ON MAHLER’S FUNCTION 6,
R. Giiting

1. INTRODUCTION

Let P(x) = Zj-ga; X* be a polynomial with rational integral coefficients whose

leading coefficient a, is not 0. We call n the degree, and h = max |a;| the height
i<n

of the polynomial P(x). To every algebraic number « there corresponds a poly-
nomial P(x) of lowest degree with P(a) = 0 and such that its coefficients are ra-
tional integers without a common divisor. The degree and the height of this poly-
nomial are called the degree and the height of a, respectively. We denote the set
of all polynomials with rational integers as coefficients, and whose degrees and
heights are n> 1 and h > 1, respectively, by $(n, h). In order to characterize
transcendental numbers and to decompose the set of all transcendental numbers into
different classes, K. Mahler [5] introduced the following functions:

w,(h,y) = min |P)],
Pe P(n,h)
P(y)#0

v ].Og Wn(h; 7)
wn(y) = lim -—————

h—oo log h
—_— W

w(y) = lim n(Y).
n-—e 0

It is immediately clear that w(y) > 0 for all complex numbers y. It can be shown
that w(y) = 0 if and only if ¥ is an algebraic number. Or in other words: y is
transcendental if and only if w(y) > 0. (The proof of this and the following unproved
statements can be found in T. Schneider’s Einfiihvung in die transzendenten Zahlen
[7], which gives a careful introduction into the subject.) Although it is not immedi-
ately apparent from the definition, no real numbers exist for which 0 < w(y) < 1. In
fact, it is not difficult to show that for all real transcendental numbers 8,(y) > 1,
and hence also 6(y) > 1, where the functions 8,(y) and 8(y) are defined by

en(')’) = WI;I(Y)’
o(y) = 81_11? 0,() .

The following questions arise: If an arbitrary number c > 1 is given, do there
exist transcendental numbers ¥ such that 6(y) = ¢, and is it possible to find such
numbers? And secondly, if they exist, what is the value of the fractional dimension
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of the set of all real numbers y for which 6(y) = ¢? (For the definition of the frac-
tional dimension see Section 3, Definition 3.)

In this paper we will answer the corresponding questions for the function 6;(y)
as a first step towards the solution of the problems above. For any real number
c > 1 and any positive integer n, let the set of numbers v for which 6,(y) = ¢ be
denoted by R_(c), and let the set of numbers y for which 6,(y) > ¢ be denoted by
Sn(c). For the function 8, let the corresponding sets be denoted by R(c) and S(c),
respectively. We show that for each ¢ > 1 the set Ry(c) is not empty. We con-
struct elements of R;(c) explicitly by means of continued fractions. We find fur-
ther—and this is our main theorem—that for any c¢ > 1, the fractional dimension of
R(c) is given by

(1) dim R;(c) = E—E—-l- .

A direct consequence of the results about the function 631(y) is the fact that Sp(c)
and S(c) are not empty. Since S(c) 2 R;(c), we find from (1), by property (2) of
fractional dimension (see Section 3), that

2
c+1°

dim S(c) > dim R (c) =

In addition, it is possible to give a nontrivial lower bound for the fractional dimen-
sion of S (c) (see the corollary to Theorem 4). The fact that, for any ¢ > 1, the set
S(c) is not empty shows that there exist values of ¢ for which R(c) is not empty.
For any given ¢ > 1, however, the questions of whether the set R(c) is empty or
not, and what its fractional dimension is, remain unanswered.

One reason that it is difficult to generalize the argument used to prove the result
about the dimension of R;(c) is that nonrational algebraic numbers are not as regu-
larly distributed on the real line as rational numbers (see Section 4). Therefore it
seems to be necessary to find results about the minimal and maximal distance be-
tween algebraic numbers of given height and given degree in the unit interval. Lower
estimates for the differences between zeros of different polynomials and between
different zeros of the same polynomial are derived in a previous paper of the author
[3]. So far, however, no results about the maximal difference of such algebraic
numbers are known. This might be a subject of further investigation. Also, it might
be possible, by use of the results of [3], at least to generalize Theorem 4 and to ob-
tain the fractional dimension of the set of all real numbers for which 6,(y) > c,
where ¢ > 1 is otherwise arbitrary.

2. THE CONSTRUCTION OF NUMBERS y FOR WHICH 0, (y) = ¢

The definition of 8,(y) given in Section 1 is equivalent to the following alternate
one: .

Definition1. Let y be a real number. Then 6,(y) = ¢ if and only if

(a) for each € > 0 there exists an hg such that for all polynomials P(x) of de-
gree n and height h> h

IP('}’) l > h—cn -£

and
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(b) for each € > 0 there exist infinitely many polynomials P(x) € $(n, h) for
which

-Ccn+g

|P(»)| <h
Condition (a) is equivalent to the inequality 6,(y) < ¢, and (b} is equivalent to the in-
equality 6,(y) > c.

THEOREM 2. Let ¢ > 1 be any veal number, and let y be a number between 0
and 1 with a continued fraction expansion y = [ay, ap, ---]. Let p,/q, denote the n-
th convergent of v. If v has the property that for each € > Q0 there exists a numbey
N such that

(2) € 1€<a . <q " forall n>N,

n n+1 n

then
6,(») =c.

Pyroof. To show that 0, () > c it is sufficient to assume that for each € > 0 the
inequality

(3) qrci_l_s < a’n+1

holds for infinitely many n. In the theory of continued fractions it is shown that
p 1
" PP
' Gn an+19n

From the inequality (3) it follows that for each € > 0 there exist infinitely many n
such that

i+ B G S
l‘}’ a, q]c::1+l—8 ’
that is,
1
la,” - p,| < —=-

n

Therefore for each € > 0 there exist infinitely many polynomials P(x) € $(1, h) for
which

[P | < n7°%E,
since q, > p, for 0 <y < 1. Hence, according to condition (b) of Definition 1,
81r) > c.
It remains to be proved that 8;(y) < ¢. (Compare the remainder of the proof
with the proof of Theorem 2 in [6].) Let € be such that 0 < € < ¢/5. By assumption

there exists an N such that for n > N the inequalities (2) are satisfied. Let p/q be
a rational number. Since for each positive k the equation q, =a,q, _; + q,_, holds,
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(5) Ay Oy < U < By G-

Hence, there exists an n such that

a - a
(6) ngn ls q < n;lqn‘

Suppose that the denominator of p/q is so large that n > N + 1. Then (2) is satis-
fied for n and n~ 1. Let r, = I'y - pn/qnl. By (4), the inequality

1
r < ————s
n aAn+1 Chzi

holds, and hence it follows by (6) that

2q
2 r <——-<1.
1n'n 2+19%
Similarly by (5),

29 . _29 .4,
An+29n+1 an+1dn

299,71 Ty <

Since q,,; > q, we obtain the further inequalities

1 2 2qq, 1y, 1 1
7 —_— - Ty = - >
(7 a9, 2ddn 294 = 2qd, = 2qdp41

and

1

(8) -T > —,
Qn1 Y= 299,

The inequality (2) for n - 1 implies that

+&
9n = a3x4q,1 * qn-—Z < 2a'nqn—l < 2q;_1 ‘

Thus we find that

ct € ctg€,cte _

l+cte (c+e)?
An+1 < 2qn < 2(zqn-l) : (ere) :

n-1

2

Now using the inequality (2) for n - 1, together with (6), we conclude

c-&
qn-1<anqn--1<
2 2 =4
Therefore,
(c+::3)2
- 4 1+2c+5 +4
(9) Ausy < 21+c+8 (2q) c-¢ < 21+c+8 (2q)c+ € _ 9 +2c+ ch £ ,
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since £ < ¢/5. From p_ /q, # p,,,/4d,,; We conclude that one of the numbers
P,94-9d,p and p, .;9-9q,.,P
does not vanish and therefore has absolute value at least equal to 1. From the in-

equalities (7) and (8) we see, consequently, that at least one of the following relations
holds:

Pnd - Oy P p
],,_E =|_n_____£1_+7__n|>_1__rn> 1
q qd, q,! —aq, = 2qq,,,
l,y_g|= lpn+1q-qn+1p+'y-pn+l|
! A9p 41 An+1
1

Y%

- Tpiy D> ——.
Alpy1 T =209,
By (9), the estimate

1

v - pl2 g5 —2>2

-2-2¢c-5¢ -c-4¢
q

follows. Since this holds for any fraction p/q whose denominator is sufficiently
large, it is clear that for every sufficiently large h,

-2-2¢c-5€, -c-4¢&

Wl(ha Y) > 2 h s

_log wi (h, ¥) < (2 + 2¢ + 5¢) log 2

log h — log h te+de,

and hence
91 ('}") S c + 4,
Since this is true for each positive &, we obtain finally the desired conclusion

91(’}’)5 c.

3. THE FRACTIONAL DIMENSION OF THE SET OF ALL NUMBERS y
FOR WHICH 6,(y) > c

We now define the fractional dimension of a linear set S (see [2]).

Definition3. Let U(S, r) be any covering of S by a countable number of open
intervals I,, I,, --- of lengths dy, d,, :*-, where d; <r for i=1, 2, ---. Let

|S|, = lim int ( b d:)

r—0 U(S,r) I €U(S,r)

where the infimum is taken over all coverings U(S, r) of the kind described above.
Then we say that S %as fractional dimension a, and we write dim S = a if [S|,=0
for all t> o and [S], = for all t< a.
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The fractional dimension has the following properties, in which M, M;, M,, *** are
countably many sets of real numbers.

(1) If dim M < 1, then the Lebesgue measure of M is 0.

(2) If M; is a subset of M,, then dim M, < dim M,.

‘ 0 o0
(3) dim IJ M_ = sup dim M, .
n=1 n=1

Properties (1) and (2) follow directly from the definition. For the proof of (3) see
B. Volkmann [8].

V. Jarnik [4] proved the following theorem:

Let ¢ > 1 be any real number and let A(c) be the set of all numbers ¥ with
0 <y <1 for which the inequality

P -c-1
(10) lw q| <q

has infinitely many solutions in integers p, q with q > 0. Then

2

dimA(c)=c+ 7-

It is clear that, for each y € A(c), 8;(y) > c; in other words, A(c) C S;(c). For
since |y|< 1 and ¢ > 1, we see that p < q for those integers p and q that satisfy
the inequality (10). Therefore to every ¥ € A(c) there correspond infinitely many
polynomials P(x) € $(1, h) for which

|P(-y) | <h°®.

Hence for such v, 6,(y) > c, since the inequality in Definition 1, part (b) is satisfied.
We will use the relation A(c) C S;(c) to demonstrate

THEOREM 4. Lef ¢c> 1 be any veal number. Then the set Si(c) of all real
numbers vy between 0 and 1 for which 0;(y) > ¢ and the corresponding set Si(c) of
numbers v for which 0 1(‘)/) > ¢ have the fractional dimensions

2

dim SI(C) = dim Si(C) = c—:—i‘.

Pyroof. Since Sj(c) C S,(e) it is sufficient to prove that

3 1
(11) dim Sl(c)—>-c+1
and that
(12) dim S, (¢) < —
sy e =71

hold.
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We first establish the relation

(13) s'(c) = E:Jlsl(“%)

as follows. If
* 1
veUsi(c+3),
n=1

then there exists an integer ng for which y € Sj(c + 1/ng). Hence 0;(y) > (c + 1/ng).

Since n 1> 0, the number y belongs to S'l(c). Similarly, if v € S'l(c), there must
exist a number n, such that

[~ o]
yeSl(c+-r%-> so that yeU31<c+%).
0 n=1

This proves (13), and this equation in connection with property (3) of fractional di-
mension yields the equation

[~e]
dim Sj(c) = Is11=1;1> dim S, (c + %) .

Now using the fact that A(c) C Sj(c) for each c, we obtain from Jarnik’s theorem
that

2

. 1) > aima(e+l) -
dlmSI(c+n _>_d1mA c+n =erisi/n

Hence

2 2
c+1+1/n c+1°

[}
dim Sj(c) > sup

n=1
which completes the proof of (11).

On the other hand, if y € S;(c), then to every € > 0 there correspond infinitely
many polynomials P(xX) = gx - p with integral coefficients such that

lay - p| < q7°*%,

or such that

l,}, _ _gl < q—C—1+8 .

This implies that S;(c) € A(c - €), and from this relation it follows that
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dim S;(c) < dim A(c - €) = c+—§—8

This inequality is valid for every € > 0. Therefore

2

dim 8;(c) < -

Hence the inequality (12) holds also.

o0
Since 6(y) = sup 6, (v), it is clear from Theorem 2 or from Theorem 4 that for
n=1

each ¢ > 1 the set S(c) is not empty. It follows in fact that

dimS(c)Zc+1.

Theorem 4 has also the following consequence:

COROLLARY 5. Let c> 1 be any veal number, and let n be any positive inte-
gerv. Then

: 2
dim Sn(C) Zm—1> 0.

Proof. It follows from the definition of w_(h, ¥) that the inequality
W o+ (b, v) < w (h, )

holds for all positive integers n and h, and that thus also

(n+ 1)8,,; ) > no,(y).
Hence

no, () > 6,().
For any y € S;(nc) we therefore see that
né, () > cn,
or
0,(») > c.

This shows that S 1(nc) - Sn(c). Thus

dim S_(c) > dim Sl(nc) = > 0.

nc + 1

Clearly, the corollary implies that the set S,(c) is not empty. The relation
Si(nc) C S,(c) in combination with Theorem 2 gives a means of finding elements of

Sn(c).
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4. TWO LEMMAS ABOUT THE UNIFORM DISTRIBUTION OF THE
RATIONAL NUMBERS

We introduce for every positive integer ¢ the set By of intervals

(2- dq,§+°‘q) P=1,2, -, 0q.

The intervals of Bq thus have constant length 2dg < 1/q, which depends only on q.
Let r be any natural number. We say that a set B of intervals is a set of uniformly
distrvibuted intevvals of order r if

B= U By,
q€J

where J is any set of positive integers at least as great as r. For any set M of not
necessarily disjoint intervals let us denote by |M| the sum of the lengths of the in-
tervals of M, if it exists, and by Z(M) the number of elements of M if M is finite.
Finally, for any two sets M and N of intervals, let the set which consists of those
intervals of M that have points in common with some interval of N be denoted by

M’ N, and let the set consisting of those intervals of M which are completely covered
by intervals of N be denoted by MN,

LEMMA 6. Let q be a positive integerv. Let C be any open or closed set of in-
tevvals in the unit intevval, each of which has length at least equal to 8/q. Then

salc| < z@S) < z(B,|0) < 24|C]|

for any choice of the length 2(:1.q of the intevvals of Bq (where 2dq < 1/q).

Proof. Let C =U§I=11 C;, where C; are the intervals of C (j=1,2,+-, m). Any
interval of Cj covers at least [|Cjlq] - 1 midpoints of intervals of By, and hence
covers at least []Cj |q] - 3 intervals of By completely. Since the number m of in-
tervals of C is bounded above by [q|C|/8], we obtain the following estimate:

z(BY) > 2 ([|c;la] - 33> Z (|C;la - 4)
a’=.7 j i=1

= lc] _1
q
>q 2 |- 48 - Lq)c).
To show the right-hand inequality of the lemma, we notice that an interval Cj of
C intersects at most
[ICqu] +2< ICqu + 2

intervals of Bq. Therefore, C intersects at most

2 ([c;|la+2) <glc|+ 2= < 24|cC]|
j=1
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intervals of By. This proves Lemma 6.

LEMMA 7. Let B be a set of uniformly distvibuted intevvals of order r. Let C
be a set of open or closed intevvals in (0, 1), each of which has length at least equal
to 8/r. Then

szm®)|c| < z(E®) < zB|c) < 22(8)|c|.

Proof. Let B = quJ' Bg (q > r). Since the length of the intervals of C is at
least equal to :8/r > 8/q, we can, for each q separately, apply Lemma 6. Therefore,

z(B) = 2 zBH> T |c|92-=l(—;—l 2 q=|—§—IZ(B),
g€l q€J q€ld

since q = Z(Bc1). In the same way one verifies the right-hand inequality.

This lemma indicates in which way the “uniform distribution” of the rational
numbers in the unit interval will be used.

5. THE FRACTIONAL DIMENSION OF THE SET OF ALL
NUMBERS y FOR WHICH 6;(y) = ¢
We have shown in Theorem 4 that the set S 1{0) of all real numbers y for which

61(y) > c has the fractional dimension 2(c + 1)~. The set Rj(c) of all numbers y
for which 6;(y) = ¢ can be written as

RI(C) = SI(C) - U Sl (C+%).
n=1

Here
- 2 . 1 2 2
d1mSl(c)—m and d1mSl<c+H)— 1<C+1'
. C + —
n
We shall prove that
dim Ry(c) = dim S;(c) -2
1 1 c+1°

The question arises whether this is a general property of fractional dimension;
whether it is true that if M is given and if M, is a sequence of sets for which
dim M_ < dim M for each n, then

oo
dim M = dim(M - U Mn> .
n=1

If there is a constant k such that dim M,, < k < dim M for each n, then this
equation is a direct consequence of property (3) of fractional dimension. However,
if lim dim M, = dim M, then it may be that

n-—ooc
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> o]
dim(M - U m, ) <dim M.
n=1
Thus, for instance, for any ¢ > 1
) 1
}Z):S'l(c) - U Sll(c*';)
n=1

with

o0
. i 1 . 2
0= dlm[S'l(c) - U S1 (c + E)] < dim 8j(c) = <Ti
n=1
Thus the following theorem is not trivial.
THEOREM 8. Let ¢c> 1 be any real numbev. Then

2

dim Rl (C) = m.

A. S. Besicovitch [1] gave a second proof of the theorem of Jarnik. We will ex-
tend his ideas to obtain a proof of Theorem 8.

Proof. We shall establish the inequalities

. 2
dlle(C)Sc+1
and
(14) dim R ,(c) > 2
M Ze+1

The first follows directly from Theorem 4: since
R, (¢) < 8;(c),

2

dim Rj(c) < dim 8;(c) = ST

The second is much more difficult to prove, and the remainder of this section
will be devoted to its proof. Let r be a real number such that 0 < r < 1. Let
S(r, s) be a countable system of open intervals with lengths d < r for which

s 2
(15) s(?s)d <1 (s=c+1

where the sum is taken over all members of S(r, s). We shall show that if r is suf-
ficiently small, then S(r, s) does not cover the set R j(c) completely. Since S(r, s)
is otherwise arbitrary, this means that there exists no system S(r, s), with the
given properties, that covers Rj(c) completely. Hence, for all systems U(R(c), r),
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2 a®>1;
U(Rl(c),r)

and, as a consequence,

IR, = lim  inf ( > ds) >1
r—0 U(R,(c),r) I€U(R,(c),r)

(see Definition 3 of Section 3 for the exact meaning of the summation). Hence, for
each t<s=2(c+ 1)-1, lRl(c) It =, and thus dim Ry(c) > s = 2(c + -1,

We now put k=c+ 1. Let €; (i=0, 1, ***) be a null sequence such that

5%—2->80>81>--->0;

this is possible since k = ¢ + 1 > 2. Further, set
' —
k,=c+1-¢g, k=c+1+g.

Then, evidently, ki >k;>2 (i=0,1, ). We choose an increasing sequence of
positive integers

no’ n]_’ nz, cos
which has the properties that ny is sufficiently large and that the sequence nj; is so
rapidly increasing that certain inequalities hold between each two succeeding terms.
These inequalities will be specified later. Let S(r, s) be an arbitrary system of in-

tervals such that r = nak and s = 2/k. For i=1, 2, .-+, let F; be the set of inter-
vals

1
gki/’

where the values of q are all prime numbers in the interval n; < q < 2n; and for
each q, p runs through all nonnegative integers no greater than q. We know, then,
by well-known prime number theorems that for sufficiently large n; the inequality

2

n:
(17) Z(E) = 2 (q+1)> 57—
i ns < a< 204 2log n;

1 p
16 (_12____+
(16) q qki’q

is valid.
For i=1, 2, ---, let Dgy,: denote the setof q + 1 intervals of the form

P 1 p 1

- =+ — (p=0,1, -9
q q—kir’q qk:{ » 4y ’ ’

and let



ON MAHLER’S FUNCTION 6, 173

o myg1-l
1
D = Dq,i’
q=nj
[~ o]
D= |J pi.
i=1
Since Dg,; C Dq,; for i < j, it follows that
o o nJ+l—1 oo nJ+1—l o ;
D;= UDbgi=U Dg,i= U Dy,;=U p’=p.
q.=:n_1 j=i q=nJ J=1 q=nJ J=1
On the other hand
Upo:=U Upg:i>oU U Dq,i = D.
i=1 i=l g=n; i=l g=nj
Hence,
<]
(18) p=Unp,.
i=1

We want to find an estimate for Zp ad®. Obviously,

25 d° = 27 (g + 1)(
Dj

q=nj

2 \° I — 1-sk!
K ) < 2S+ Z; q : .
qi q=n;
Since

2g;

2
r_ e ———— . o — ——
1-s8kj=1 c+1((:+1+€1) 1 ST’

we can choose nj so large that

*© 1
E q1’5ki< 2-s-1—i

q=nj

As a consequence, we obtain the inequality ZDids < 2'1, and by (18) it follows that

[~}
(19) 2d°=2 &< ZT2t=1.
D 00 i=1
Uos
i=1

We consider now the set of intervals T consisting of the intervals of S(r, s) to-
gether with those of D. It may be that some or even infinitely many of the intervals
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of S(r, s) overlap with intervals of D. Such overlapping intervals still constitute
different elements of T and occur separately for instance in the inequality

(20) 2ud <2,
T

which follows from (15) and (19). Also suppose that n; is large enough so that

2 1
< .
ctlte; ~ pctl
ny

Then, since the maximal length of the intervals of D equals 2n 'l(c+1+81), it is clear

that the lengths of the intervals of T will not exceed r = nak. We shall show that
even the set T does not cover the set Rj(c) completely.

We now classify the intervals of F;. An interval belongs to F] if at least one
fourth of its length is covered by an interval of the set T. We put all the other inter-
vals of the set F; in the set F{. Then F; = F} U Fj, F} N F} = @, where # is the
nullset. To give an estimate for the number Z(F]), we denote by H the subset of
intervals of T each of which covers at least one fourth of an interval of Fj, and put

H=Hl UHI’IUH"I’

where the lengths d', d", d™ of the intervals of H', H", H" satisfy the inequalities

(21) r= > d" > —=> am

1
n Bn%

and n; is supposed to be large enough to satisfy the inequality n; > 2n1(§. Since
H' c HcC T, we also see that, according to the inequality (20),

22d° < 2;
Hl

and hence by the first inequality of (21),

(22) |H'|= Zd' = Zdsart-s < arl-s - apkoll-s),
n H!

Each set F; is, according to (16), a set of uniformly distributed intervals of order
n;. Since the order of ¥; equals nj, and since the lengths of the intervals belonging
to H' are at least 4/ny, it follows by Lemma 6 that

Z(F; | H') < 2Z(F))|H'],
from which, by use of (22), we obtain the estimate
(23) Z(F}| B') < 4nge1 ") z(F ).
The distance between the midpoints p/q and p/q of two different intervals of F; is
at least 1/(qq), and consequently at least equal to 1/ (4n%), since q, q are both in the

interval [nj, 2n;). So the number h of intervals of F; that are covered at least to
a fourth of their lengths by a single interval of H", cannot be larger than
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l | +2<av4n? + 2 < 204" n?

1/(4nf)

since 2 < 16 n% d" by (21). Hence we find for Z(Fl' |H") the estimate

Z(F} |[H") < 22h < 2008 27 d".
H® H“

Using again (20) for the subset H" of T, we find, in view of (21),

1-s l1-s
|H"|=Z}d“sd"1_s< _‘_1_ Edns<2(i) <3n_(l_s)_
Hnr — \Ihy H" nj; - 1

So it follows that
(24) Z(F, |H") < 160n2-(1-5) = 160n7*s.

The distance between two intervals of F; with midpoints p/q and p/q is at
least equal to

L__1_1>1_12{>12,
qaq qk1 ak1—4n% n;! 8n1

the last inequality holding if n; is suff1C1ent1y large. Since the intervals of the sys-
tem H™ have lengths at most 1/ (8n1), each interval of H" can intersect at most

one interval of F;. Z(F} |H"') has its maximal value if the various intervals of H"
cover at least the fourth parts of different intervals of F;. Thus we find for the
number Z(H"):

Z(H") Z. Z(Fill H™).

The length d"™ is, according to the definition of H", at least as great as one-fourth
of the minimal length of the intervals of F;, and therefore

dlll > l 2

=T gn

Since H" C T, it follows from (20) that

2> ams > Z(H") —L —;
Hm 25(2n1) 1
hence
(25) Z(F! | H") < Z(H") < 25" (2n )" < 4(2nl)2k1/k

From (23), (24), and (25) we now obtain the inequalities
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6) Z(F}) < Z(F | H) + Z(F{ | H") + Z(F} | H")
26
-ky(1-s)

2k, /k
0 .

< 4n Z(Fy) + 160 n%+s + 4(2n )

For the last two terms we find that

[k 1+2/(c+1)

2k 2(c+1- 1
1600} + 4(2n)) ¥ " <160n, + 4(2ny) (c+l-g,)/(ct1)

(27)
= 160n%—(c'1)/(c+1) + 4(2n1)2—281/(c+1)

< 1'76n21'2 £,/ (ct+1) )

Suppose that n; was chosen so large that

n‘i‘sl/(CH) > 176 (log nl)nl(;"(1 -s) ,

which we can assume since log n; = o(n%sl/ (c+1), Then conclude that

2
- n - -
(28) 176> 7282/ (e¥1) v 1) < Z(F,) g0l =),
nlg" "%/ log n;

where the last inequality results from (17). The estimates (26), (27), and (28) to-
gether now yield the inequality

(29) Z(F}) < 6an0(1

-s)
Z(F,).
From the equation Z(F;) = Z(F)) + Z(F]) and the relations (17) and (29) it follows,
for sufficiently large n,, that
2
ny

(30) Z(F") > (1 - 600 ) z(r)) > e

By definition, the set F] consists of those intervals I of F; for which there
exists no interval of T that covers a fourth or more of I. The formula (30) shows
that F) is not empty and gives a lower bound for the number of intervals belonging
to it.

We now shorten each interval of F'l' at both ends by a fourth of its length and
denote the set of the remaining middle halves, whose endpoints we include, by G;.
It is clear that the intervals of G; have lengths at least half that of those intervals
of F | which have smallest length, and from (30) we find an inequality for the sum of
the lengths of the intervals of G 1

2
1 n
k, *
4(2n;) *log n,

(31) |G,|> (en) 2 z(FY >

Further, the lengths of the associated intervals of T that cover any part of an inter-
val of G; are by construction of G; smaller than the fourth part of the maximal
length of the intervals of F'l’ This maximal length equals ZnIkl. So G, has no
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-k
common point with any interval of T of length d > -%nl 1. hence also with no inter-

-k
val of T of length d> n, 1. We want to show that certain points which belong to in-
tervals of G; are not covered by any interval of T. So it is evident that for the fol-
lowing considerations we can restrict ourselves to the subset T, of T consisting of

-k
those intervals of T whose lengths are less than n 1. From (20) it also follows -
that

2od< 2.
Ty

Let us now look at the set F,. Let F) denote the set of intervals of ¥, each of
which is covered at least to a fourth of its length by an interval of T;; let F3 be the
set of the remaining intervals of F,. We find then in the same way as we found (29)
the inequality

-k,(1-s)

(32) Z(Fb) < 6n; Z(F,).

We are interested in those intervals of ¥4 that are completely covered by intervals

of Gj;. We want to show that they contain certain points which are not covered by in-

tervals of T;. Therefore we investigate FgGl. First, by Lemma 7, we find a lower
G -k

bound for Z(F2 ): each interval of G; has at least the length (2n;) %, and F, is of

order n,, so for n, > 8(2n1)kl we obtain the inequality
G 1
Z(F, Y > 5Z(F,) |G, |.
It follows then from (32) that
Z(F" 7Y = Z(FOY - ZECY) > Z(FSY) - z(F)
2 2 2 2 2

1 k -1

and from (31) that

2
nGy (_]_-_ -k, n], _ kl(s‘l))
Z(Fz ) > Z(FZ) 8(an) Tog n, 6n1
log n, ?

(33)
> Z(F,)§ (2n))

if n, is sufficiently large. This follows from the fact that 2 - k; > k(s - 1), an
inequality which is easily checked.

We now shorten each interval of F'Z' at both ends by a fourth of its length. Let
G, be the set of middle halves of the intervals composing F;Gl; the number of in-

tervals in G, is equal to Z(F"Gl) and is estimated by the right-hand side of (33).
We find for G,, in the same way as for G;, that the intervals of G, have no point in
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common with any interval of T whose length is at least n;;kz. The lengths of the in-

-k
tervals of G, are at least equal to (2n;) 2, and thus it follows from the relations
(20) and (33) that

2
nj 1 (nl ng)z

>
k
9(2n;) 'log n; (2n2)k2 18(2n1)kl (an)kzlog n;logn,

(34) |G, |> Z(F))

We continue with the set F3. We denote by T, the set of intervals of T whose

lengths are less than nikz. We further take Fj as the set of intervals of F; each
of which is covered, at least to a fourth of its length, by a single interval of T,, and
put ¥3 = F3 - F3. The inequality corresponding to (29) holds. One obtains then, just
as before, the set G of the shortened intervals of F;(Gz) that have no common
point with any interval of T whose length is at least ngk“, and one finds an inequality
similar to (34). In this way one obtains a nested sequence of sets G;, G,, Gs, ***,
each consisting of closed intervals, with the following properties: Each G; is closed

and not empty; hence the pointset G = ﬂ‘f:l G.

; is not empty. Further, since G; has

no point in common with any interval of the system T whose length is at least n—iki,
the set G has no common point with T. Finally G; C ﬂ;=  F =1,2,3,-), and
hence GC F = n‘f: 1 ¥;. Therefore, if ¥ is an arbitrary element of G, then y £T,
and hence vy £ S(r, s). Moreover, since D ¢ T the point ¥ is not contained in any
set Dj. In other words, to each € > 0 there corresponds an n such that for all
q>n

P 1
|7 - q‘ > qc+1+8'

For if i is the index for which €;_; > € > €;, one can take n = n;, since then y does
not belong to any interval

P 1
ly‘a|<qc+—1+s @z .

On the other hand, since G C F, there exist, for each € > 0, infinitely many pairs of
integers p, q (g > 0) such that

P 1
|7 - E[ch+1—8'

This means that each ¥ € G has properties (a) and (b) of Definition 1 for n = 1, and
hence 6i(y) = c. The fact that G N S(r, s) = B shows that S(r, s) does not cover all
points y for which 8; (y) = c. This completes the proof of Theorem 8.
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