ARITHMETICAL NOTES, VI. SIMULTANEOUS BINARY COMPOSITIONS INVOLVING COPRIME PAIRS OF INTEGERS

Eckford Cohen

1. INTRODUCTION

Let m, n denote positive integers, and let Q = Q(m, n) represent the number of sets of integers x_1, x_2, y_1, y_2 such that

(1.1)
$$m = x_1 + y_1, \quad n = x_2 + y_2, \quad x_i > 0, \quad y_i > 0 \quad (j = 1, 2),$$

subject to the restriction

$$(1.2) (x1, x2) = (y1, y2) = 1.$$

It is the object of this note to prove

THEOREM A. If $n \ge m$, then

(1.3)
$$Q(m, n) \sim mn \alpha(m, n) \quad as \quad m \to \infty,$$

where

(1.4)
$$\alpha(m, n) = \prod_{p \mid (m,n)} \left(1 - \frac{1}{p^2}\right) \prod_{p \neq (m,n)} \left(1 - \frac{2}{p^2}\right).$$

(Throughout this note, p stands for a prime.)

As a consequence of this result, one may obtain

THEOREM B. There exist positive constants A_1 , A_2 such that, when m and n are sufficiently large,

$$A_1 < Q(m, n)/mn < A_2$$
.

Theorem A is actually proved in a slightly stronger form (see Theorem 3.1). The proof is based on an elementary method similar to that employed by Mirsky in [3].

2. SOME LEMMAS

Let $\theta_p(m, n)$ denote the number of solutions (mod p) of

$$m \equiv x_1 + y_1, \ n \equiv x_2 + y_2 \pmod{p}, \quad p + (x_1, x_2), \ p + (y_1, y_2).$$

The following result is the special case r = p of [1, (8.8), Corollary 18.1].

Received October 26, 1961.

LEMMA 2.1.

(2.1)
$$\theta_{p}(m, n) = \begin{cases} p^{2} - 1 & \text{if } p \mid (m, n), \\ p^{2} - 2 & \text{if } p \mid (m, n). \end{cases}$$

LEMMA 2.2 There exist positive constants c₁, c₂ such that

$$c_1 \leq \alpha(m, n) \leq c_2$$

for all m, n.

Proof. In fact, by (1.4),

$$\prod_{p} \left(1 - \frac{2}{p^2}\right) \leq \alpha(m, n) \leq \prod_{p} \left(1 - \frac{1}{p^2}\right).$$

LEMMA 2.3. If $\Omega(n)$ denotes the number of prime-power divisors of n, including the primes, then, for all $\delta \geq \log 2/\log 3$,

$$2^{\Omega(n)} = O(n^{\delta}) \quad (n \in S),$$

where S is the sequence of odd integers.

Proof. The function $f_{\delta}(n) = 2^{\Omega(n)/n\delta}$ is clearly multiplicative on S. It follows that $f_{\delta}(n)$ is bounded on S, because $f_{\delta}(p^m) = 2^m/p^{\delta^m} \le 1$ for odd primes p.

Finally, we note the following refinement of Chebyshev's Theorem.

LEMMA 2.4 (compare [2, Section 22.2, Theorem 415]). For all $n \ge 1$,

(2.4)
$$\sum_{p \leq n} \log p < n \log 4.$$

3. THE PROOF

We prove the following slightly refined form of Theorem A.

THEOREM 3.1. For $2 \le m \le n$,

(3.1)
$$Q(m, n) = mn \left\{ \alpha(m, n) + O\left(\frac{1}{\sqrt[4]{\log m}}\right) \right\}.$$

Proof. In the proof, the ith prime will be denoted by p_i . The quantity x = x(m) will denote a function of m to be determined later, subject to the condition

(3.2)
$$3 \prod_{p \le n} p < m \quad (x \ge 2),$$

with m supposed sufficiently large, let us say, $m \ge e^6$. We shall use k = k(m) to denote the largest integer i such that $p_i \le x$; moreover, it will be convenient to write $r_k = p_1 \cdots p_k$.

Let $Q_1 = Q_1(m, n)$ denote the number of solutions of (1.1) such that neither (x_1, x_2) nor (y_1, y_2) is divisible by any $p \le x$. Let $Q_2 = Q_2(m, n)$ denote the number of such solutions of (1.1), with the proviso that either (x_1, x_2) or (y_1, y_2) is divisible by at least one p > x. It follows then that

$$Q = Q_1 - Q_2.$$

First we estimate Q_2 . Evidently,

$$Q_{2} \leq \sum_{p>x} \sum_{\substack{(1.1) \\ p \mid (x_{1},x_{2}) \text{ or } \\ p \mid (y_{1},y_{2})}} 1 \leq 2 \sum_{p>2} \sum_{\substack{(1.1) \\ p \mid (x_{1},x_{2})}} 1,$$

the summation symbols being self-explanatory. Hence

$$Q_2 = O\left(\sum_{\substack{p>x \ m=px_1+y_1\\ n=px_2+y_2}} \sum_{1} 1\right) = O\left(\sum_{\substack{p>x}} \frac{m}{p} \cdot \frac{n}{p}\right) = O\left(\min_{\substack{t>x}} \frac{1}{t^2}\right),$$

so that

$$Q_2 = O\left(\frac{mn}{x}\right).$$

In estimating Q_1 , it is useful to note that if $\{x_1, x_2, y_1, y_2\}$ is a solution of (1.1), then the condition

(3.5)
$$p_i + (x_1, x_2), p_i + (y_1, y_2) \quad (1 \le i \le k),$$

is satisfied if and only if there exist ξ_{ij} , η_{ij} such that

$$0 \leq \xi_{ij} < p_i, \quad 0 \leq \eta_{ij} < p_i \qquad (1 \leq i \leq k, \ j = 1, \ 2) \,,$$

(3.7)
$$\xi_{i1} + \eta_{i1} \equiv m, \ \xi_{i2} + \eta_{i2} \equiv n \pmod{p_i} \quad (1 \le i \le k),$$

(3.8)
$$p_i + (\xi_{i1}, \xi_{i2}), p_i + (\eta_{i1}, \eta_{i2}) \quad (1 \le i \le k),$$

and

(3.9)
$$x_{j} \equiv \xi_{ij}, y_{j} \equiv \eta_{ij} \pmod{p_{i}} \quad (1 \leq i \leq k, j = 1, 2).$$

Thus we have

(3.10)
$$Q_{1} = \sum_{\substack{p_{i} \\ (1.1),(3.5)}} 1 = \sum^{*} \sum_{\substack{x_{j},y_{j} \\ (1.1),(3.9)}} 1,$$

where the * indicates that ξ_{ij} and η_{ij} satisfy (3.6),(3.7), and (3.8). Corresponding to each pair ξ_{ij} , η_{ij} in (3.6) there exist, by the Chinese Remainder Theorem, uniquely determined ξ_j , η_j (mod η_k) such that

(3.11)
$$\xi_{\mathbf{i}} \equiv \xi_{\mathbf{i}\mathbf{j}}, \ \eta_{\mathbf{i}} \equiv \eta_{\mathbf{i}\mathbf{j}} \pmod{\mathbf{r}_{\mathbf{k}}} \qquad (\mathbf{j} = 1, 2);$$

moreover, one may suppose that

(3.12)
$$0 \le \xi_j < r_k, \quad 0 \le \eta_j < r_k \quad (j = 1, 2).$$

If, in addition, (3.7) is satisfied, then it follows that

(3.13)
$$m \equiv \xi_1 + \eta_1, \quad n \equiv \xi_2 + \eta_2 \pmod{r_k}.$$

In view of (3.11), the condition (3.9) may be replaced by

(3.14)
$$x_{j} \equiv \xi_{j}, \quad y_{j} \equiv \eta_{j} \pmod{r_{k}} \quad (j = 1, 2).$$

Hence, if we write

(3.15)
$$x_j = \xi_j + r_k X_j, \quad y_j = \eta_j + r_k Y_k \quad (j = 1, 2),$$

then (1.1) is replaced by

(3.16)
$$X_1 + Y_1 = \frac{m - \xi_1 - \eta_1}{r_k}, \quad X_2 + Y_2 = \frac{n - \xi_2 - \eta_2}{r_k},$$

where X_i and Y_i are integers and

(3.17)
$$X_j \ge 0$$
, $Y_j \ge 0$, $X_j > 0$ if $\xi_j = 0$, $Y_j > 0$ if $\eta_j = 0$ (j = 1, 2).

The assumption that $m > 3r_k$, in connection with (3.12) and (3.13), ensures that (3.16) is solvable subject to (3.17). Hence, by (3.10) and (3.15),

$$Q_{1} = \sum_{\xi_{ij}, \eta_{ij}}^{*} \sum_{\substack{X_{j}, Y_{j} \\ (3.16), (3.17)}} 1$$

$$= \sum_{\xi_{ij}, \eta_{ij}}^{*} \left(\frac{m - \xi_{1} - \eta_{1}}{r_{k}} + O(1) \right) \left(\frac{n - \xi_{2} - \eta_{2}}{r_{k}} + O(1) \right),$$

so that, by (3.12),

$$Q = \sum_{\xi_{ij},\eta_{ij}}^{*} \frac{mn}{r_k^2} + O\left(\sum_{\xi_{ij},\eta_{ij}}^{*} \frac{n}{r_k}\right) + O(1)$$

$$= mn \prod_{p \leq x} \frac{\theta_p(m, n)}{p^2} + O\left(n \prod_{p \leq x} \frac{\theta_p(m, n)}{p}\right) + O(1).$$

Since obviously $\theta_{p}(m, n) \leq p^{2}$, we have

(3.18)
$$Q_1 = mnQ^* + O\left(n \prod_{p < x} p\right), \quad Q^* = \prod_{p < x} \frac{\theta_p(m, n)}{p^2}.$$

By (2.4),

$$(3.19) \qquad \qquad \prod_{p \leq x} p \leq e^{2x},$$

so that (3.18) becomes

(3.20)
$$Q_1 = mnQ^* + (ne^{2x}).$$

Application of Lemmas 2.1 and 2.2 yields

$$Q^* = \alpha(m, n) \prod_{\substack{p > x \\ p \mid (m, n)}} \left(1 - \frac{1}{p^2}\right)^{-1} \prod_{\substack{p > x \\ p \nmid (m, n)}} \left(1 - \frac{2}{p^2}\right)^{-1}$$

$$= \alpha(m, n) \prod_{\substack{p > x \\ p \mid (m, n)}} \left(1 + \frac{1}{p^2} + \frac{1}{p^4} + \cdots\right) \prod_{\substack{p > x \\ p \nmid (m, n)}} \left(1 + \frac{2}{p^2} + \frac{2^2}{p^4} + \frac{2^3}{p^6} + \cdots\right)$$

$$= \alpha(m, n) \left\{1 + O\left(\sum_{\substack{r,s \\ r > 1}}^{1} \frac{2^{\Omega(s)}}{r^2 s^2}\right)\right\},$$

where in the Σ' summation, $p \mid r \to p > x$, and $p \mid s \to p > x$. Therefore, by Lemma 2.2,

$$Q^* = \alpha(m, n) + O\left(\sum_{\substack{r,s \\ rs>1}}^{\prime} \frac{2^{\Omega(s)}}{r^2 s^2}\right)$$

$$= \alpha(m, n) + O\left(\sum_{\substack{r>x \\ r>x}}^{\prime} \frac{1}{r^2}\right) + O\left(\sum_{\substack{s>x \\ s>x}}^{\prime} \frac{2^{\Omega(s)}}{s^2}\right) + O\left(\sum_{\substack{s>x \\ r>x}}^{\prime} \frac{2^{\Omega(s)}}{r^2}\right),$$

and hence

(3.21)
$$Q^* = \alpha(m, n) + O\left(\sum_{s>x}^{1} \frac{2^{\Omega(s)}}{s^2}\right).$$

The s-summation in (3.21) is restricted to odd s, because $x \ge 2$; thus, Lemma 2.3 is applicable, whereby

$$Q^* = \alpha(m, n) + O\left(\sum_{s>x} \frac{1}{s^{2-\delta}}\right) \qquad (1 > \delta \ge \log 2/\log 3).$$

In particular, with $\delta = 3/4$,

(3.22)
$$Q^* = \alpha(m, n) + O\left(\frac{1}{\sqrt[4]{x}}\right),$$

so that by (3.20), (3.3), and (3.4),

(3.23)
$$Q = \operatorname{mn} \alpha(m, n) + O\left(\frac{\operatorname{mn}}{\sqrt[4]{x}}\right) + O(n e^{2x}).$$

We choose now $x = (\log m)/3$ $(m \ge e^6)$, noting that (3.2) is satisfied by virtue of (3.19). The relation (3.1) now follows, under the condition $m \ge e^6$. But on the basis of Lemma 2.2, (3.1) is valid for $2 \le m \le n$, in the form Q(m, n) = O(n). Hence the theorem is proved.

On the basis of (2.2), Theorem A is a consequence of Theorem 3.1, while Theorem B follows from Theorem A.

Remark (added May 29, 1962).. It is easily observed that Theorems A and B remain valid if Q(m, n) is replaced by Q'(m, n), where Q'(m, n) is defined to be the number of solutions of (1.1) and (1.2) with $x_j > 1$, $y_j > 1$.

REFERENCES

- 1. E. Cohen, A class of arithmetical functions in several variables with applications to congruences, Trans. Amer. Math. Soc. 96 (1960), 355-381.
- 2. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Third Edition, Oxford, 1954.
- 3. L. Mirsky, A theorem on sets of coprime integers, Amer. Math. Monthly, 57 (1950), 8-14.

The University of Tennessee