ON REPRESENTABLE RELATION ALGEBRAS
Donald Monk

In this note we show that the class of representable relation algebras is not
finitely axiomatizable; thus we answer a question raised by Tarski [10] in 1954.
The proposition is an easy consequence of the following three important known re-
sults: (1) the correspondence between projective geometries and certain relation
algebras established by Lyndon [7]; (2) the theorem of Bruck and Ryser [1] on the
nonexistence of projective planes of certain finite orders; and (3) the fundamental
theorem about ultraproducts (Theorem 5.1 of [4]). The author is grateful to the
referee for making some helpful suggestions while this note was being prepared for
publication.

A velation algebra is a universal algebra of the type A = <A, +, -, -, ;,%, I’>
that satisfies certain axioms, due to Tarski (see Chin and Tarski [2]); <A, +, -, ->
is characterized as a Boolean algebra satisfying some seven additional equational
postulates concerned with ;, ¥, and 1’°. A relation algebra is representable if it is
isomorphic to a relation algebra of the form <A, U, N, ~, ,, "1, I> where, for
some set D, <A, U, N, ~> is a Boolean algebra of subsets of D X D (with unit set
not necessarily equal to D X D), where 1 is the identity relation on D, and where,
for any R, S contained in D X D, R[S is the relative product of R and S and R-!
is the converse of R. It was hoped that every relation algebra is representable.
However, Lyndon in [5] showed that this is not the case. In [10] Tarski showed that,
at any rate, the class of representable relation algebras can be characterized by a
set of equations.

A relation algebra % is integral if x =0 or y =0 for all x, y € A for which
x ; vy = 0. An integral relation algebra is always simple (in the sense of universal
algebra). A relation algebra is representable over a group if it is isomorphic to a
relation algebra <A, U, N, ~, -, "1 {e} > where, for some group G with neutral
element e, | <A, U, N, ~> is a Boolean algebra of subsets of G, with {e} € A, and
for any R, S contained in G, R-S,is the complex product of R and S, and
R-1 = { x"lixe R}. A relation algebra representable over a group is an integral
representable relation algebra (the question whether the converse holds is one of the
main outstanding problems in the theory of relation algebras).

Lyndon considered a special class of relation algebras, characterized by the fol-
lowing conditions:

(i) <A, +, *, -> is a Boolean algebra,
(i) x; (vy;2) = x;9); 3,
(i) x5y =y; x,

(iv) @+y);z2=X;2Z2+7Y; 2,

(v) x; 1’ =x,

(yi) XY = X,

(vii) ’< x;y if and only if x-y # 0,
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for all x, y, z € A. We shall call algebras <A, +, -, -, ;, ¥, 1’> satisfying these
conditions Lyndon algebras. It is easily seen that every Lyndon algebra is an inte-
gral relation algebra in which 1’ is an atom.

The main result of this note is the following theorem.

THEOREM 1. Theve exists an ultvaproduct % of Lyndon algebrvas %A,, such
that A is vepreseniable over a group, while no U, is vepresentable.

Using the fundamental result that all elementary sentences are preserved under
the formation of ultraproducts, we conclude from Theorem 1 the following result.

THEOREM 2. If & is an elementary class containing all Lyndon algebras, then
neither the class of all vepresentable relation algebras in H nov the class of all
algedbras in A representable over a group is finitely axiomatizable. In particular,
the class of all vepresentable velation algebras and likewise the class of all relation
algebras representable over a group is not finitely axiomatizable.

Now, to begin the proof of Theorem 1, we first make some remarks about
Boolean algebras. For each nonempty set G, let %(G) be a complete atomic
Boolean algebra with G as its set of atoms.

LEMMA 1. If G is a nonempty set for each t € T and D is an ultrafilter over
T, then I, . ¢ U(G,) /D can be isomorphically embedded in A(Il ¢ G,/ D).

Proof. That a Boolean algebra is atomic can be expressed by an elementary
sentence. Hence by Theorem 5.1 of [4], Hie1 %A(G¢)/ D is atomic. If x is an atom
of Hiye T A(Gy) /D, then, again by Theorem 5.1 of [4], we can write x = f /D, where
fellte T A(Gy) and {t € T: f; € Gt} € D; thus for some g € Ily¢ T G¢, We can write
x = g/D. Hence there is a one-to-one correspondence between the set of atoms of
IIi e T A(Gyp /D and the set Hie 7 G¢/D. The lemma is now a consequence of a
well-known theorem of Boolean algebra.

It may be of interest that the isomorphism mentioned in this lemma is not in
general onto, and in fact is not onto for the application of the lemma made below.

For example, if T = w and Gg < Gt < w whenever s<t< w and if D 1.§nonpr1n—
cipal, then by Theorem 6.5 of [4] the cardinality of Iy %(Gy) /D is 2 © while
Ro

the cardinality of %(Ilyc 1 G¢/D) is 2%

The following construction was given by Lyndon [7]. Suppose G is any set, and
I € G. We define an operation ; on %A(G) as follows: p;I=1; p=p and
p;p=p+1I forall pe€G, and

p;q-= 2 r forall p,qe G with p#q#1 #p;
reG, r¥p,q,l

further, for any a, b € %A(G).

a;b = 2 P;q.
p<a,q<b, p,q€G

Also, let ¥ be the identity on %(G). Then set %A(G, I) = <A, +, +, -, ;, ¥, I>, where
A(G) = <A, +, -, ->. By [7], the following proposition holds.

THEOREM A. If G > 5 and 1 € G, then U(G, I) is a Lyndon algebra.
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(The proof given in [7] has one very minor error. Indeed, when n = 3, the case in
which p, q, r are distinct and collinear must be treated in a different way; for
(pg)r = p U q Ur UI in this case—and hence by symmetry (pq)r = p(qr).)

We use one of the standard definitions of a projective plane, and we assume in
particular that a line is simply the collection of all points lying on it. A plane P is
of order m (m a cardinal number) if and only if there are m + 1 points on every
line of P. The following consequence of the theorem of Bruck and Ryser [1] will be
used below.

THEOREM B. There exist infinitely many numbers m < w for which theve is
no projective plane of orderv m.

For example, 2-3%2*l js such a number, for each n < w.
The following two theorems were established in [7].

THEOREM C. If G is infinite and 1 € G, then U(G, I) is representable over a
group.

THEOREM D. IfFG> 5, 1 € G, and %(G, I) is representable, then G ~ {1} is a
line in some projective plane.

Now we can give the proof of Theorem 1. Let
M= {m € w: 3 < m and there exists no projective plane of order m}.

By Theorem B, M is infinite. Let D be a nonprincipal ultrafilter over M. For
each m € M, let G, be a set with m + 2 elements, and let I,,, € G,,. Then by the
fundamental theorem on ultraproducts, I, ¢ p G,/ D is infinite. Hence

AT e m G/ D, I/ D) is representable over a group by Theorem C. On the other
hand, by Theorems A and D, %(G,,, I,,,) is a nonrepresentable Lyndon algebra for
each m € M. The proof will be complete when we have shown that the natural iso-
morphism F of the Boolean structure of 8 = II,y, ¢ M %(Gy,, Iiyy) / D into the Boolean
part of € = Ay, ¢ pm G/ D, I/ D) also preserves the operations ;, v, and 1’°. Let
elements of B be denoted by £/ D, where f € I, ¢ p U(Gpy,, ), and let elements of
My, em G /D be denoted by g/ /D, where g € Il ¢y G, = E; let sums in C be
denoted by 2. Then the basic property of F is that

(1) F(b) = 27 £/ /D

i/D<b,f€E

for all b € 8. From this it is obvious that F(I/D) = I/D. The fact that

G(b¥) = F(b)* for all b € 8 is an easy consequence of the fundamental theorem on
ultraproducts. Now, using this theorem again, we easily see that for all f, g, h € E,
the relation f/D < (g/ D) ; (h/ D) holds if and only if one of the following four con-
ditions is-satisfied:

(i) £/D=1/D and g/D =h/D,
(ii) g/D=1/D and £/D = h/D,
(iii) h/D=1/D and /D =g/D,
(iv) £/D, g/D, h/D, and I/ D are distinct.
It follows that £/ D < (g/ D) ; (h/ D) if and only if

f//D<(g//D); (b//D) forall f, g, hekE.
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Hence by (1), F(b ; ¢) = F(b) ; F(c) if b and ¢ are atoms of $8; thus F preserves ;
since ; and F are completely additive. This completes the proof of Theorem 1.

As previously mentioned, Theorem 2 follows at once from Theorem 1, and hence
the main results of this note are established.

The ultraproduct construction above and the use of Theorem 5.1 of [4] may be
replaced by a straightforward application of the compactness theorem for first-
order logic.

In [8], the main result of this note and the prerequisite theorems of Lyndon are
extended to the theory of three-dimensional cylindric algebras.
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