ENDOMORPHISM RING OF AN INDUCED MODULE

Patricia A. Tucker

1. INTRODUCTION

Let G be a finite group with a normal subgroup H. Let K be a field, and let L be a left KH-module. In this paper, we investigate the structure of $\text{Hom}_{KG}(L^G, L^G)$.

Let S be the subgroup of G/H = B such that

$$S = \{b \in B | \bar{b} \otimes L \text{ is KH-isomorphic to } L\}.$$

If $\operatorname{Hom}_{KG}(\bar{b} \otimes L, L) = 0$ for all $b \in B$, $b \notin S$, then $\operatorname{Hom}_{KG}(L^G, L^G)$ is the crossed product of $\operatorname{Hom}_{KH}(L, L)$ and S (described in Theorem 1).

We apply this to the case where K is algebraically closed and of characteristic p>0, and L is an indecomposable left KH-module. We prove that if

$$\text{Hom}_{KH}(\bar{b} \otimes L, L) = 0$$

for all $b \in B$, $b \notin S$, then L^G is indecomposable if and only if S is a p-group or $S = \{1\}$.

J. A. Green in [3, Theorem 8] proves the following: If K is an algebraically closed field of characteristic p > 0, G is a p-group with subgroup H, and L is any indecomposable left KH-module, then L^G is indecomposable. For the proof, he reduces the theorem to the case where H is maximal, and thus normal, in G, and G/H = S. He then uses a construction similar to the one presented here, for the case where S is a cyclic group of order p.

The basic definitions and notations used in this paper may be found in Curtis and Reiner [2]. All modules considered will be assumed to be unital and finite-dimensional vector spaces over K.

2. DECOMPOSITION OF ELEMENTS OF $Hom_{KG}(L^G, L^G)$

Let G be a finite group with a normal subgroup H, and let G be the extension of H by B = G/H = $\{b_1 = 1, b_2, \cdots, b_n\}$. Then to each element b_i of B there corresponds a left coset \bar{b}_i H of H in G, and G = H \cup \bar{b}_2 H \cup \cdots \cup \bar{b}_n H, where \bar{b}_1 = 1.

Multiplication of elements of G is given by

$$\bar{b}h \cdot \bar{b}' h' = \overline{bb'}(b, b') h^{b'}h',$$

where b, b' ϵ B, h, h' ϵ H, (b, b') ϵ H, and h^b = (\bar{b})⁻¹ h \bar{b} . Furthermore,

$$(1, b) = (b, 1) = 1, (h^b)^{b'} = (b, b')^{-1} h^{bb'} (b, b'),$$

$$(bb', b'')(b, b')^{b''} = (b, b'b'')(b', b'').$$

Received November 26, 1963 and October 7, 1964.

Let K be a field, and let KH denote the group algebra of H over K. Let L be a left KH-module, and let L^G denote the induced module $KG \bigotimes_{KH} L$. Then $L^G = \sum_{i=1}^n \bar{b}_i \bigotimes L$.

Let $S = \{b \in B \mid \bar{b} \otimes L \text{ is KH-isomorphic to } L\}$. Then S is a subgroup of B. The isomorphisms of $\bar{b} \otimes L$ onto L are determined by the set of nonsingular linear transformations on L. If D_b is a nonsingular linear transformation on L that determines a KH-isomorphism of $\bar{b} \otimes L$ onto L by $\bar{b} \otimes \ell \to D_b \ell$, then $hD_b = D_b h^b$. The transformation D_b will be considered to be in $Hom_{KH}(\bar{b} \otimes L, L)$.

Assume that the elements of B have been ordered in such a way that $S = \{b_1 = l, b_2, \cdots, b_m\}$, where $m \le n$. Set $b_{ij} = b_i b_j$, where ij is some integer $(1 \le ij \le n)$. Since S is a group, it follows that if $1 \le i, j \le m$, then $1 \le ij \le m$. For each $b_i \in S$, select a nonsingular linear transformation D_i on L such that $hD_i = D_i h^{b_i}$ and $D_1 = 1_L$.

Let $\theta \in \operatorname{Hom}_K(L^G, L^G)$. Then θ can be represented by an $n \times n$ matrix $[\theta_{ij}]$, where

$$\theta_{ij} \in \text{Hom}_{K}(L, L)$$
 and $\theta(\bar{b}_{i} \otimes \ell) = \sum_{j=1}^{n} \bar{b}_{j} \otimes \theta_{ji} \ell$.

If $\sigma \in \text{Hom}_{K}(L, L)$, then $\overline{\sigma}\theta = [\sigma\theta_{ij}]$.

If $\theta \in \operatorname{Hom}_K(L^G, L^G)$, then $\theta \in \operatorname{Hom}_{KG}(L^G, L^G)$ if and only if $h\theta = \theta h$ for all $h \in H$, and $\bar{b}_k\theta = \theta \bar{b}_k$ ($1 \le k \le n$). (Here h and \bar{b}_k are considered as linear transformations on L^G .)

Because

$$h\theta (\bar{b}_{i} \otimes \ell) = h \left(\sum \bar{b}_{j} \otimes \theta_{ji} \ell \right) = \sum \bar{b}_{j} \otimes h^{bj} \theta_{ji} \ell$$

and

$$\theta \mathbf{h} (\bar{\mathbf{b}}_{\mathbf{i}} \otimes \ell) = \theta (\bar{\mathbf{b}}_{\mathbf{i}} \otimes \mathbf{h}^{\mathbf{b}_{\mathbf{i}}} \ell) = \sum \bar{\mathbf{b}}_{\mathbf{j}} \otimes \theta_{\mathbf{j} \mathbf{i}} \mathbf{h}^{\mathbf{b}_{\mathbf{i}}} \ell,$$

the relation $h\theta = \theta h$ is equivalent to the condition

$$h^{b_j} \theta_{ii} = \theta_{ii} h^{b_i}$$
 $(1 \le i, j \le n)$.

This condition implies that

$$D_j \theta_{ji} D_i^{-1} = \sigma_{ji} \in Hom_{KH}(L, L) \quad (1 \leq i, j \leq m)$$

and

$$\theta_{1i} = \sigma_{1i} D_i = \sigma_i D_i \qquad (1 \le i \le m).$$

Since

$$\bar{\mathbf{b}}_{\mathbf{k}} \, \theta \, (\bar{\mathbf{b}}_{\mathbf{i}} \otimes \ell) \, = \, \bar{\mathbf{b}}_{\mathbf{k}} \, \left(\sum \bar{\mathbf{b}}_{\mathbf{j}} \otimes \theta_{\mathbf{j} \mathbf{i}} \, \ell \, \right) \, = \, \sum \bar{\mathbf{b}}_{\mathbf{k} \mathbf{j}} \otimes (\mathbf{b}_{\mathbf{k}} \, , \, \mathbf{b}_{\mathbf{j}}) \, \theta_{\mathbf{j} \mathbf{i}} \, \ell$$

and

$$\theta \bar{\mathbf{b}}_{\mathbf{k}}(\bar{\mathbf{b}}_{\mathbf{i}} \otimes \ell) = \theta (\bar{\mathbf{b}}_{\mathbf{k}\mathbf{i}} \otimes (\mathbf{b}_{\mathbf{k}}, \, \mathbf{b}_{\mathbf{i}})\ell) = \sum \bar{\mathbf{b}}_{\mathbf{r}} \otimes \theta_{\mathbf{r}, \mathbf{k}\mathbf{i}}(\mathbf{b}_{\mathbf{k}}, \, \mathbf{b}_{\mathbf{i}})\ell,$$

the relation $\bar{\mathbf{b}}_{\mathbf{k}} \theta = \theta \bar{\mathbf{b}}_{\mathbf{k}}$ is equivalent to the condition

$$(b_k, b_i) \theta_{ii} = \theta_{ki,ki}(b_k, b_i) \quad (1 \le k \le n).$$

It follows that $\theta_{k,ki} = \theta_{li} (b_k, b_i)^{-l} (1 \le k \le n)$.

Now, for i > m, let $\theta_{1i} = \zeta_i$. Then $h\zeta_i = \zeta_i \, h^{b_i}$, and $\bar{b}_i \otimes \ell \to \zeta_i \, \ell$ defines an element of $\text{Hom}_{KH}(\bar{b}_i \otimes L, L)$. Consider ζ_i to be in $\text{Hom}_{KH}(\bar{b}_i \otimes L, L)$.

Combining these relations, we see that for $\theta \in \text{Hom}_{KG}(L^G, L^G)$,

$$\theta_{k,ki} = \begin{cases} \sigma_i D_i (b_k, b_i)^{-1} & (1 \le i \le m), \\ \zeta_i (b_k, b_i)^{-1} & (i > m), \end{cases}$$

where σ_i ϵ Hom $_{KH}$ (L, L) and D_i , ζ_i ϵ Hom $_{KH}$ ($\bar{b}_i \otimes L$, L).

Let V_i be the $n \times n$ matrix with $(b_k, b_i)^{-1}$ in the k, ki-position $(1 \le k \le n)$ and with zeros elsewhere. Then, for $\theta \in \operatorname{Hom}_{KG}(L^G, L^G)$,

(1)
$$\theta = \overline{\sigma}_1 + \overline{\sigma}_2 \, \overline{D}_2 \, V_2 + \dots + \overline{\sigma}_m \, \overline{D}_m \, V_m + \overline{\zeta}_{m+1} \, V_{m+1} + \dots + \overline{\zeta}_n \, V_n \, .$$

3. LEMMAS FOR SECTION 4

Lemmas 1 to 3 can be proved by considering the entries in the appropriate matrices. Lemmas 4 to 6 follow immediately from the definitions.

LEMMA 1. $\overline{\theta}_{1\,i}~V_{i}~\varepsilon~\text{Hom}_{KG}~(L^{G}\text{, }L^{G}\text{)}$ (1 $\leq i \leq n$).

LEMMA 2. $(\overline{\theta}_{1i} V_i)(\overline{\theta}_{1j} V_j) = \overline{\theta}_{1i} \overline{\theta}_{1j} (b_i, b_j)^{-1} V_{ij} (1 \le i, j \le n)$.

Now, define σ^b and $\rho(b, b') \in \text{Hom}_{KH}(L, L)$ by

$$\sigma^{b} = D_{b} \sigma D_{b}^{-1}$$
 (b ϵ S, $\sigma \epsilon \text{ Hom}_{KH}(L, L)$),

$$\rho(b, b') = D_b D_{b'}(b, b')^{-1} D_{bb'}^{-1}, \quad (b, b' \in S).$$

LEMMA 3. Let $\sigma \in \text{Hom}_{KH}$ (L, L) and $b \in S$. Then $(\overline{D}_b V_b) \overline{\sigma} = \overline{\sigma}^b (\overline{D}_b V_b)$, where $\overline{\sigma}^b = \overline{\sigma}^b$.

LEMMA 4. $(\overline{D}_b V_b)(\overline{D}_{b'} V_{b'}) = \overline{\rho(b, b')}(\overline{D}_{bb'} \dot{V}_{bb'})$ (b, b' \in S).

LEMMA 5. $\rho(b', b'')^b \rho(b, b' b'') = \rho(b, b') \rho(bb', b'')$.

LEMMA 6. $(\sigma^b)^{b'} = \rho(b', b) \sigma^{b'b} \rho(b', b)^{-1}$.

4. THE CROSSED PRODUCT OF Hom_{KH} (L, L) AND S

THEOREM 1. $\mathscr{S} = \left\{ \begin{array}{l} \sum\limits_{b \in S} \overline{\sigma}_b \left(\overline{D}_b \, V_b \right) \middle| \, \sigma_b \in \operatorname{Hom}_{\mathrm{KH}}(\mathtt{L}, \, \mathtt{L}) \right\} \text{ is the crossed} \\ \text{product of } \operatorname{Hom}_{\mathrm{KH}}(\mathtt{L}, \, \mathtt{L}) \text{ and } S \text{ with factor set } \rho \text{ and correspondence } \phi : b \in S \to b^*. \end{array} \right.$

The factor set ρ is the mapping of the cartesian product $S\times S$ into the set of invertible elements in $\operatorname{Hom}_{KH}(L,\,L)$ given by $\rho(b,\,b')=D_bD_{b'}(b,\,b')^{-1}D_{bb'}^{-1}$. The automorphism b^* of $\operatorname{Hom}_{KH}(L,\,L)$ is defined by $b^*\colon \sigma\to\sigma^b=D_b\sigma\,D_b^{-1}$.

Proof. If $\mathscr G$ is the crossed product as described, then $\mathscr G$ must have the following structure (see [4, pp. 81-82]):

 \mathscr{S} consists of formal sums $\Sigma \overline{\sigma}_b(\overline{D}_b V_b)$ with $\sigma_b \in \operatorname{Hom}_{KH}(L, L)$, each sum being taken over all $b \in S$. The $\overline{D}_b V_b$ are in one-to-one correspondence with the elements of S, and

(i)
$$\sum \overline{\sigma}_b (\overline{D}_b V_b) = \sum \overline{\sigma}_b (\overline{D}_b V_b)$$
 if and only if $\sigma_b = \sigma_b$, for every $b \in S$,

(ii)
$$\overline{\lambda}' \Big(\sum \overline{\sigma}_{b} (\overline{D}_{b} V_{b}) \Big) + \overline{\lambda}' \Big(\sum \overline{\sigma}'_{b} (\overline{D}_{b} V_{b}) \Big) = \sum (\overline{\lambda \sigma}_{b} + \overline{\lambda}' \overline{\sigma}'_{b}) (\overline{D}_{b} V_{b})$$
$$(\lambda, \lambda' \in \operatorname{Hom}_{KH}(L, L)),$$

(iii)
$$\left(\sum_{\overline{\sigma}_{b}}(\overline{D}_{b}V_{b})\right)\cdot\left(\sum_{\overline{\sigma}_{b}}(\overline{D}_{b}V_{b})\right) = \sum_{b,b'}\overline{\sigma_{b}(\sigma_{b'})^{b}\rho(b,b')}(\overline{D}_{bb'}V_{bb'}).$$

The correspondence $b \to \overline{D}_b V_b$ is one-to-one, since for $i \neq j$ the nonzero entries in the first row of $\overline{D}_i V_i$ and $\overline{D}_j V_j$ occur in different columns. In (i), the entry in the 1, i-position on the left is $\sigma_i D_i$; on the right it is $\sigma'_i D_i$. Since D_i^{-1} exists, $\sigma_i = \sigma'_i$. Condition (ii) follows immediately from the properties of $\operatorname{Hom}_K(L^G, L^G)$; (iii) we obtain by applying Lemmas 3 and 4. Lemmas 5 and 6 give the fundamental relationships involving the factor set and the correspondence.

Remark. The structure of $\mathscr S$ does not depend upon the choice of the transformations D_b , since any other choice gives a crossed product strictly equivalent to $\mathscr S$.

5. CONDITIONS THAT GIVE $\operatorname{Hom}_{KG}(L^G, L^G)$ AS A CROSSED PRODUCT

The following theorem follows immediately from (1) and Theorem 1.

THEOREM 2. $\text{Hom}_{KG}(L^G, L^G)$ is the crossed product of $\text{Hom}_{KH}(L, L)$ and S described in Theorem 1 if and only if $\text{Hom}_{KH}(\bar{b} \otimes L, L) = 0$, for all $b \in B$, $b \notin S$.

COROLLARY 1. If S = B, then $Hom_{KG}(L^G, L^G)$ is the crossed product of $Hom_{KH}(L, L)$ and B.

This corollary is true since every b in B belongs to S. J. A. Green in [3, Theorem 8] essentially proves this for the case in which S = B is a cyclic group of prime order p.

COROLLARY 2. Let K be algebraically closed, and let L be completely reducible. Then $\operatorname{Hom}_{KG}(L^G, L^G)$ is the crossed product of $\operatorname{Hom}_{KH}(L, L)$ and S if and only if, whenever $b \in B$ and $b \notin S$, $\bar{b} \otimes L$ and L are disjoint left KH-modules, that is, have no composition factors in common.

Proof. Under the conditions given, it follows from [2, Section 43] that $\operatorname{Hom}_{KH}(\bar{b} \otimes L, L) = 0$ if and only if $\bar{b} \otimes L$ and L are disjoint left KH-modules.

COROLLARY 3. Let K be algebraically closed, and let L be irreducible. Then $\operatorname{Hom}_{KG}(L^G, L^G)$ is the crossed product of K and S with factor set ρ and trivial correspondence; in other words, it is the ρ -twisted group algebra of S over K.

Proof. By Schur's Lemma, $Hom_{KH}(L, L) = K \cdot 1_L$ and

$$\operatorname{Hom}_{\mathrm{KH}}(\bar{\mathbf{b}} \otimes \mathbf{L}, \mathbf{L}) = 0, \quad \text{for } \mathbf{b} \in \mathbf{B}, \mathbf{b} \notin \mathbf{S}.$$

Here $b \to D_b$ is a projective representation of S. with factor set ρ , and b^* is the identity automorphism.

6. STRUCTURE OF $\mathscr S$ WHEN L IS INDECOMPOSABLE AND K IS ALGEBRAICALLY CLOSED

In order to simplify notation, replace $\overline{D}_b V_b$ by b and $\overline{\sigma}$ by σ , in the definition of \mathscr{S} . Then

$$\mathcal{S} = \left\{ \sum_{b \in S} \sigma_b b \middle| \sigma_b \in Hom_{KH}(L, L) \right\},\,$$

where $b \cdot b' = \rho(b, b')bb'$ and $b\sigma = \sigma^b b$.

 $\operatorname{Hom}_{\operatorname{KH}}(L, L)$ is a finite-dimensional algebra over the field K. Let N be its radical. We can define a homomorphism of $\mathscr S$ by reducing the coefficients modulo N, that is, by the mapping

$$\sum \sigma_b b \rightarrow \sum (\sigma_b + N)b = \sum \sigma_b b + \sum Nb$$
.

Let $\mathcal{F} = \{ \Sigma (\sigma_b + N)b \}$. Then \mathcal{F} is the crossed product of $Hom_{KH}(L, L)/N$ and S with factor set $\rho(b, b') + N$ and correspondence

$$b \rightarrow b^{\#}: \sigma + N \rightarrow \sigma^b + N.$$

The kernel of this homomorphism is Σ Nb. Since $(\Sigma \text{ Nb})^{j} \subseteq \Sigma \text{ N}^{j}$ b, this is a nilpotent ideal and is thus contained in the radical $N(\mathscr{S})$ of \mathscr{S} . The radical of \mathscr{T} is $N(\mathscr{T}) = N(\mathscr{S}) / \Sigma \text{ Nb}$. Thus $\mathscr{S} / N(\mathscr{S}) \cong \mathscr{T} / N(\mathscr{T})$.

Assume L is indecomposable. Then $\operatorname{Hom}_{\operatorname{KH}}(L,L)$ is completely primary; that is, $\operatorname{Hom}_{\operatorname{KH}}(L,L)/\operatorname{N}$ is a division ring (see [1, p. 97]). If we further assume that K is algebraically closed, then the division ring is isomorphic to K, and $\mathscr T$ is then isomorphic to the crossed product of K and S with a K-factor set β and trivial correspondence. (The correspondence is trivial, since the automorphisms involved are actually K-automorphisms.) Thus $\mathscr T$ is isomorphic to $(\operatorname{KS})_{\beta}$, the β -twisted group algebra of S over K.

Remark. β can be obtained in the following way: $\rho(b, b') = \alpha(b, b') + n(b, b')$, where $\alpha(b, b') \in K \cdot 1'$ (1' is the identity in $\text{Hom}_{KH}(L, L)$) and $n(b, b') \in N$. α is actually a factor set of S. Define $\beta(b, b') \in K$ by $\alpha(b, b') = \beta(b, b') \cdot 1'$.

LEMMA 7. Let K be algebraically closed, and let L be indecomposable. Then $\mathscr S$ is completely primary if and only if $(KS)_{\beta}$ is completely primary.

THEOREM 3. Let K be an algebraically closed field of characteristic p>0. Then $(KS)_{\beta}$ is completely primary if and only if S is a p-group or $S=\{1\}$.

Proof. Let S be a p-group. It is well known [2, p. 189] that if β is the trivial factor set 1, that is, if $\beta(b, b') = 1$ for all b, b' ϵ S, then KS is completely primary. If S is a p-group, this is the only case that can arise, since each β is then

equivalent to 1, as can be seen if we consider the multiplier M of S: Let $\{\beta\}$ denote the equivalence class of factor sets of S containing β . It is proved in [2, Section 53] that the order h of $\{\beta\}$ divides the order of S, which is p^e , and that h is not divisible by the characteristic of K, which is p. Thus h = 1, and $\{\beta\} = \{1\}$.

If $S = \{1\}$, then $(KS)_{\beta}$ is K, which is completely primary.

Suppose that $S \neq \{1\}$ is not a p-group. Let $Q \neq \{1\}$ be a q-Sylow subgroup of S, for some $q \neq p$. Define $(KQ)_{\beta}$ by using the multiplication in $(KS)_{\beta}$. Then $(KQ)_{\beta}$ is semisimple (see [4, p. 80]). Since $(KQ)_{\beta} \neq K \cdot 1$, it contains an idempotent other than $\beta(1, 1)^{-1} \cdot 1$, which is the identity of $(KS)_{\beta}$. Thus $(KS)_{\beta}$ contains at least two idempotents and is not completely primary.

 L^G is indecomposable if and only if $\operatorname{Hom}_{KG}(L^G,L^G)$ is completely primary. So, combining Lemma 7 and Theorem 3 with the condition that gives $\mathscr S$ is $\operatorname{Hom}_{KG}(L^G,L^G)$, we obtain the following result.

THEOREM 4. Let K be an algebraically closed field of characteristic p>0. Let G be a finite group with a normal subgroup H. Let L be an indecomposable left KH-module. Let

$$S = \{b \in G/H | \bar{b} \otimes L \text{ is KH-isomorphic to } L\}.$$

Assume that $\operatorname{Hom}_{\mathrm{KH}}(\bar{b} \otimes L, L) = 0$ whenever $b \in G/H$ and $b \notin S$. Then L^G is indecomposable if and only if S is a p-group or $S = \{1\}$.

COROLLARY. Let K be an algebraically closed field of characteristic p > 0, and let L be an irreducible left KH-module. Then L^G is indecomposable if and only if S is a p-group or $S = \{1\}$.

Remark. Let K be algebraically closed and of characteristic 0, and let L be an irreducible left KH-module. L^G is irreducible if and only if

$$\operatorname{Hom}_{KG}(L^{G}, L^{G}) = K \cdot 1",$$

where 1" is the identity map on LG. However, the case

$$K \cdot 1$$
" $\subset \mathscr{G} \subset \text{Hom}_{KG}(L^G, L^G) = K \cdot 1$ "

occurs if and only if $S = \{1\}$ and $\mathscr{S} = \operatorname{Hom}_{KG}(L^G, L^G)$. Thus L^G is irreducible if and only if $\operatorname{Hom}_{KH}(\bar{b} \otimes L, L) = 0$ whenever $b \neq 1$ and $b \in G/H$. This is a well-known theorem (see [2, Section 45]).

REFERENCES

- 1. E. Artin, C. J. Nesbitt, and R. M. Thrall, Rings with minimum condition, University of Michigan Press, Ann Arbor, 1946.
- 2. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Wiley, New York, 1962.
- 3. J. A. Green, On the indecomposable representations of a finite group, Math. Z. vol. 70 (1958/59), 430-445.
- 4. N. Jacobson, *The theory of rings*, Mathematical Surveys, Vol. 2; American Mathematical Society, New York, 1943.

University of Illinois, Urbana, Illinois