ON THE UNIVALENCE OF A CERTAIN INTEGRAL B

W. C. Royster

In a recent paper, P. L. Duren, H. S. Shapiro, and A. L. Shields [1] showed that
if f belongs to the class S of functions that are regular and univalent in the unit disk
D, and if 0 < |a| < (V5 - 2)/3, then the function

t(2) = {01 ar
0

also belongs to S. They knew that the Koebe function K(z) = z/(1 - z)2 loses its uni-
valency under some transformations K — Ky with |a| < 1 (private communication),
but they had no example of a function f in S for which some f,; (0 < a < 1) is not
univalent. We shall now identify a subclass of functions f in S for which f, is uni-
valent whenever 0 < o < 1. On the other hand, corresponding to each value «

(Je| > 1/3, o # 1) we shall exhibit a function f in S whose transform f, is not
univalent.

THEOREM 1. If f belongs to S and is close-to-convex, then f, belongs to S
and is close-to-convex, whenever 0 < a <1.

This proposition was proved independently by M. O. Reade and P. L. Duren (pri-
vate communications). Their proofs are similar and have the advantage of being
complete within themselves, whereas the author’s original proof employed a strong .
result of W. Kaplan [2, Theorem 2]. The proof of Reade and Duren is as follows: by
definition (see [2]), £ is close-to-convex.if and only if f'(z) = p(z) ¢'(z), where p is a
function with positive real part in D and ¢ is convex in D. The relation f' = p¢'
implies

£, = ()% = p* (@) = p¥ ¢} .

Since p® has positive real part, it remains to show that ¢, 1s convex. The condi-
tion for convexity of ¢ is

% (z%::)>-1 (z € D).

It follows from the relation z¢}/¢f = @z ¢"/¢' that the transformation ¢ — ¢o pre-
serves convexity for 0 < o < 1. This concludes the proof of Theorem 1.

THEOREM 2. Corvesponding to each complex number o (|a| > 1/3, a +1), the
class S contains a function £ of the form

(1) £(z) = exp [p log(1 - z)]

such that £, ¢ S.
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The choice of the branch in (1) is immaterial, because it does not affect the
validity of the following auxiliary proposition.

LEMMA. The function (1) is univalent in D if and only if | lies in one of the
closed disks

(2) lw+1] <1, fp-1] <1,

Proof. I p = pel? (¢ real, p > 0), then the function g(z) = u log (1 - z) maps D
onto a subset B of a sloping strip Z of width pw. Since the boundary of B ap-
proaches one or the other edge of ~ as the preimage z approaches the point 1 from
above or below, and since (for cos ¢ # 0) the strip £ meets vertical lines in seg-
ments of length p7 |sec ¢l, the function (1) is univalent if and only if p1r|sec d)[ < 2m,
that is, if and only if p < |2 cos ¢|. This proves the lemma. We note that (1) maps
D onto a Jordan domain if and only if cos ¢ > 0.

Returning to the theorem, we note that

f'(z) = Ajexp[(p - 1)log(1 - z)],
[£1(z)]® = Azexp[o(n - 1)log(1 - z)],
fo(z) = Azexp {[a(n - 1)+ 1]log(1l - z)} + Ay,

where the Ay are constants and are therefore irrelevant to the question of uni-
valence. By the lemma, f, is univalent if and only if the point w = a(pr - 1)+ 1
lies in one of the closed disks |w+ 1| <1 and |w - 1| < 1; that is, the function (1)
serves the purpose of Theorem 2 if and only if satisfies one of the conditions (2)
while w lies in the intersection W of the sets |w+ 1| >1 and |w - 1| > 1.

Since p =1+ (w - 1)/a, the conditions (2) are equivalent to
(3) lw-1+2a| <|a|, |w-1|<]el,

respectively, Therefore the theorem is proved if we can show that whenever

|a| > 1/8 and @ # 1, one of the closed disks (3) meets the domain W. Since the
center of the first disk in (3) lies at a distance 2a from the point w = 1, it is geo-
metrically obvious that the disk meets the domain W if and only if |a| > 1/3 and
o #1, (The second disk, meeting W if and only if |oz| > 1, does not extend the ef-
fective range of our example.) The proof of Theorem 2 is complete.

While we have no example of a function f in S such that, whenever |a| > 1/3
and « # 1, the function f, is not univalent, one of our functions covers a fairly large
portion of the range. If in (1) we take p = -2, then f, is univalent only when the
point 1 - 3a lies outside of W, that is, whenever

|1 -8a+1| <1 or |1-3a-1|<1;
in other words, f, is not univalent when a lies outside of the two closed disks with

respective centers 0 and 2/3 and with radius 1/3,

It seems highly plausible that if £(z) = exp g(z), where g is a univalent function
that maps D onto a slowly oscillating strip =~ of vertical height 27, such as the
strip bounded by the segment [1 - 7i, 1 + 7i] and the two curves

y = +7 + x(log x) sin (log x) x>1),
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then f, is univalent if and only if |a| < 1/3 or @ = 1. The principal problem that
remains is to determine whether f, is univalent if f € S and (V5 - 2)/3 < @ < 1/3.
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