ON CERTAIN ALGEBRAS OF ANALYTIC FUNCTIONS
K. V. Rajeswara Rao

1. INTRODUCTION

Given a Riemann surface W, let Log+ (W) be the set of all analytic functions of
bounded characteristic on W (see Heins [1]), together with the constants. Mizumoto
and Ozawa [3] have shown that if W; and W, are hyperbolic plane regions and the
algebras Log™(W;) and Log"™(W,) are isomorphic, then W; and W, are conform-
ally equivalent. The present note extends this result to the case where W; and W
are hyperbolic Riemann surfaces of arbitrary finite genus. Here the method of
Mizumoto and Ozawa, which depends on the existence of a univalent function, is not
applicable; our approach stems essentially from Royden [4], [5].

To contrast our result with known characterizations (see Royden [4]) of con-
formal structure in terms of bounded analytic functions, we recall (see Heins [1])
that a hyperbolic Riemann surface of finite genus may not admit nonconstant bounded
analytic functions.

In Section 2 we determine the complex-valued homomorphisms of a general class
of algebras. In Section 3 we deal with homomorphisms of certain algebras of “ra-
tional” functions. In Section 4 we show that the conformal structure of a hyperbolic
surface W of finite genus is determined by the set of analytic functions of bounded
characteristic on W. We conclude with a remark on the general class of algebras
considered in Section 2,

2. SPECTRA OF CERTAIN ALGEBRAS

We consider, on a Riemann surface W, algebras  (over the complex numbers)
of analytic functions. As usual, the operations are point-wise, and  is always
supposed to contain the constants. Further, by a komomorphism we always mean a
homomorphism that preserves the complex constants. Our interest centers around
algebras < satisfying

(2.1) if f, g € & and f/g is analytic on W, then /g € «
and
(2.2) - contains a function, say h, of finite valence.

PROPOSITION 1. If the algebra & satisfies (2.1) and (2.2), then to every
homomorphism n of A into the complex numbers theve corvvesponds a (not neces-
sarily unique) p € W such that

(2.3) n(f) = f(p) (V1€ A).
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Proof. Setting h; =h - gn(h), we see that n(h;) = 0. This implies that h; must
vanish somewhere on W; for otherwise 1/h; € & by (2.1), and

1 = (1) = n(hl'gl;) = n(hy)-n(1/hy) = 0.

Let then p;, ***, p, be the zeros of h; on W, and p; the multiplicity of h; at p;
(1 <i<n). Now, if f is an arbitrary member of «, then, by (2.1),

II {(z) - o)}
F(z) = Ri(z)

belongs to #; hence,

I {n@) - 1(p;)}*% = 5(h; - F) = n(h))-n(F) = 0.

Thus, to each f € .« there corresponds at least one i (1 <i < n) such that
(2.4) n(f) = £(p;).
For each f € &, let

E(f) = {p;| #(p;) = n(®}.

The proposition will be established if we show that

N 5¢«0o.
feod

To this end, we observe that, in view of a standard compactness argument, it is
enough to show that

(2.5) E(f,) N E(f;) N -+ N E({_ ) #0

for any finite subset {£,, ---, fm} of . Consider then the polynomials

P(t) Zn(fj)tj =7 Z)fjtj)
j=0 j=0

and
m -
P;(t) = Efj(pi)t‘] (i=1, 2, +--, n).
j=0
By (2.4), there exists for each t an i =i(t) such that P(t) = P;(t); together with the

Dirichlet box-principle, this implies that, for some i, P(t) = P;(t), that is,
n(fj) = fj(pi) (i=0, 1,2, -, m), so that (2.5) is valid. =
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Remark. Note that we do not need the full force of (2.1) to get the conclusion of
Proposition 1.

3. ALGEBRAS OF “RATIONAL” FUNCTIONS

In this section, S (with or without subscripts) denotes a closed Riemann surface,
and W (with or without subscripts) a proper open subsurface of S. Let « = &(W, S)
be the set of those meromorphic functions on S that are analytic on W. Clearly, «,
regarded as an algebra on W, satisfies (2.1). It also satisfies (2.2), since h can be
taken as any meromorphic function (on S) with a single pole outside W,

Also, (W, S) separates points of W. For let z,, z, € W, z; #2z,. Pick
g #0 in (W, S) with a zero, of order m, say, at z;. Let g, be a meromorphic
function on S with its sole pole, of order n, say, at z; and such that g,(z;) = 0.
Then g = gi*-g5" is in & (W, 8), g(z1) # 0, g(z2) = 0. Observe that essentially the
same argument shows that (W, S) also separates points of S.

We further claim that the algebra (W, S) satisfies the following condition:

(6) if {xn} is a sequence of points of W that does not converge in W, then there
exists an f in the algebra such that {f(xn)} does not converge (in the finite
plane).

~ To see this, we first note that since S is compact and satisfies the first count-
ability axiom, {xn} must have limit points in S. If at least one of these limit
points, say z, lies outside W, then f can be taken to be any meromorphic function
on S with its sole pole at z. On the other hand, if {x,} has two distinct limit
points in W, say z; and z,, then f can be taken to be any member of the algebra
that separates z; and z,.

We can now readily establish the following result.
PROPOSITION 2. (a) Let B be the algebra of all analytic functions on the
Riemann suvface R, and let
T: L(W,S) - &
be a homomorphism. Then theve exists a complex analytic map ¢&: R — W such that

(3.1) T(#) = fop (VIe A(W,S)).

M If W CS; (i=1, 2) and T: LW, S1) — AL(W,, S,) is an isomorphism
(onto), then theve exists a conformal homeomorphism ¢ of W, onto W, such that

(3.2) T(f) = fop (f e A(W;, S;)).

(c) The ¢ in (3.2) can be extended to a conformal homeomorphism of S, onto
S -

Proof. Under the hypothesis of (2), the existence of a continuous ¢ satisfying
(3.1) follows from Proposition 8 of Royden’s paper [5], our Proposition 1, and the
observations of this section. The analyticity of ¢ follows from equation (3.1) itself
and Riemann’s theorem on isolated singularities. Thus (a) is valid. Part (b) now
follows on applying part (a) to T and T-1.
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To establish part (c), we recall that «/(W;, S; ), and hence the quotient field Q;
of (W, S;), separates points of S; (i =1, 2). Further, Q; contains the constants.
Hence, by an observation of Heins [2, p. 270], Q; is M(S;), the field of all mero-
morphic functions on S;. Thus, the isomorphism T of part (b) induces an isomorph-
ism (again to be denoted by T) of M(S;) onto M(S,). Hence, by a classical result
(see, for instance, Heins [2], or Royden [4] ), there exists a conformal homeomorph-
ism ¢ of S, onto S; such that

(TfN(z) = (foy)(z) (f € M(S;), z € Sp).

Together with (3.2) and the fact that (W, S;) separates points of S;, this shows
that Y(z) = ¢(z) (z € W, ), thus completing the proof of Proposition 2.

Remarks. Parts (a) and (b) of Proposition 2 could have been deduced from the
results of Heins [2] or Royden [4] and the observation of Heins mentioned in the
proof of (c) above. However, the present argument is needed in the next section.

4, FUNCTIONS OF BOUNDED CHARACTERISTIC

It is known (see Heins [1]) that if W is an arbitrary Riemann surface, then the
algebra # = Logt (W) satisfies (2.1). If W is of finite genus, hyperbolic, and (as is
possible) imbedded in the closed surface S, then (see Heins [1]) A (W, S) C LogH (W);
thus Logt (W) satisfies (2.2) and condition ( &), and it separates points of W, Thus,
the reasoning that established parts (a) and (b) of Proposition 2 also shows that (a)
and (b) of Proposition 2 remain valid if (W, S) is replaced by Logt (W) and
A(W;, S;) by Logt(W;) (i=1, 2); here, W and W; (i =1, 2) are hyperbolic Rie-
mann surfaces of finite genus. In particular, this establishes the extension, men-
tioned in the Introduction, of the result of Mizumoto and Ozawa.

5. CONCLUSION

Conjecture. Let «f; (i =1, 2) be a separating algebra of analytic functions on
the Riemann surface W; satisfying (2.1) and (2.2). If T: «; — £, is an isomorph-
ism (onto), then there exists a conformal homeomorphism ¢ of W, onto W; such
that

(5.1) Tf = fop (fe ).

The existence of a one-to-one mapping ¢ of W, onto W; satisfying (5.1) follows
readily from Proposition 1 and a standard argument. We have not been able to
establish the continuity (or equivalently, the analyticity) of ¢. In this connection, it
may be observed that the proof of Theorem C of Heins’s paper [2] implies that the
quotient field of ; (i =1, 2) provides local coordinates at every point of W;.
Also, if the conjecture is true, one can describe all possible isomorphisms between
two (not necessarily separating) algebras satisfying (2.1) and (2.2).
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