ARITHMETICAL NOTES, VI. SIMULTANEOUS BINARY
COMPOSITIONS INVOLVING COPRIME PAIRS OF INTEGERS

Eckford Cohen

1. INTRODUCTION

Let m, n denote positive integers, and let Q = Q(m, n) represent the number of
sets of integers x,, x,, y,, ¥» such that

(1.1) m=x; +y;, DN=X+Yyp, X%X>0,y;>0 G=1,2)),
subject to the restriction
(1.2) (X1, X3) = (y1, ¥2) = 1.

It is the object of this note to prove
THEOREM A. If n> m, then

(1.3) Q(m, n) ~ mna(m,n) as m — o,

wheve

(1.4) amn = IO (1-2)Y O (1-2).
g () I %)

(Throughout this note, p stands for a prime.)
As a consequence of this result, one may obtain

THEOREM B. Theve exist positive constants A,, A, such that, when m and n
are sufficiently larvge,
L}

A, < Q(m, n)/mn < A,.

Theorem A is actually proved in a slightly stronger form (see Theorem 3.1).
The proof is based on an elementary method similar to that employed by Mirsky in

[3].
2. SOME LEMMAS

Let 6p(m, n) denote the number of solutions (mod p) of

m=x+y, n=X%+y, (modp), p-+ (x, %), p+ (1, ¥2)-

The following result is the special case r = p of [1, (8.8), Corollary 18.1].
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LEMMA 2.1.

-1 if p|l(m, ),

p? -2 if p+t (m,n).

LEMMA 2.2 There exist positive constants c,, c, Such that

(2.1) 0, (m, n) =

(2.2) c, <a(m,n)<c,

Jor all m, n.
Proof. In fact, by (1.4),

2 1
I(1-5z) < @tmm < T (1-57).
P p
LEMMA 2.3. If Q(n) denotes the number of prime-powey divisors of n, includ-
ing the primes, then, for all 6 > log 2/ log 3,
(2.3) 28%n) - om®) (nes),
where S is the sequence of odd integers.

Proof. The function fg5(n) = 2 (n)/nd ;¢ clearly multiplicative on S. It follows
that f5(n) is bounded on S, because f5(p™) = Zm/pémg_ 1 for odd primes p.

Finally, we note the following refinement of Chebyshev’s Theorem.

LEMMA 2.4 (compare [2, Section 22.2, Theorem 415]). For all n> 1,

(2.4) 27 logp <nlog4.
p<n

' 3. THE PROOF

We prove the following slightly refined form of Theorem A.
THEOREM 3.1. For 2<m<n,

(3.1) Q(m, n) = mn {a(m, n) + O(ﬁ) }

Proof. In the proof, the ith prime will be denoted by p;. The quantity x = x(m)
will denote a function of m to be determined later, subject to the condition

(3.2) 3Ilp<m (x>2),
p<n

with m supposed sufficiently large, let us say, m > e®. We shall use k = k(m) to
denote the largest integer i such that p; < x; moreover, it will be convenient to
write ry = p, - Py-
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Let Q, = Q,(m, n) denote the number of solutions of (1.1) such that neither
(x,, X,) nor (y;, ¥,) is divisible by any p < x. Let Q, = Q,(m, n) denote the number
of such solutions of (1.1), with the proviso that either (x,, x,) or (y,, y,) is divisible
by at least one p > x. It follows then that

(3.3) Q = Q1 - Qz .

First we estimate Q,. Evidently,

Q, < 2 2 1<2 2 2 1,

T pox (1.1) T p>2  (L.1)
P ' (Xl’xz) or P I(XI’XZ)
p|(v1 )

the summation symbols being self-explanatory. Hence

Q=02 2 1y =o0of 2 Z22Y-o0 ng)iZ,
P>X m=px +y, p>x P P t>xt
n=pXp+ys

so that
(3.4) Q, = o(m—;).

In estimating Q,, it is useful to note that if {xl, X,, V1, Y24 is a solution of (1.1),
then the condition

(3.5) p; T (%, %), b+ %,y,) @<Li<K,

is satisfied if and only if there exist £i5, 1y; such that

(3.6) 0<&;;<pg, 0<m;<p; (1<L<i<k, j=1,2),
(3.7 gir+my=m, §+m52=n (modp;) (1<Li<k),
(3.8) p; T (8515 &32)s B3 (50, m5) (1<i<k),
and

(3.9) Xj = &35, ¥v; = ny; (mod py) 1<i<k, j=1,2).

Thus we have

(3.10) Q= 2 1= = 1,
Pi El_]’nl_] XY j
(1.1),(3.5) (1.1),(3.9)

where the * indicates that £;j and 7n;j satisfy (3.6),(3.7), and (3.8). Corresponding
to each pair Eij, 7ij in (3.6) there exist, by the Chinese Remainder Theorem,
uniquely determined £;, 175 (mod 1) such that
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(3.11) &5 = &5, ny =my; (mod ry) G=1, 2);
moreover, one may suppose that

(3.12) OSEJ<I‘k, OSnj<rk (j=1, 2)

If, in addition, (3.7) is satisfied, then it follows that

(3.13) m=§& +1y, n=§ +1, (mod 1y ).

In view of (3.11), the condition (3.9) may be replaced by

Hence, if we write

(3.15) x5 =& + . X, Yj=15 + rc Y G=1, 2),

then (1.1) is replaced by

m- & - n - -
(3.16) Xp+¥ = 22T gLy, R
ry Ty
where X; and Y; are integers and
(3.17) X>20, ;20 X3>01if §=0, Y;>0if n;=0 G=1, 2).

The assumption that m > 3r, in connection with (3.12) and (3.13), ensures that
(3.16) is solvable subject to (3.17). Hence, by (3.10) and (3.15),

Q; = Z* 2 1

&ijomy XY

(3.16),(3.17)
- (m b - 0(1))( 0(1)),
& 575
so that, by (3.12),
Q = * __m_;l + O —) + O(1)
‘ &ij i T 1_] sThj

mnl_.[gp(m2 n) nﬂw)+0(1).
p<x p p<x p

Since obviously 6,(m, n) < p%, we have

(3.18) Ql—an**‘o( , Qx= II _&(_m_n_)
p<x pr p2
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By (2.4),

(3.19) IIp < er’
p<x

so that (3.18) becomes

(3.20) Q; = mnQ* + (n e¥).

Application of Lemmas 2.1 and 2.2 yields

-1 -1
Q* = a(m,n) II 1——13 II (1- 2)
p> x p p>x
p| (m,n) pt (m,n)
2 3
= a(m, n) 11 1+—-+——+- II 1+—2—+2—+3-+---)
pP>x P>x p?‘ p4 p6
p| (m,n) p+ (m,n)
' Q(S)
=o(m,n))1+0 2 2 ,
r,s r2 g2
rs>1

where in the 2' summation, p | r—p>x,and p | s — p > x. Therefore, by
Lemma 2.2,

' 29(5)
Q* = a(m, n)+ O 25
r,s r2g2
rs>1
, 9%(s) , 982(s) 1
= a(m, n) + O ) 2 2)+0(Z> > E_Z-
r>x s>x S sS>x  S% >y T
and hence
| ,Q(8)
(3.21) Q* = a(m, n) + O(E > )
s>x S

The s-summation in (3.21) is restricted to odd s, because X > 2; thus, Lemma 2.3
is applicable, whereby

Q* = a(m,n+0( 2 ) (1>0 > log 2/1og 3).
s>xS

In particular, with 0 = 3/4,

(3.22) Q* = a(m, n) + 0(%),
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so that by (3.20), (3.3), and (3.4),

(3.23) Q = mna(m, n) + O(?—F—) + O(n e%%).
X

We choose now x = (log m)/3 (m > e®), noting that (3.2) is satisfied by virtue of
(3.19). The relation (3.1) now follows, under the condition m > €% But on the basis
of Lemma 2.2, (3.1) is valid for 2 < m < n, in the form Q(m, n) = O(n). Hence the
theorem is proved.

On the basis of (2.2), Theorem A is a consequence of Theorem 3.1, while
Theorem B follows from Theorem A.

Remark (added May 29, 1962).. It is easily observed that Theorems A and B re-
main valid if Q(m, n) is replaced by Q'(m, n), where Q'(m, n) is defined to be the
number of solutions of (1.1) and (1.2) with X; > 1, Y > 1.
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