PSEUDO-ISOTOPIES AND CELLULAR SETS
Ross L. Finney

In this paper we study some of the relationships between cellular decompositions
of manifolds and pseudo-isotopies on manifolds. Our manifolds have no boundary.

A pseudo-isotopy on a manifold N is a homotopy h: I X N — N for which each
restriction hy=h | t X N is onto and each h; is a homeomorphism for t <1. We
think of each h; as a map of N onto N. The map h; is said to be the end of h, and
h is said to end in h; .

A pseudo-isotopy h shrinks the elements of a decomposition D of N if
1. hg is the identity,
2. for each point x of N the set hj!(x) is an element of D.

Thus h does not collapse subsets of N with reckless abandon. It keeps elements of
D separate at all times, and when the shrinking has been carried out at t = 1, we
find that the pre-image hil(x) of each point is no more and no less than an element
of D.

Let £ be a map of N onto itself, and let D¢ denote {f-1(x)| x € N}, the decom-
position of N induced by f. A pseudo-isotopy on N that shrinks the elements of D¢
to points does not necessarily end in f. For example, if { were an orientation-
preserving map of a sphere onto itself, there would be no homotopy of f with the
identity. One can however prove the following equivalence:

PROPOSITION. Let X be a compact Hausdovff space. A map f of X onio itself
is the end of a pseudo-isotopy on X if and only if theve exisis some pseudo-isotopy
on X that shvinks the elements of D¢ to points.

The proof one way is easy, because if f is the end of a pseudo-isotopy h on X,
then hal h is a pseudo-isotopy that shrinks the elements of Dy to points.

The converse follows from the next lemma.

LEMMA. If f and hy arve maps of a compact Hausdorff space onto itself with
D = Dhl , then theve exists a homeomorphism g such that gh; = 1.

More general forms of this lemma are known, but this one is sufficient here and
for the proof of Theorem 2.

A subset A of an n-manifold N is cellular if each open subset that contains A
also contains a closed n-cell B with A C Int B. A cellular set need not be locally
connected, nor need it be contractible on itself to a point, or have the fixed-point
property. Yet each cellular subset A of N can be shrunk to a point by a pseudo-
isotopy on N. That is, there exists a pseudo-isotopy h on N such that hg is the
identity and A is the only nondegenerate element of Dh1 . It is sometimes useful to

know that this pseudo-isotopy may be chosen to be the identity outside an arbitrary
neighborhood of A. In general, a decomposition of N is called cellular if each of its
elements is cellular, and a mapping f defined on N is cellular if D is cellular.
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It follows from results of Youngs [5] and of Floyd and Fort [3] that a map of the
2-sphere onto itself is monotone if and only if f is the end of a pseudo-isotopy on the
sphere. Since it is a consequence of R. L. Moore’s decomposition theorem [4] that
the properties of being monotone and cellular are equivalent for subsets of S? , We
know that a map of S2 onto itself is cellular if and only if it is the end of a pseudo-
isotopy on the sphere.

The properties of being cellular and monotone are not equivalent for mappings of
S3 onto itself. R. H. Bing [1] has a decomposition of S3 into points and topological
figure-eights whose quotient space is again homeomorphic to S3. The projection
map is thus a map of S3 onto itself that is monotone but not cellular. This projec-
tion mapping is not the end of a pseudo-isotopy on the sphere:

THEOREM 1. If f is the end of a pseudo-isotopy on a manifold, then each com-
pact element of Dy is cellular.

COROLLARY. The end of a pseudo-isotopy on a compact manifold is cellular.

The proof of the corollary is trivial. To prove the theorem, let f be the end of
the pseudo-isotopy h: I X N — N on the n-manifold N, and let x be a point of N for
which A = f-1(x) is compact. Let U be an open set contammg A. We begin our
search for a closed n-cell in U whose interior contains A by choosing first some
open set V with A C V C U and with V compact. Then routine arguments with
sequences and compactness show that

1. diameter (h(A) U {x}) > 0ast—1,

2. there exists an g£g > 0 such that p(hi(A), h(@V)) > gg for all t (p is the
distance given by the metric in N).

Let B be a closed n-cell in N whose interior contains x and whose diameter is
less than g;. For some t3 <1, ht (A) Cc Int B. For this tg, ht (V) and B are

disjoint. Therefore B C ht (V), so that h'l(B) is the required n cell. I would like
to thank the referee for suggestlng this argument which shortens my original proof.

The corollary was discovered independently by Morton Brown. His formulation
is: f: N — N is cellular if it is a uniform limit of homeomorphisms of a compact
manifold N onto itself. Brown’s proof (unpublished) is easier than our proof of
Theorem 1, but it depends on the compactness of N and does not seem to lead to the
more general result.

That there exist pseudo-isotopies on manifolds that shrink noncompact sets to
points is shown by an example of James Munkres. In the first quadrant of E2 let
A= {(x, y)| y>x} and B = {(x, y)I 0<y <x} Then, for each t in I, let

(1-t)(x, y)+t0,x) on A,

H(x, y) =
{(x-ty,y) on B.

Extend H to the second quadrant by reflection in the y-axis, and then to the rest of
EZ2 by reflection in the x-axis. Then H; is not cellular, because HJ Lo, 0) is the
y-axis. Also, H; is not monotone, because Hj 10, y) is the union of two rays if

y #0.

Is each cellular map f of a compact manifold onto itself the end of a pseudo-
isotopy? If D¢ has only finitely many nondegenerate elements, yes. When else?

In [2] we proved that if f is a simplicial, cellular map of a triangulated, compact
three-manifold onto a triangulated space T, then T is homeomorphic to M, so that {
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is a cellular map of M onto itself. It follows from the proof, in a way we shall
sketch below, that f is the end of a pseudo-isotopy on M.

THEOREM 2. Let f be a cellulay map of a trviangulated, compact 3-manifold M
onto itself. If f is simplicial, then f is the end of a pseudo-isotopy on M.

COROLLARY. A simplicial map of a compact 3-manifold onto itself is the end
of a pseudo-isotopy if and only if it is cellular.

The corollary is an immediate consequence of Theorems 1 and 2.

In what follows, all complexes are locally-finite and simplicial, and simplices
are closed. Whenever a symbol is used to denote a complex, it is also used to de-
note the underlying space.

To prove Theorem 2, we begin with a cellular, simplicial map f of a triangulated
compact 3-manifold M onto itself. The union of the nondegenerate elements of Dy
is a proper subcomplex Kj; of M (see [2] for details). Following the reduction de-
scribed in Lemma 4.5 of [2], one can obtain a finite sequence {D;}I.; of cellular
decompositions of M and a corresponding sequence 1K;}j-; of subcomplexes of
M such that

1. Dl =Df,

2. D; is obtained from D;_;, and K; from K;_;, by deletion of a simplex 7;_;

from K, _,,

3. K; is the closure of the union of the nondegenerate elements of D;,
4. D has only finitely many nondegenerate elements.

It is easy to make a pseudo-isotopy that shrinks the nondegenerate elements of
D, to points, because they are isolated cellular sets. Each can be shrunk to a point
by a pseudo-isotopy that starts with the identity and remains the identity outside of a
small neighborhood of the element. The separate shrinkings fit together to give a
pseudo-isotopy (call it H™) that shrinks the nondegenerate elements of D, simul-
taneously.

Starting with H™, one can prove Theorem 2 by induction. Finding H® was the
first step. The next is to show that if there exists a pseudo-isotopy H! on M shrink-
ing the nondegenerate elements of D; to points, then there exists a pseudo-isotopy
H-! on M that shrinks the nondegenerate elements of D;_; to points. The way to
prove this is to construct a function G: I X K;_; — K; that (a) moves no point of K;
and (b) satisfies the condition G,(d) C d for each nondegenerate element d of D;_;.
That is, G collapses each nondegenerate element that protrudes from K;_; to its
intersection with 0K;. Because of (a) and (b), G will in general fail to be continuous
on certain faces of 7;_; (the example below is typical). But G can be chosen so
that Gg is the identity, G is continuous except on 1 X 7;_; , and an extension of G to
Ix (M - K;) fits with H! to give the required pseudo-isotopy Hi-1l,

For example, suppose that 7;_; isa 2-simp1ex, sticking out from K;, whose in-
terior meets nondegenerate elements of D;_; in line segments parallel to ab. If ab
is not free in K;_;, one can choose G to collapse 7.1 within itself to ab U bc by
leaving ab U bc fixed and by moving each point of 7;_; - (ab U bc) parallel to ab
until it comes to rest in bc.

One can observe immediately that such a collapsing G is not continuous along
the edge ab at t = 1. This is where it becomes necessary to fit G with H. Be-
cause of the way 7;.1 1s decomposed, the edge ab is a subset of a nondegenerate
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element of D;, so that H! collapses ab to a point. Then, if G and H! are carried
out simultaneously, the result is continuous at t = 1, even though G is not.

If ab is free in K;_;, we can collapse it with the segments to get a continuous G.

b b b

Figure 2,

Of course, the 7;_; we have just imagined are special. The other possibilities
for 7;_; are described on page 595 of [2]. For each it is possible to find a function,
like the G we have found here, to shrink the nondegenerate elements of D;_; into
elements of D; without disturbing the nondegenerate elements of D;. In each case,
the pseudo-isotopy can be combined with H! to give Hi-1,

By induction we then arrive at a pseudo-isotopy H that shrinks the nondegenerate
elements of D¢. Of course, H does not necessarily end in f, but the Lemma says
that there exists a homeomorphism g of M onto itself such that gH ends in f. The
pseudo-isotopy gH satisfies the conclusion of Theorem 2.
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