if 0 > o € R, then
Ula-f) = o+ TF) = T(a-1) < T(a 1) = pla-1).

Thus, by (2.1) above, there is an extension of U to all of ¥Rr(X) (this extension we
shall also denote by U) with Uh < p(h) for all h € ¥ (X). Since g € ¢ implies
g =g, we see that

Ug < p(g) = T(g) = Tg foreveryge ¢,

or U > T; by maximality, U= T and Tf = Uf = T(f).

(2.8) COROLLARY. Lel T be a >-maximal positive linear mapping of €Rr (X)
into an order-complete vector lattice L. If F € (Lg), (where e = T(1)) and
L =T'F € MX), then

fau = f du  forall f e €x(X).

Indeed, this is just an application of the last part of (2.3).

In particular, if F € (L, )+ then the measure g = T'F € /(X)t is a maximal
scalar measure (by [4, p. 305]) and thus has the properties which [4] establishes for
those measures; among other things, | in some sense lives on a boundary 9 @ X of
Choquet type.

Remark. In order to consider the problem raised in [2] from the present view-
point, it is necessary to know that when X is a compact convex subset of a locally
convex space E, then a min-stable separating wedge ¢ of continuous functions on X
can be chosen for which the maximal measures in the sense of [4] are the same as
those defined in [7, p. 25]. The reader will find it easy to see that ¢ can simply be
taken to be the cone of continuous concave functions on X: with this choice of ¥, the
order >> defined in [4] and the order > defined in [7, p. 24] are identical.

(2.9) COROLLARY. Let X be a compact Hausdovff space, B a separvating linear
subspace of €Rr(X) with 1 € B, and U: B — L an ovder-bounded linear mapping of B
into an ovder-complete vector lattice L. Suppose U =U' - U~ (with Ut and U-
positive), and let e = U(1) + U-(1). Then theve exists an orvder-bounded (and theve-
Jore norm-continuous) linear mapping T' from (Le)I - (L e):; into A(X) for which
the two statements

(A) T'F|g = U'F,
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(B) the variation |T'F| of T'F is maximal in the scalay sense and thevefore
annihilates every Baive subset of X disjoint from the Choquet boundary of X with
respect to B

hold for every F € (Le);: - (Le)I. If U=U", then T' can be taken positive.

Proof. Identify X (under evaluation) with a subset of B', and let Y be its
o (B', B)-closed convex hull; identify B with the separating subspace (containing 1)
of .€Rr(Y) to which it naturally corresponds. Suppose that U = Ut for the present,
and using (2.2), extend U to all of €z (Y). If T > U is maximal, then by (2.8) the
measure T'F is maximal in the scalar sense, for every F € (L, ); , and thus [7, p.
30 and Chapter VI passim ] is supported by X and annihilates every Baire subset of
X disjoint from the Choquet boundary. If ¥ = F; - F> with F; and F; in (Le)I,
then the relation |T'F| < T'F; + T'F, implies that |T'F| annihilates f - f for
every f € @R(Y); therefore |T'F| is also maximal. T' thus sends elements of
(Lg)f - (L,)f back to measures supported by X, and it may thus be regarded as hav-
ing range contained in -#(X); clearly, this T' satisfies requirements (A) and (B).
The straightforward extension.to order-bounded U can be left to the reader.

Remark. Suppose that (Le):; distinguishes points of L ; then the transformation
T: &r(Y) — L, constructed above may (by a slight abuse of language) be thought of
as defined on #R(X), and T' will then simply be its transpose. To prove this, it suf-
fices to show that if g € @R(Y) and g | X =0, then Tg = 0; but if g | X = 0, then for
every F € (L,)f we have (with u = T'F) the relation

(g, ¥) = | gan = o,

since p is supported by X. All concrete cases encountered below will have enough
elements in (Le)I to distinguish points of L., and we shall without further notice
consider the T constructed above to be defined on @R (X).

‘3. Tt remains only to apply (2.9) to the situation envisioned in [2]. The question
raised there can be viewed as a particular case of a problem in selecting represent-
ing measures for a vector space of bounded “harmonic” functions in Brelot’s axio-
matic theory of harmonic functions, and we shall treat that more general problem.
Let W be a connected and locally connected locally compact Hausdorff space, # a
sheaf of real-valued “harmonic” functions satisfying the axioms I, II, and II of the
Brelot theory [see for example 11, p. 687] with 1 € &#. Let D be an open subset of
W, and let-& o' denote the vector space of bounded & -harmonic functions on D.
PBH' is an order-complete vector lattice; the order-completeness is a consequence
of Harnack’s convergence principle, which implies that the pointwise supremum of
an upward-directed majorized subset of & # belongs to B#'p. Indeed, By is
an (AM)-space with unit 1, and for each point z € D, the evaluation functional
g,: h — h(z) is an element of (BAHD)E, so that (:%’JKD):; certainly distinguishes
points of ##'p. If D is connected, then for each zp € D and each relatively com-
pact neighborhood N of z(, there exists a constant cy (Harnack’s constant) such
that

1
—— .8

pS <eg, < N Egy for every z € N.
N

z

0

We can make cy as close to 1 as we wish by taking N sufficiently small.
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(3.1) PROPOSITION. Let X be a compact Hausdovff space, and let
T: &Rr(X) —» BH be a positive linear mapping that sends 1 to 1. For each z € D,
let p, =T'e, € MX). Then

Ti(z) = Sfduz for each 1 € €R(X) and each z € D,

and the following four assertions hold.
(A) The function z — |, can be approximated uniformly on compacta in D by

Sfunctions of the form z — E?:l hj(z)' vj, wheve hj € Hp and v; € M(X)
(G =1, «=+, n); in particular, the function is (noym-) continuous.

(B) If D is connected, then for each zg € D, each relatively compact neighbor-
hood N of zy, and each z € N,

1
EE.“ZOSH‘ZSCN'“ZO’

where cy is Harnack's constant for N.

(C) If D is connected and countable at © (0-compact), then for each z, € D
there exists a function

G(z, x) = 2 A;-h;(z) - g5(x),
j=1

whevre 2;1 l}‘jl <, hj € #p (j=1, 2, -++), and hj — 0O uniformly on compacta as
j — o, and wheve g; € Qw(uzo) (j=1, 2, +-+) and g — 0 uniformly as j — . The

Junction G can be chosen so that

(1) for each z € D, p, = Gz, -)-uzo (hence SG(z, ~)d,uzo = 1);

(2) for each neighborhood N of zg), Ell\;s G(z, -) <cy forall z € N (thus G
is everywhere positive);

(3) x — G(-, x) is a measurable #p-valued function of x € X with respect
to the measure p.zO (see [1, Chapter IV, Section 5]); consequently, it is

harmonic and measurable in its vespective variables.
(D) If X is metrizable, then G can be taken identically 1 outside an appropriate
Gs-set supporting ,U.ZO .

Proof. #p is nuclear [11, Theorem 2] and complete; therefore its bounded
closed sets are compact [10, p. 101, Corollary 2]. Thus T": @x(X)" — o, and
so the function

z - T'o(z) = (T, 6,9 = (o, T'5, ) = (o, 1, )

is o¢-harmonic for each ¢ € @y (X)"; the approximation assertion (A) now follows
from [11, Proposition 1]. (B) is an immediate consequence of the positivity of T
and the Harnack inequality relating €, and ¢, 0" (B) implies that T: @R(X) — s#p
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is continuous when #'R(X) is given the relativized Ll(uz )-norm topology and <#p

is given the topology of uniform convergence on compacta and so T can be extended
to map L (,u. ) continuously into s#', by density of ¥ R(X) and completeness of

(C) and (D) then follow directly from [11, Theorem 2, second corollary], with
G bemg modified on an appropriate set of u, o-measure zero if necessary. See also

the exhaustive discussion of nuclearity and kernels in [6, Section 5].

(3.2) THEOREM. Let D be a relatively compact open subset of W, and let B be
a linear subspace of ‘EooR(D) with the three properties

(1) 1 € B,
(2) f € B implies £|D € o»,

(3) there exists a closed subset XE—D for which the mapping £ — £ | X is an
isometry of B with a separvating lineay subspace of #g(X).

Let ‘G be any min-stable wedge (necessavily sepavating) of continuous functions on
X, with BC 9 N (-%). Then there exists a -maximal T: €r(X) — BAH'p whose
restrviction to B | X is the "identity," that is, which sends £ | X to f, and thus has the
property that U, = T'e, is a G-maximal rvepresenting measure for each z € D on B.
Similarly, theve exists a positive T): €r(X) — BHp whose restriction to B | X is
the "identity" for which each vepresenting measure [.,= Tie, is concenivated on the
Choquel boundary bX of X with vespect to B ("concentnzted" having its usual mean-
ing: each ., annihilates each Baive set disjoint from bX). In either case, the func-
tion z — [L, has the properties listed in (3.1) above.

Proof. One may think of the “identity” mapping U: B ] X — BHAHp as a positive
linear transformation (sending 1 to 1) of a subspace of ¥x(X) into the order-com-
plete vector lattice B . (2.2) above will extend U to all of €R(X), (2.6) will find
a maximal T > -larger than the extension, and by (2.8) each scalar measure
b, =T'e, is ¥-maximal. Similarly, applying (2.9) and the remark following, we
can easily construct T; . We may now simply apply (3.1) to T or T, directly.

If W=C", & is the sheaf of harmonic functions in the usual sense, B is the
linear space of real parts of functions in the algebra A(D) (see Section 1) and X is
the Silov boundary of D with respect to B (or, equivalently, with respect to A(D)),
then we have the setting of [2]. The Choquet boundary bX is the set of peak points
of elements of A(D). Applying the second part of (3.2), we get a function z — u,
from D to the probability measures supported by bX which represents the points of
D for functions in B and therefore for functions in A(D); this function has the prop-

erties listed in (3.1), and therefore it is norm-harmonic and thus norm-real-analytic.

Similarly, if D is connected, then the kernel function z — G(z, +) is a norm-
harmonic and norm-real-analytic function into the Banach space formed by £ (i, o)

equipped with the supremum norm. On the other hand, placing ourselves in the set-
ting of [4, Section 5], taking Edwards’ X to be our D and taking ¢ to be the min-
stable wedge % N %R(X) constructed there, then applymg (3.2) (with X = D), we get
a norm-harmonic selection z — u, of Jensen measures for the points of D with re-
spect to the algebra A(D), with each u, supported by Edwards’ boundary dg X; if D
is connected, then again this function z — g, can be given by a norm-harmonic ker-
nel G, as in (3.1).

Remark. The reader interested only in holomorphic-function algebras can de-
duce the result above without making use of the contents of [11}; if D c C* and
#BH ' is the space of real-valued functions on D that are bounded and harmonic in
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the usual sense, then the constructions in the proof of (3.2) are valid, and the func-
tions z — p, are scalarly (“weak-star”) harmonic in the sense that for every

fe €p(X), z— Sf dp, is a (bounded) harmonic function on D. Using the Poisson

kernel for spheres, the reader can easily establish (in the way in which he would use
the Cauchy kernel to show that scalarly holomorphic functions are norm-holomor-
phic) that z — u, is norm-harmonic, and therefore norm-real-analytic. If D is
connected, he can similarly establish the existence of an I::”(uZO)-valued function

z — g, for which p, =g, - uZO ; the range of the function z — g, is easily seen to
be a separable subset of L°°(uZO), and a lifting argument will produce a function
z — G(z, -) for which G(z, -) is a representative of g, in Q”(HZO). G will be

bounded (and so forth), as in (3.1); however, the “infinite series” representation
given for G in (3.1) depends on nuclearity.

4. It is not clear what direction the extension of our arguments might take. Of
course, any improvement in techniques for producing maximal scalar measures
could probably be adapted to this setting, and (as [6] indicates) the harmonic-function
axioms of Brelot that we used in Section 3 may well be unnecessarily restrictive.

But an order-complete vector lattice in which our linear transformations take their
values seems indispensable. One only needs to know that upward-directed majorized
sets possess suprema and that L, is complete in its norm in order to prove proposi-
tions like (2.3) and (2.6) (and even monotone completeness suffices for the latter), and
one knows this, for example, for the space of bounded pluriharmonic functions on an
open set in C* . However, such propositions are not very useful without a theorem
like (2.1). Moreover, an ordered vector space with a monotone completeness prop-
erty has to be fairly far from being a lattice in order not to be one; in fact, Schaefer
[9, Theorem (13.2), p. 123] has shown that the Riesz decomposition property implies
lattice-ordering in the presence of monotone completeness. Also, if the dimension n
of C2 (in the setting of [2]) is larger than 1, there is no reason for expecting the
constant ¢y of (3.1) above to be the “part” constant for A(D); therefore, the question
raised in [2] concerning whether that constant could be tied to the part metric on the
maximal ideal space of the algebra remains unanswered.
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