AN EXISTENCE THEOREM FOR PERIODIC SOLUTIONS OF
NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

H. W. Knobloch

1. INTRODUCTION

We consider a system of ordinary differential equations

x=1(x, ) (x=xy, -, xp), £=(fy, -+, §)),

where the f; are continuous and satisfy a (local) Lipschitz-condition for (x, t) in
some region £ X I. Here £ is assumed to be an open region in Euclidean n-space
Rn, and I is the unit interval 0 < t < 1, notation which we shall keep throughout this
paper. A solution &(t) = (£1(t), ---, &n(t)) of the differential equations is called peri-
odic, if it satisfies the boundary conditions £;(0) = £;(1) (i =1, ---, n). In the theorem
that is formulated below, we give conditions in terms of the functions f; that guaran-
tee the existence of periodic solutions in subregions of 2 X I. In order to make the
nature of these conditions clearer we introduce them here in 2 more geometric way.
Let us assign to each solution of the differential equation the curve in R™T! with the
parametric representation (£;(t), **-, £4(t), t) and with the orientation given by in-
creasing t. Let Z be a subregion of & X I, and let T be a sufficiently smooth hyper-
surface that belongs to the boundary of Z. We shall say that T is of uniform type
with respect to Z if there are no two solution curves which intersect with T in such
a way that one curve arrives from the interior and the other arrives from the ex-
terior of Z. In the notation of Wazewski, this means T does not contain points de
sorlie (points of egress) as well as points d'entrée (points of ingress); see [3, p.
280}, [1, p. 179].

We now consider a region Z C & X I that is bounded by cylindrical and plane
hypersurfaces Sy, S;, T; and TF (i =1, -**, n). The hypersurface S, is

{(X’ t):t=0, alﬁxif_ﬁl} ’
and S, is
{x,0:t=1, a; <x < B}, where a@; =;(0) = a;(1), B; = B;(0) = B5(1).

The hypersurfaces T;, T are defined by equations of the form x;= a;(t), x; = B;(t),
respectively, with a;(t) < B;(t) and «;(0) = a;(1), B;(0) =8;(1) i=1, ---, n). Our
theorem can be stated as follows: If T; U Ti* is of uniform type (i =1, ---, n), then
there exists a periodic solution of the system % = f(x, t) inside Z. It should be
noted that if all T;, T are of the same uniform type, then our statement is an im-
mediate consequence of Brouwer’s fixed point theorem. If, for example, there are
no points of egress on U?=1 T; U Ti*, any solution that starts at some point

(x, 0) € S, cannot leave Z except at some point (x, X) € S,. The mapping x — X is
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then a continuous mapping of the box Q: ai < x; < B; into itself, and hence it has a
fixed point. In our theorem, however, we need not assume that all Tj, T’i" are of the
same type. For example, if n = 2, solution curves may leave the region Z through
T,, T’f, and solution curves may enter Z through T,, TS. In general, there will be
no mapping of S, into S, or of S, into S,. Nevertheless, there exists a periodic
solution.

Brouwer’s theorem is the basic tool in our proof, but this theorem will not ap-
pear in its usual form. We use a version which is due to Miranda [2] and which can
be stated as follows.

THEOREM (Miranda). Let ¢;{uy, *»*, uy) (i =1, +»-, n) be n functions which are
defined and continuous in the box Q: a; < vu; < B;. Ifeach ¢; (i=1, ---, n) has con-
stant sign on each of the faces u; = a;, u;=B; of Q and these signs are opposite,
then the functions ¢, -, ¢, have at least one common zevo in Q.

It is clear from the formulation of this theorem that we wish to reduce the
problem of finding periodic solutions to the problem of finding common zeros of
some functions ¢;. The most natural way to do this is to consider the solutions of
the differential equations as functions of the initial values u = (uy, -**, u,), that is,
to consider the functions £;(t, u) which are characterized by the solution property
and by the condition £;(0, u) = uj, and then to choose u; - £;(1, u) to be the function
¢;(u). But ¢;(u) may not exist for all u € Q, and even if it does, the conditions of
Miranda’s theorem are in general not satisfied. The idea of our proof is to replace
each right member f; of the differential equations by a function 'fi that differs from
f; only outside Z, but for which the corresponding periodic solutions (if there are
any) of the new system x = f(x, t) lie inside Z. Then we treat this new system
% = f(x, t) as indicated above.

2. THE THEOREM

We first introduce some notation. Let 7;(x, t) denote the n-tuple

(X17 **ty Xio1s Xi+ls **%s Xny t),

and let 7;(X) denote the set of all 7;(x, t) with (x, t) € X, where X C R" X I,

A function ¢, defined on some set X, is said to have constant sign on X if either
$(x) > 0 or ¢(x) < 0 for all x € X. If two functions ¢, Y, defined on sets X, Y, re-
spectively, both have constant sign and one of the two combinations {¢Z 0, v < 0} ,
{qb <0, y> 0} holds, then we shall say that ¢ and Y have opposite constant signs.

THEOREM. Let f(x, t) = (£;(x, t), *--, f4(x, t)), where the f; ave defined, con-
tinuous, and satisfy a local Lipschitz condition with respect to X on some set
QX1 (2 an open set in R*), Fov edch i =1, ---, n suppose theve exists a pair of
Junctions o i(t) and Bi(t), with a;(t) < Bi(t), that arve defined on 1, continuous, peri-
odic with peviod 1, and piecewise continuously differentiable. Let Z be the sub-
region of R™ X 1 that is defined by the inequalities

ai(t)SXiS B}_(t) (1': 1’ T l’l),

and let D be a finite subset of 1 such that a;(t), B;(t) ave diffeventiable outside D
(i=1, >, n). Lastly, we assume that

(@) ZcaxI,
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(b) The two functions (of the n varviables X1, ***, X;_1, Xit+p ***» Xp 1)
a0 - £3(xq, =, %521, @50, Xjpq, o0 X ©)
Bi(D) - fi(xy, =+, %51, Bi(D), Xjpys 005 Xy )

have opposite constant signs on m(Z N R"X(I - D)) (i=1, *-+, n).
Then the diffevential system X = f(x, t) has at least one peviodic solution in Z.

For the proof of this theorem we require some lemmas.

3. LEMMAS
Let X;(u, t) be the following function of the two variables u, t:
a;i(t), if u < ay(t),
X;(u, t) = u, if o) <u< Bi(t) .
B;(t), if p;(t) < wu.

This function is defined for all u and all t € I, is continuous, and satisfies the
Lipschitz condition.

(1) |X,(u, t) - X,(v, )] < |u-v]

for all u, v.

The n + 1-tuple (X (xq, t), =+, X
functions

o(X,, £), t) is always a point in Z; hence, the

(2) L(xy, o %, ©) = £(X(xp, D), o, X (x, ), 0 (=1, +, n)

]

are defined and continuous in R"™ X I. We denote the vector function (fl, oo, fn) by
f.

Our proof is based essentially on the following four properties of f(x, t).
LEMMA 1. (i) If (x,t) € Z, f(x, t) = f(x, t).

(ii) The function d;(t) - fi(fi» t) has comnstant sign on the set of all (x, t) with
x; < aj(t), t € D; the function B;(t) - £;(x, t) has the opposite sign on the set of all
(%, t) with x; > B;(t), t £ D.

(iii) The functions Ifil ave bounded on R"* X1 (i=1, -+, n), and
(iv) f;, satisfies a Lipschitz condition everywhevre.
Proof. The statement (i) follows from the fact that

(X’ t) = (X l(xlj t)) °%%y Xn(xny t)) ((X’ t) € Z)-

Conclusion (ii) is true because of hypothesis (b) of the Theorem. For if x; < a;(t)

(x; > B, (1),

Xi(xs, ) = i) (Xjx;, t) = B5(D)) .
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Thus
&i(t) - filx, t) = a;(t) - £(Xy, ==+, Xi1, @), Xig1, o0 X, £ (x5 < @5(1),
and
Bi - i(x, 1) = i) - §(Xq, ==, Xi_1, BiD), Kipp, =, X ) (x5 2 B5(1)),

Xy, -, Xj-1, Xi+1, *-*, Xn, t) being a point in 7;(Z). That [fi | is bounded on R™ X I
is evident since (Xj(x1, t), **+, Xn(xn, t), t) is always in Z, and Z is bounded.

The last statement is a consequence of (1). By our assumptions on f(x, t) and

since Z is bounded, there is a constant L such that

[fi(x, ©) - fiy, )| < L max|x; - yj]
J

for all (x,t), (y, t) € 2.

From this we see, in view of (1) and (2), that
l£(x, t) - £, )| < L max lxj(xj, t) - X075, t)|
< maxlxj - yj[.

LEMMA 2. The diffevential system

~

(3) X = f(X; t)

has a periodic solution in Z if it has any periodic solution.

Proof. Let &= (&, ---, £,) be a periodic solution of (3). Each function
6; = & - a3

satisfies the condition 6;(0) = §;(1), and hence it can be extended to a periodic func-
tion of period 1, defined, continuous, and piecewise continuously differentiable for
all t. For 0<t< 1,

6-i.(t) = éi(t) - di(t) = 'f'l(“E l(t)’ °t% En(t), t) - di(t) .

In view of conclusion (ii) of Lemma 1, the last expression has constant sign on the
set of all t £ D, for which &;(t) < a;(t), and therefore 0;(t) has constant sign on the
set of all t £ D for which 06;(t) < 0. Consequently, 6; itself must have constant sign
for all t. Otherwise, since d; is periodic, for each t, the function 6; would change
sign on the half-line t > t, as well as on the hali-line t < t,. Now, if t, is a point at
which §; is negative, then there exists an interval [tl, t,] around this point such that
6;(t,) = 6;(ty)) = 0 and 04(t) < 0 for t, <t <t,. The inequality 0;(t) < 0 implies, as
we have seen before, that 4; has constant sign, and hence &; is monotonic in this
interval. This is obviously not compatible with the conditions that 6;(t;) = 0;(t;) = 0
and 6;(t) < 0.

Consequently there are two possibilities:
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8;(t) > 0 for all t, that is, £;(t) > a;(t), or
6;(t) < 0 for all t.

In the second case, 6; would be a monotonic periodic function of t (since 6;(t) would
have constant sign for all t ¢ D). Hence it would be a nonpositive constant c, that is,

£;(t) = aj(t) - c (c>0).

Since
d . q
T (a; (t) - c) =a;(t), an

X;(a;(t) - ¢, t) = a;1),
the relations
E;=T5(6y, o, Eny ) (=1, -, 1)
remain unchanged if & is replaced by «;. This means that
(E15 =05 Ei15 @55 E5415 *0%5 Ep) s

is also a periodic solution of (3). If we apply similar arguments to the difference
£, - B;, we arrive at the conclusion that either

o (1) < &5(t) < Bift)

for all t or £;(t) can be replaced by a;(t) or B;(t) and this gives another periodic
solution of (3). Thus the lemma is proved.

4. PROOF OF THE THEOREM

In view of part (i) of Lemma 1, each periodic solution of (3) that lies in Z is, in
fact, a periodic solution of the original system X = f(x, t). In order to complete the
proof of our theorem, we shall now show that there exists at least one periodic solu-
tion of the differential system (3).

We observe from parts (iii) and (iv) of Lemma 1 that a solution of the differential
equation (3) can always be extended to the whole interval 1. There exists, therefore,
a vector function

i, v) = (Et, w, -, T (t, ),

with components Ei (t,' u), that are defined and continuous for all t € I and all
u = (uy, ***, uy), such that

. L%, v = HEe, w, 0,

£(0, u) = u.
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The n functions ¢; defined by the equations
¢i(u) = u; - Ei(ls u) (i = 1’ *t% n)

are then defined and continuous everywhere.

Now we are ready to proceed in the straightforward way outlined in the introduc-
tion. For brevity, let us write ajg for a;(0) (= a;(1)) and B;g9 for B;(0) (= B;(1)).
We will show that each ¢ ; has opposite constant sign on the hyperplanes u; = ¢ ;g
and u; = B¢ It will then follow from Miranda’s theorem that the system of equa-
tions ¢;(u) = 0 has a solution and that this solution represents the initial values of
a periodic solution of the differential system (3).

Let us consider the functions

n;(t, w) = o) - E(t, v),

ni(t, v) = B;(t) - E;(t, v).
First of all,
7;(0, u) = 0 770, u) = 0
(4) for u; = ayq; for u; = By, -
T’i(ly u) = ¢I1(U) 7]:((1, U.) = ¢i(U)

Furthermore, we shall show that

(a) n; has constant sign on {(t, u): u; = @;,} and this sign is the sign of &; - I
on {(x, t): x;< ayb)}, and

(b) nT has constant sign on {(t, v): ujy = Bio} and this sign is the sign of Bi - fl
on {(x, t): X;> Bi(t)}.

Once we have proved this, by part (ii) of Lemma 1, it follows that n; and n"i‘ have
opposite signs, and hence, in view of (4), we obtain the desired property of ¢;.

We present here only the proof of statement (a) since the procedure for proving
(b) is analogous.

In what follows we regard u as fixed and assume u; = ajo. We write n(t) for
n;(t, v) and F(w, t) for

dl(t) - i(gl (t’ U.), °Tt, Ei—l(ty u)) -W + ai(t)’ Ej_-|-1(t, U), °% En(t) u)) t) .

The, function 1 satisfies the differential equation w = F(w, t) provided t £ D.
Furthermore, in view of (ii), F(w, t) has constant sign on {(w, t): w> 0}, and this
sign is the same as the sign of &;(t) - fi(x, t) on {(x, t): x; < e;(t), t £ D}.

Casel. F(w, t) <0 for w> 0. In this case, n(t) must be nonpositive for all
t € I. Otherwise, since 7(0) = 0, there would be a t € I, (t £ D) such that n(t) > 0,
77(t) > 0, and this would not be compatible with the relation 77 = F(n, t).

Case 2. F(w,t) >0 for w> 0. Let [ty t,] be a subinterval of I, that contains
no point of D in its interior. The function F(w, t) is then continuous and bounded
for all t € [t,, t,] and all w. Furthermore, F satisfies a Lipschitz condition with
respect to w. Therefore, according to the Picard-Lindelof Theorem,

n(t) = Vlingo ny(t),
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where the sequence 7,(t) is defined by the formulas

14 = 1ty
t
ey ® = 1t + St Fn, (1), 7) d7.

It follows immediately from this and our assumption on F, that if 7n(t,) > 0,

n,(t) > 0, and hence n(t) > 0 for all t € [t,, t,]. We thus arrive at the conclusion
that n(t,) > 0 implies that n(t) > 0 for all t € [t,, t,]. Since 7(0) = 0, n(t) > O in the
interval between 0 and the nearest point of D. In particular, n > 0 at this point,
and so 7(t) > 0 in the interval starting from there and going to the next point of D.
Hence, finally, n(t) > 0 for all t € L.
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