ON AN INVARIANT PROPERTY OF SURFACE INTEGRALS

Togo Nishiura

Our basic tool is the following proposition.

LEMMA., If a = (ajj is an n X n orthogonal matvix, and B = (bgn) .denotes the
(121) X (121) matrvix whose elements bgy are the determinants of all 2 X 2 subma-
trices of a, then B is also an ovthogonal matrix.

We give a proof in Section 2. In Section 3, we use this result to extend the
theorems of L. H. Turner [7] concerning the invariance of Cesari’s surface integral
under orthogonal linear transformations.

1. NOTATION

Let E;, (n > 2) be the n-dimensional Euclidean space with an orientation.

If n is a positive integer (n> 2), then ﬂrz, denotes the set of all ordered pairs
£ = (&Y, £2) of integers such that 1 < £' < £2 < n. We shall assume that Q;Zl is
lexiographically ordered.

By the mapping PE (£ € Qﬁ) we mean the projection
1 2
PiG) = (5, x5) (= (x], X2 -, x) € By)
of E_ onto the hyperplane E%

Let (T, A): x=T(w) (w € A) be any continuous mapping from an admissible set
A C E, into E, (n> 2). Denote by (Tg, A) (¢€ 9121) the (121) plane mappings

(P‘ET, A) from the admissible set A C E, into E§ - En. Let & be any set of non-
overlapping closed simple polygonal regions n in A. If 7* is the oriented boundary
of 7, then TS maps 7m* into an oriented closed curve C% in Eg For any point

X € E§, let O(x; C;ér) be the topological index of x with respect to Cfr. Then O(x; Cfr)

is Borel measurable and integrable if (T, A) is cBV. We write
u(Tg, m) = (EE)S ofx; C;";) and w(T, m) = [E uz(Tg, 11)]1/2 s

where Z ranges over £ € szrzl (See [1] for the definitions of admissible sets, topo-
logical index, and cBV.)
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2. PROOF OF THE LEMMA
B is the (g) X (121) matrix g8 = (b'i‘??)’ where

ik im o 2
bgn = (E = (1, ]), n= (k; m) € Q’n) .
a2
Since o is orthbgonal,

n n

2 .
Zlaij= 1 and Z}lalJakJ 0 (i=#k).
j= h]

We show that the row vectors of B8 form an orthogonal system of 1 X (g) vectors.

- (2,5)(2) - (2, 5mm)

= 27 (@4 a2 +a% a%2)-2 2 (a. a2 a. )

Clearly,

ik @ _]m im " jk

k<m k<

= 2 o2y _

= 2 ( Ak _]m 2EL1k aJk m? jm A ajk - Eb%ﬂ ’
k<m n

where £ = (i, j) and n = (k, m). Hence the row vectors are normal. Since

2 aika‘sk>( 2 a_]matm)_ 2 a’ika’tk> E a_]m sm)

k=1 k=1

ad - Z)(aaa.a

ik™tk “jm “sm A dtm a'jk ask)

2 (a1kaska mtmt 2imTsm Jka
k<m m

]

Z>(atlk Ym - {k Am) (Bgi By - A Agy) = Ebgann’
n n

where & = (i, j), £ = (s, t), 7= (k, m), and £ # €, the row vectors are orthogonal.
This concludes the proof of the lemma.

Let 7* be the oriented boundary of a closed simple polygonal region # in the
plane E,, and let f be a continuous mappmg of #* into E, such that the oriented

curve (f, 7*) is rectifiable. If £ € Qn, then (P‘Ef 7*) is also rectifiable, and by [1,
(8.10.i)] the integral

u(PEf) = w(ets, ) = (Eg)S O(x; PEt, %)
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exists. Hence, corresponding to f, there exists an (121) X 1 column vector

Z() = col (a(BE1D), u(PZ2n), -, w@NY) (g <g, <<ty el N=(3))

whose Euclidean norm is u(f) = u(f, 7). The next theorem generalizes a theorem of
L. Cesari [1 (8.11.3)].

THEOREM 1. Let (f, 7*¥) be as above, let o = (a;5) be an orthogonal linear
transformation of E, onto ilself, and let B = (bﬁﬂ) be the ('21) X (121) matvix de-
fined in the lemma. Then (af, w*) is rectifiable, Z(af) = BZ(f), and u(f) = u(af).

Proof. Clearly, (af, 7¥*) is rectifiable. Also, since $ is orthogonal, u(f) = u(af)
if Z(af) = BZ(f). Hence, we need only prove that Z(«af) = BZ(f).

Now f is a vector function; namely, f = col (f, f2, .-+, 7). Let us denote af by
the vector function of = col (F!, F2, -+, F?), where

n
J:

By [1, (8.10.1)], 2U(P§af) = SFi dFJ, where the integral is taken over 7* and
E=(, je 912; Expanding the integral, we see that

‘S‘( i aikfk) i adefm)
k=1

m=1

S FilgFl

1

AVE

Am 2jm S £ ar™m + E (aik ajm - m ajk)S fk afr™
1 k<m

= 2 Dbg, u(Pl,
n
where £ = (i, j),n=(k, m) € Qi Hence Z{af) = BZ(f), and Theorem 1 is proved.

3. THE INVARIANCE OF THE CESARI SURFACE INTEGRAL

If (T, A) is a ¢cBV mapping, then each of the plane mappings (Tg, A) (¢ e szf;)
has finite variation (or area) V(T®, A). Each of these variations is equal to the sum
of a positive variation and a negative variation: V(T'S, A) = V+(T‘E, A) + V"(TE, A).
The relative variation is defined as %(T&, A) = v*(TE, A) - v=(T¢, A). Let 7(T, A)

be the column vector col (‘//(Tg 1 A), V(ng, A), "',~7/(T§N, A)), where
2 n
81 < < <iyEQ,, N= (2)

The following theorem is an application of Theorem 1. When n = 3, Theorem 2
reduces to [7, Theorem 3].
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THEOREM 2. Let (T, A) be a cBV mapping, and let a be an orvthogonal lineay
transformation of E, onto itself. Then v (T, A) = p¥(T, A).

The proof of Theorem 2 is essentially the same as that given in [7, Section 3].
Two changes must be made. The reference to [1, page 104] is replaced by Theorem
1 above. The second change is the reference to the equality of the Lebesgue area
L(T, A) and V(T, A). In this case, references are made to [2], [3, Theorem 7.14],
[4], and [5].

Let & be a finite system of nonoverlapping closed simple polygonal regions
7 C A, and let 2, denote a sum over 7 € &. For the system & and the ¢BV map-
ping (T, A), we define three nonnegative indices d, m, p as follows:

d = max[diam T(m): 7 € 8];

m ma.x[l TE(U'H*)lt te Q;?‘l] , where the absolute value sign denotes two-dimen-

sional Lebesgue measure and U ranges over 7w € &;

i = max[V(T, A) - Z_u(T, ), V(T$, A) - =, |u(Té, | (& e 99)].

From [6, Theorem 3.i] we see that, for each ¢BV mapping (T, A), there exist sys-
tems © with arbitrarily small indices d, m, L.

Let f(x, d) be a continuous function of (x, d), where x ranges over some set
Kc E;, and d is any point of EyN (N = (121)) . We call f(x, d) a parametric inte-
grand if 1(x, d) is positively homogeneous in d; that is, if f(x, td) = tf(x, d) for all
x€K, t>0,and d € EN. By | d|| we shall denote the Euclidean norm of d. Let dy
be the vector (u(TEl, ), u(Ti’:Z, m), *o, u(TgN, M), where £, <&, << § € QI?;
and N = (121) . Then the following existence theorem for the Cesari surface integral
is proved in the same manner as in [1, Appendix B].

THEOREM 3. Let (T, A) be a cBV mapping. Let {(x, d) be a parametric inte-
grand defined on K C Eqy (N = (121)) such that T(A) c K and f(x, d) is bounded

and uniformly continuous on R = {(x, d): x € T(A), ||d|| = 1}. Then tre limit
I(T, A, f) = lim Z, f(x;, dy) exists, wheve X; is any point of T(w), m is an element
of ©, and the limil is taken as the indices d, m, u of © tend to zevro.

The invariance of the Cesari surface integral can now be established in exactly
the same manner as in [7, Theorem 4]. Theorem 2 replaces [7, Theorem 3] in
Turner’s proof.

THEOREM 4. Let (T, A) and f(x, d) be as above. Let a be an orthogonal
linear transformation of E, onto itself, and let B be the ovthogonal linear trans-
formation-of En onto itself given in the lemma above. Let g(x, d) = fl@~'x, g~1d)
on (@K) X E. Then I(aT, A, g) exists and equals I(T, A, f). "
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