SPLITTING AND DECOMPOSITION BY REGRESSIVE SETS

T. G. McLaughlin

1. INTRODUCTION

In [5] there appears a very simple proof of the fact that indecomposable number
sets need not be cohesive. In the present paper we show, with a bit more effort but
along the same general lines, that some noncohesive sets of numbers cannot be de-
composed (in the generous sense defined in Section 2) by any pair of 7egressive
sets. We further show that some cokesive sets can be split by regressive sets but
cannot be decomposed (in the sense of Section 2) by pairs of regressive sets, and
that there exist sets decomposable by pairs of r.e. sets but not by any pair of re-
traceable sets. As to notation, we follow [5]; special terminology not explicitly de-
fined below (such as “cohesive”, “retraceable”, “regressive”) has the same meaning

as in [2], [3], and [5].

2. DEFINITIONS AND PRELIMINARY LEMMAS

LEMMA 1. Let o be an infinite set of numbers. Then o has at most 8, re-
gressive supersets.

Proof. If o C B and B is regressive, then p, regresses  for some n, where
{pn} is some enumeration of the partial recursive functions of one variable. It is
easily seen (and has been noted in [3] and [7] for the special case of 7efracing func-
tions) that if p, regresses two distinct infinite sets v, and y,, then y; and vy,
must have finite intersection. Thus for any n, p, regresses at most one superset of
o, and the lemma follows.

Definition 1. A set o of numbers is supercohesive if and only if it is infinite
and no regressive set B8 splits «.

Remark. The existence of retraceable sets with immune complements ([6]) im-
plies that not all cohesive sets are supercohesive.

LEMMA 2. Ewvery infinite set of numbers has a supevcohesive subset.

Proof. Let a be an infinite set of numbers; with the aid of the axiom of choice,
we shall extract a supercohesive subset from «. If y is any set of numbers, let
I(y, p,) be the collection of all infinite subsets 8 of y such that

(I a)(p, regresses @ and 8 =y N a).

Let .# be the class of all nonempty I(y, p,) as ¥ and n vary. Let F be a choice
function for #. We define a sequence of subsets of o as follows:

a0=a,

Apt41 =

o, otherwise.
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Then {a-} is a nested sequence of infinite subsets of a. Let tp, t;, t,, - bea
nonrepea%:ing sequence of numbers such that tj € o for every j; then

7 = {ty, t;, t,, =-*} is a supercohesive subseét of @, as we leave for the reader
to verify in detail.

COROLLARY 1. Theve are continuum many permutations p of the natural num-
bers such that both p and p-! permute the regressive sets among themselves, pre-
sevving rvecursiveness, vecursive enumevrability, and retraceability.

LEMMA 3 ([2]). Let a be an infinite set of numbers; then o has an infinite
regressive subsel if and only if il has an infinite rvetraceable subsel.

LEMMA 4 ([7]). An r.e. set B is hyper-hypersimple if and only if B is infinite
and has no infinile vetrvaceable subset.

LEMMA 5 (see [1, Theorem 4]). Let ay, a,, *--, @) be regressive sets such
Tk M
that n j=1 @ j is infinite. Then ﬂj=1 aj has an infinite vegressive subsel.

Proof. The case k = 2 is Theorem 4 of [1]. In order to establish the general
case, we only need rewrite the proof of [1, Theorem 4], using the following definition
of loop, which applies to any k > 2: let pnl , pnk be the regressing functions of

oy, =+, 04, respectively, that have been chosen for use in the proof; then a loop is
a pair (x,, yo) of numbers such that x is in the domain of each p_ (1 <j <k),
J

each p  leads x to y, in a finite number of iterations, and there is no z for
which x, #2, z #y,, and all p, lead z to y; in a finite number of iterations and

J
lead xy to z in a finite number of iterations. For the remainder of the proof, the
reader is referred to the proof of Theorem 4 in [1].

LEMMA 6 (see [1, Theorem 1]). The union of any two immune rvegressive sets
is immune.

Proof. Since regressiveness is preserved both by recursive equivalence and by
intersection with recursive sets ([2]), it suffices to show that the set of all natural
numbers is not the union of two immune regressive sets. But for this we may use,
with [orily trivial changes, the alternate proof of [1, Theorem 1] appearing in Section
4 of |1].

LEMMA 7 ([56]). Let B be a nonrecursive set of numbers; then B has an infinite
subset a such that if v C B and vy is recursive, thern vy N a is finile.

Remavrk. Lemma T is easily generalized; however, we shall need only the simple
assertion above, concerning recursive subsets of a nonrecursive set.

The next lemma is an extension of a theorem of Friedberg. It is due to J. P.
Cleave and C. E. M. Yates, but the proof (a modification of the proof of Theorem 1
in [4]) has not yet been published.

LEMMA 8 (Cleave, Yates). Let B be any r.e., nonrecursive set of numbers;
then there exist a recursive function £(x) and a two-place vecursive function g(x, y)
such that, for all numbers j and K,

(i) j#zk = Wf(J) n Wf(k) = 3,

@ Uwe =8,
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(iii) Wj N Wf(k) = [0 = Wg(j,k) = (Wj - B) U (a finite set) .

We remark that the modifications required in the proof of [4, Theorem 1] can be
carried out in such a way that condition (iii) of Lemma 8 is replaced by the stronger
condition

(iii") W ﬂWf(k) is finite = Wg(j,k) = (WJ- - B) U (a finite set).

The notion of decomposability, standard in the literature, is this: a set a of
numbers is said to be decomposable if and only if there are two r.e. sets W; and
Wj; such that WiN'W;=0, a cW; UW;j, and both @ N W; and o N Wj are infinite.
But it is easily seen that an equivalent definition would read: o C W; U Wj, and both
W; and W; split @. This observation accounts for our next definition:

Definition 2. a is regressively decomposable if and only if there exist regres-
sive sets B and y such that ¢« € 8 U  and both 8 and y split «.

3. THREE THEOREMS ON SPLITTING AND DECOMPOSITION

THEOREM 1. There exist disjoint supevcohesive sets a and B such that

@ j)a cW; cB), (Vy)y regressive = B L yVyda).

Proof. Let W, be a hyper-hypersimple set ([4]). By Lemmas 3 and 4, W, is
devoid of infinite regressive subsets. Applying Lemma 2, let 8 be a supercohesive
subset of W_. Let

= {y| Bcy and y is regressive};

from Lemma 1 we see that I' must be countably infinite. Enumerating I'" as

Yos Y1s Y2, °°*, We define a sequence of sets A; as follows: for j > O, A5 ﬂi 07k
Each a; is 1nf1n1te since it includes B; hence, by Lemma 5, each 2; possesses an
1nf1n1te regressive subset. But therefore, in view of Lemma 4, each A; must have
infinite intersection with W.. Let tg, t;, ty, *** be a nonrepeatmg sequence of num-
bers such that, for every j, t; € ;N W, and set 7 = {t;| > 0}. Let o bea
supercohesive subset of 7. Then clearly aCW,CB, whereas

v regressive => BELyVyZ a;

this finishes the proof of Theorem 1.

COROLLARY 2, There exists a noncohesive numbey set T that is not rvegres-
sively decomposable.

Proof. If a, B have the properties described in Theorem 1, then plainly we may
take 7T = a U B,

THEOREM 2, There exists a cohesive set that can be split by a retvaceable set
but is not vegressively decomposable.

Proof. Let 7 be a retraceable set with an immune complement ([6]). We begin
by obtaining a cohesive set that is split by 7. To this end, let oy, o, a,, - be
the sequence of sets defined by
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ao = the set of all natural numbers,

a, "W, if o, N W, is infinite,
%n+1 <

o otherwise .
Each set ¢, is an infinite r.e. set; thus, ay, a;, @,, *** is a nest of infinite sets,
each split by 7. Let ty, t;, t,, **+ be a nonrepeating sequence of numbers such that
tjeoN T for even j and tj € aj N T for odd j; then it is easy to see that by set-
ting 7 = {t; | j > 0} we obtain a cohesive set split by 7. In particular, 7 N 7 is
infinite; let B be a supercohesive subset of T N 7. The set @, whose existence is
asserted in Theorem 2, is an extension of B. Let v,, 7;, ¥,, *** be an enumeration
of all the regressive supersets of g8, and let {p,} be defined as in the proof of
Lemma 1. We shall deal with the set of all pairs of the form (y js pK); let
Py, P;, P,, **- be an enumeration of these pairs. Recall, from the proof of Lemma
1, that if p, regresses two distinct infinite sets A; and A,, then A; N A, is finite:
from this it follows that if p, regresses the two infinite sets A; and A, (A; #15),
then there exist numbers n; and nj, such that if m; >n;, m, >n,, m; € A, and
m, € A,, then m; and m, are not connected by p,,.

We are now ready to proceed with the main section of the proof. The set a is to
be obtained by a stage-by-stage buildup; at stage n we work with P, and for con-
venience we designate the first member of P by Prll, the second by P,Z;. Our pro-
cedure at stage n breaks down into three cases, as follows:

Case 1. PIZ1 regresses two different immune sets A1 and A2, each of which has
infinite intersection with @ - Pl. In this case, there exist numbers m and m in
a, - PII1 such that m and m are not connected by PZ. Let nj and ny be the two
smallest such number (minimizing first m, then m), and place both n; and n; in .
(Naturally, throughout stage n, no numbers are placed in @ except as we explicitly
stipulate.) Next, since a, N 7 is infinite, it must contain a number m not yet
placed in a; we place the smallest such m in @. This finishes Case 1. (Thus, in
Case 1, exactly three numbers are placed in @.) The first part of our procedure in
Case 1 guarantees that o will not be decomposed by ]?,[11 and a set regressed by PIZI;
the second part contributes to the splitting of @ by 7 (since a is to be an extension

of B).

Case 2. Pll1 is immune and Pf; regresses exactly one set A such that A is im-
mune and A N (@, - Pl) is infinite. Here it follows from Lemma 6, since a;, is an
infinite r.e. set, that o, - (Prl1 U 1) is infinite. Let n; be the smallest member of
o, - (Prl1 U ) that has not yet been placed in ¢, let n, be the smallest member of
(@, N 7) - {n;} not yet placed in @, and place both n; and n, in @. This finishes
Case 2.

Case 3. Neither Case 1 nor Case 2 obtains. Both a, N 7 and @, N T are
infinite; we place n; and n, in o, where n; is the smallest number in a, 1 7 not
previously placed in @, while n, is the smallest number in (oel,1 N 7) not previously
placed in «.

Let u be the set of all numbers n for which there exists a stage s such that n
is placed in @ at stage s; we define the set ¢ by @ =8 U p. We must verify that «
is cohesive, is split by a retraceable set, and is not regressively decomposable.
First, suppose W, N a is infinite. It is easy to see that this implies the existence



SPLITTING AND DECOMPOSITION BY REGRESSIVE SETS 503

of an n such that a,4; = o, N W,. But therefore @ - W, must be finite. Thus, &
is cohesive. It is evident from the definition of a that « is split by the retraceable
set 7. Finally, suppose that y and 0 are two regressive sets that decompose «.
Since « is cohesive, ¥y and 6 must both be immune. Since B is supercohesive,
either B - ¥ or B - & is finite, say, B - v is finite. We may suppose, without loss
of generality, that B C v. Letting p, regress 6 and supposing that P, = (y, p¢), we
see that, at stage n of the construction of «, either Case 1 or Case 2 holds. But in
each of these cases we provided that o contain a number not in Pll1 Ud (=y UVH),
From this contradiction we conclude that « is, in fact, not regressively decompos-
able, which completes the proof of Theorem 2.

For convenience in stating Theorem 3, we introduce at this point some special
notation: let E denote the class of recursive sets, F the class of r.e. sets, R the
class of regressive sets.

THEOREM 3. There exists a number set a such that (i) o is not regressively
decomposable by a paiv of sets each belonging to R - (F - E), and (ii) a is sequen-
tially decomposable; that is, theve exists a vecursive function 1(x) such that

Proof. Let W, be a simple set, and let f(x) and g(x, y) be recursive functions
related to W, as in Lemma 8 (with W, in place of 8). Applying Lemma 7, let 8 be
an infinite subset of W¢(g) whose intersection with any recursjve subset of Wg(q) is
finite. (Condition (iii) of }.,emma 8 clearly implies that the sets Wf(n) are pairwise
recursively inseparable, and hence individually nonrecursive.) Let y be a super-
cohesive subset of 8. Let the set of all immune regressive supersets of y be
enumerated in a list v, v, ¥, ***, and let pgy, p;, p,, = be a listing of all of the
recursive supersets of y. We construct a by stages, as follows.

Stage 2n (n > 0). We first set

C!n = We n -n pJ.
j<n

Now, n j<n Pj is a recursive superset of ¥ and must therefore have infinite inter-

section WiIh Wf(o) . In fact, ( njsn p; ) N We must be infinite; for, as is easily

seen, there would otherwise be an effective test for membership in Wio) N ﬂ j<nPj

Since W, is simple, it follows from Lemma 8 that ﬂ j<n p-) N Wg(k) is infinite
ot |

for all k. For each j <n, let n; be the smallest member of j<n pj) N Wg(3)
not yet placed in «; place each of these numbers n; in o and procéed to Stage
2n+ 1,

Stage 2n + 1. We work inside the r.e. set o, defined at the preceding stage. As
in the proof of Theorem 2, there are three cases; we assume that Py, Py, P,, ** is
a listing of all pairs of form (y js Pk), and we consider the pair P, (the notations

P}l, Pf‘l will be used as in the proof of Theorem 2).

Case 1. PIZ1 regresses two distinct immune sets A; and A, such that
A; 0 (a, - Pl) is infinite for i =1, 2. Just as in the proof of Theorem 2, this implies
the existence of a pair of numbers n;, n, € a_ - Prl1 that are not connected by P12i5
minimizing first n;, then n,, we may suppose n; and n, to be the smallest such
pair. Place both n; and n, in @, and go on to Stage 2(n-+ 1).
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Case 2, P2 regresses exactly one immune set X such that A N (o, Pl) is

infinite. _By Lemma 6, there exist numbers m such that m € @, and m ¢ PL U
Letting m be the smallest such m, place m in @ and proceed to Stage 2(n + 1)

Case 3. Neither Case 1 nor Case 2 obtains. Proceed directly to Stage 2(n + 1).

We define @ by @ =y U u, where p is the set of all numbers that are placed in
a at some stage s.

It is evident from the procedure at Stage 2n that o has property (ii) of the theo-
rem. Suppose there were sets g and 6 in R - (F - E) such that 8 and 6 decompose
a, Since y is supercohesive, one of ¥ - 8 and y - 6 is finite; let us assume, without
loss of generality, that in fact vy C 8. Now, B8 cannot be recursive. For suppose
B = p, for some n. Then we see from the construction of @ that all numbers placed
in o at or after stage 2n are members of B8, whence all but finitely many members
of o are in 8. Similarly, 6 cannot be recursive, for if it were, we could simply
repeat the above argument, using 6 in place of 8. Thus, 8 and & are immune. But
then either Case 1 or Case 2 must arise at Stage 2n + 1, where 8 = Yj, 0 is re-
gressed by py, and P (-y p,). But, at Stage 2n + 1, in both Case 1 and Case 2
we have ensured that oe is not a subset of UGS (= Y U 6). It follows that a is not
regressively decomposed by 8 and 6, and the proof of Theorem 3 is complete.

COROLLARY 3. There exist number sets that can be decomposed by pairs of
r.e. sets, but not by a paiv of retraceable sets.

4. REMARKS

1. Each of Theorems 1, 2, and 3 made use of Lemma 2. Since we have no proof
of Lemma 2 not requiring the axiom of choice, we must state that as far as we now
know, the three results of this section are dependent upon the axiom of choice (which
is not needed, however, except perhaps in the application of Lenima 2).

2. Since the set a of Theorem 3 is sequentially decomposable, it follows from a
slightly stronger form of Lemma 4 (pointed out in a footnote in [7]) that o has an in-
finite retraceable subset. At present we do not know an example of a set @ of num-
bers that is decomposable, or even splittable, by r.e. sets but cannot be split by a
retraceable set; in fact, we do not know of any sets that can be split by a regressive
set but not by a retraceable set; we conjecture, however, that sets of all these types
exist. Sets that can be decomposed by a pair of retraceable sets but not split by an
r.e. set are known from [6].

3. Theorem 3 is stronger than Theorem 2 of [5], which states that there exist
sequentially decomposable sets not splittable by recursive sets. Indeed, Theorem 3
of the present paper is provably stronger than [5, Theorem 2], in that we can easily
give examples of number sets « that are sequentially decomposable, not splittable
by a recursive set, and decomposable by a pair of (separably disjoint) retraceable
sets (for example, any infinite retraceable subset of the set constructed in the proof

of Theorem 3).

4. Let R* denote the class of all (nonvoid) finite unions of regressive sets. Sup-
pose we say that a number set o is R*-decomposable if and only if there exists a
finite collection B;, -+, By (k > 2) of members of R* such that each B splits «,

k
o CUJ_I B;j , and for each set By (1 <2 < k), ( U_,:l Bj ) - By splits a. Itis
easy to see that Theorem 1 implies the existence of a noncohesive set that is not
R*-decomposable. Further, Proposition D of [6] can easily be strengthened
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somewhat so as to read: for every cardinal number k (2 < k < 8g), there exists a
cohesive set @ such that (i) @ is decomposable by a disjoint family of k retrace-
able sets, (ii) ¢ is not R*-decomposable by a finite family of more than k¥ elements
of R*, and (iii) @ is R*-decomposable by a family of £ elements of R* for

2 < Kk < k, provided k is finite. Theorems 2 and 3 of the present paper, however,
cannot be generalized at once to the level of R*-decompositions. The main difficulty
seems to be the restricted form of our Lemma 6, which we are unable at present to
extend even to the case of fZrvee immune regressive sets.

5. Note that Theorem 1 proves more, in still another direction, than that regres-
sive indecomposability does not imply cohesion. It shows that a is not necessarily
cohesive, even if there exists no pair B, y of regressive sets that gives a “branched
splitting” of o (that is, has the property that both 8 and y split @ and both
(B Na)-vand (y N @) - B are infinite). Theorem 2 is not as strong in this regard.
However, we can slightly modify the proof of Theorem 2 to show that existence of
such a branched splitting of a cohesive set does not imply regressive decomposability.

Added October 25, 1965. We are now able to prove Theorems 2 and 3 without
recourse to the axiom of choice. Furthermore, in the case of Theorem 2 we now
have R*-indecomposability. The latter improvement, however, carries with it a
certain loss (at least, in terms of the proof that is known to us): in the above proof
of Theorem 2 (which can be modified to avoid use of the axiom of choice, with no
change in the retraceable splitting set 7), the set 7 can be shown (without appeal

to the axiom of choice) to lie in Z g N Hg ; but in order to insure R*-indecompos-
ability, we have made use of nonarithmetical retraceable splitting sets.
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