ON AN INVARIANT PROPERTY OF SURFACE INTEGRALS

Togo Nishiura

Our basic tool is the following proposition.

LEMMA. If $\alpha=(a_{ij})$ is an $n\times n$ orthogonal matrix, and $\beta=(b_{\xi\eta})$ denotes the $\binom{n}{2}\times\binom{n}{2}$ matrix whose elements $b_{\xi\eta}$ are the determinants of all 2×2 submatrices of α , then β is also an orthogonal matrix.

We give a proof in Section 2. In Section 3, we use this result to extend the theorems of L. H. Turner [7] concerning the invariance of Cesari's surface integral under orthogonal linear transformations.

1. NOTATION

Let E_n (n \geq 2) be the n-dimensional Euclidean space with an orientation.

If n is a positive integer (n \geq 2), then Ω_n^2 denotes the set of all ordered pairs $\xi=(\xi^1,\,\xi^2)$ of integers such that $1\leq \xi^1<\xi^2\leq n$. We shall assume that Ω_n^2 is lexiographically ordered.

By the mapping P_n^{ξ} ($\xi \in \Omega_n^2$) we mean the projection

$$P_n^{\xi}(x) = (x^{\xi^1}, x^{\xi^2})$$
 $(x = (x^1, x^2, \dots, x^n) \in E_n)$

of E_n onto the hyperplane E_n^{ξ} .

Let (T,A): x=T(w) $(w \in A)$ be any continuous mapping from an admissible set $A \subset E_2$ into E_n $(n \geq 2)$. Denote by (T^ξ,A) $(\xi \in \Omega_n^2)$ the $\binom{n}{2}$ plane mappings $(P_n^\xi T,A)$ from the admissible set $A \subset E_2$ into $E_2^\xi \subset E_n$. Let $\mathfrak S$ be any set of non-overlapping closed simple polygonal regions π in A. If π^* is the oriented boundary of π , then T^ξ maps π^* into an oriented closed curve C_π^ξ in E_2^ξ . For any point $x \in E_2^\xi$, let $O(x; C_\pi^\xi)$ be the topological index of x with respect to C_π^ξ . Then $O(x; C_\pi^\xi)$ is Borel measurable and integrable if (T,A) is cBV. We write

$$u(T^{\xi}, \pi) = (E_2^{\xi}) \int O(x; C_{\pi}^{\xi})$$
 and $u(T, \pi) = \left[\sum u^2(T^{\xi}, \pi) \right]^{1/2}$,

where Σ ranges over $\xi \in \Omega_n^2$. (See [1] for the definitions of admissible sets, topological index, and cBV.)

Received January 10, 1962.

2. PROOF OF THE LEMMA

 β is the $\binom{n}{2} \times \binom{n}{2}$ matrix $\beta = (b\xi \eta)$, where

$$b_{\xi\eta} = \begin{vmatrix} a_{ik} & a_{im} \\ a_{jk} & a_{jm} \end{vmatrix} \qquad (\xi = (i, j), \eta = (k, m) \in \Omega_n^2).$$

Since α is orthogonal,

$$\sum_{j=1}^{n} a_{ij}^{2} = 1 \quad \text{and} \quad \sum_{j=1}^{n} a_{ij} a_{kj} = 0 \quad (i \neq k).$$

We show that the row vectors of β form an orthogonal system of $1 \times {n \choose 2}$ vectors. Clearly,

$$1 = \left(\sum_{k=1}^{n} a_{ik}^{2}\right) \left(\sum_{m=1}^{n} a_{jm}^{2}\right) = \left(\sum_{m=1}^{n} a_{im} a_{jm}\right)^{2}$$

$$= \sum_{k < m} \left(a_{ik}^{2} a_{jm}^{2} + a_{im}^{2} a_{jk}^{2}\right) - 2 \sum_{k < m} \left(a_{ik} a_{jk} a_{jm} a_{im}\right)$$

$$= \sum_{k < m} \left(a_{ik}^{2} a_{jm}^{2} - 2a_{ik} a_{jk} a_{im} a_{jm} + a_{im}^{2} a_{jk}^{2}\right) = \sum_{n} b_{\xi\eta}^{2},$$

where $\xi = (i, j)$ and $\eta = (k, m)$. Hence the row vectors are normal. Since

$$\begin{split} 0 &= \left(\sum_{k=1}^{n} a_{ik} a_{sk}\right) \left(\sum_{m=1}^{n} a_{jm} a_{tm}\right) - \left(\sum_{k=1}^{n} a_{ik} a_{tk}\right) \left(\sum_{m=1}^{n} a_{jm} a_{sm}\right) \\ &= \sum_{k < m} (a_{ik} a_{sk} a_{jm} a_{tm} + a_{im} a_{sm} a_{jk} a_{tk}) - \sum_{k < m} (a_{ik} a_{tk} a_{jm} a_{sm} + a_{im} a_{jk} a_{sk}) \\ &= \sum_{\eta} (a_{ik} a_{jm} - a_{jk} a_{im}) (a_{sk} a_{tm} - a_{tk} a_{sm}) = \sum_{\eta} b_{\xi \eta} b_{\zeta \eta}, \end{split}$$

where $\xi = (i, j)$, $\zeta = (s, t)$, $\eta = (k, m)$, and $\xi \neq \zeta$, the row vectors are orthogonal. This concludes the proof of the lemma.

Let π^* be the oriented boundary of a closed simple polygonal region π in the plane E_2 , and let f be a continuous mapping of π^* into E_n such that the oriented curve (f, π^*) is rectifiable. If $\xi \in \Omega_n^2$, then $(P_n^{\xi}f, \pi^*)$ is also rectifiable, and by [1, (8.10.i)] the integral

$$u(P_n^{\xi}f) = u(P_n^{\xi}f, \pi) = (E_2^{\xi}) \int O(x; P_n^{\xi}f, \pi^*)$$

exists. Hence, corresponding to f, there exists an $\binom{n}{2} \times 1$ column vector

$$Z(f)=\operatorname{col}(\operatorname{u}(P_n^{\xi_1}f),\,\operatorname{u}(P_n^{\xi_2}f),\,\cdots,\,\operatorname{u}(P_n^{\xi_N}f))\qquad \left(\xi_1<\xi_2<\cdots<\xi_N\in\Omega_n^2,\,\,N=\left(\frac{n}{2}\right)\right)$$

whose Euclidean norm is $u(f) = u(f, \pi)$. The next theorem generalizes a theorem of L. Cesari [1 (8.11.i)].

THEOREM 1. Let (f, π^*) be as above, let $\alpha = (a_{ij})$ be an orthogonal linear transformation of E_n onto itself, and let $\beta = (b_{\xi\eta})$ be the $\binom{n}{2} \times \binom{n}{2}$ matrix defined in the lemma. Then $(\alpha f, \pi^*)$ is rectifiable, $Z(\alpha f) = \beta Z(f)$, and $u(f) = u(\alpha f)$.

Proof. Clearly, $(\alpha f, \pi^*)$ is rectifiable. Also, since β is orthogonal, $u(f) = u(\alpha f)$ if $Z(\alpha f) = \beta Z(f)$. Hence, we need only prove that $Z(\alpha f) = \beta Z(f)$.

Now f is a vector function; namely, $f = col(f^1, f^2, \dots, f^n)$. Let us denote αf by the vector function $\alpha f = col(F^1, F^2, \dots, F^n)$, where

$$F^{i} = \sum_{j=1}^{n} a_{ij} f^{j}$$
 (i = 1, 2, ..., n).

By [1, (8.10.i)], $2 u(P_n^{\xi} \alpha f) = \int F^i dF^j$, where the integral is taken over π^* and $\xi = (i, j) \in \Omega_n^2$. Expanding the integral, we see that

$$\begin{split} \int F^{i} dF^{j} &= \int \left(\sum_{k=1}^{n} a_{ik} f^{k} \right) \left(\sum_{m=1}^{n} a_{jm} df^{m} \right) \\ &= \sum_{m=1}^{n} a_{im} a_{jm} \int f^{m} df^{m} + \sum_{k < m} (a_{ik} a_{jm} - a_{im} a_{jk}) \int f^{k} df^{m} \\ &= 2 \sum_{n} b_{\xi \eta} u(P_{n}^{\eta} f) , \end{split}$$

where $\xi = (i, j), \eta = (k, m) \in \Omega_n^2$. Hence $Z(\alpha f) = \beta Z(f)$, and Theorem 1 is proved.

3. THE INVARIANCE OF THE CESARI SURFACE INTEGRAL

If (T,A) is a cBV mapping, then each of the plane mappings (T^{ξ},A) $(\xi \in \Omega_n^2)$ has finite variation (or area) $V(T^{\xi},A)$. Each of these variations is equal to the sum of a positive variation and a negative variation: $V(T^{\xi},A) = V^+(T^{\xi},A) + V^-(T^{\xi},A)$. The relative variation is defined as $\mathscr{V}(T^{\xi},A) = V^+(T^{\xi},A) - V^-(T^{\xi},A)$. Let $\mathscr{V}(T,A)$ be the column vector $\operatorname{col}(\mathscr{V}(T^{\xi_1},A),\mathscr{V}(T^{\xi_2},A),\cdots,\mathscr{V}(T^{\xi_N},A))$, where $\xi_1 < \xi_2 < \cdots < \xi_N \in \Omega_n^2$, $N = \binom{n}{2}$.

The following theorem is an application of Theorem 1. When n = 3, Theorem 2 reduces to [7, Theorem 3].

THEOREM 2. Let (T, A) be a cBV mapping, and let α be an orthogonal linear transformation of E_n onto itself. Then $\mathcal{V}(\alpha T, A) = \beta \mathcal{V}(T, A)$.

The proof of Theorem 2 is essentially the same as that given in [7, Section 3]. Two changes must be made. The reference to [1, page 104] is replaced by Theorem 1 above. The second change is the reference to the equality of the Lebesgue area L(T, A) and V(T, A). In this case, references are made to [2], [3, Theorem 7.14], [4], and [5].

Let $\mathfrak S$ be a finite system of nonoverlapping closed simple polygonal regions $\pi\subset A$, and let Σ_{π} denote a sum over $\pi\in \mathfrak S$. For the system $\mathfrak S$ and the cBV mapping (T, A), we define three nonnegative indices d, m, μ as follows:

 $d = \max[\dim T(\pi): \pi \in \mathfrak{S}];$

m = max[$|T^{\xi}(U_{\pi^*})|$: $\xi \in \Omega_n^2$], where the absolute value sign denotes two-dimensional Lebesgue measure and U ranges over $\pi \in \mathfrak{S}$;

 $\mu = \max[V(T, A) - \Sigma_{\pi} u(T, \pi), V(T^{\xi}, A) - \Sigma_{\pi} | u(T^{\xi}, \pi) | \quad (\xi \in \Omega_{n}^{2})].$

From [6, Theorem 3.i] we see that, for each cBV mapping (T, A), there exist systems \mathfrak{S} with arbitrarily small indices d, m, μ .

Let f(x, d) be a continuous function of (x, d), where x ranges over some set $K \subset E_n$ and d is any point of E_N $\left(N = \binom{n}{2}\right)$. We call f(x, d) a parametric integrand if f(x, d) is positively homogeneous in d; that is, if f(x, d) = tf(x, d) for all $x \in K$, $t \geq 0$, and $d \in E_N$. By $\|d\|$ we shall denote the Euclidean norm of d. Let d_π be the vector $(u(T^{\xi_1}, \pi), u(T^{\xi_2}, \pi), \cdots, u(T^{\xi_N}, \pi))$, where $\xi_1 < \xi_2 < \cdots < \xi_N \in \Omega_n^2$ and $N = \binom{n}{2}$. Then the following existence theorem for the Cesari surface integral is proved in the same manner as in [1, Appendix B].

THEOREM 3. Let (T,A) be a cBV mapping. Let f(x,d) be a parametric integrand defined on $K \subset E_N$ $\left(N = \binom{n}{2}\right)$ such that $T(A) \subset K$ and f(x,d) is bounded and uniformly continuous on $R = \left\{(x,d)\colon x \in T(A), \|d\| = 1\right\}$. Then the limit $I(T,A,f) = \lim \Sigma_{\pi} f(x_{\pi},d_{\pi})$ exists, where x_{π} is any point of $T(\pi)$, π is an element of \mathfrak{S} , and the limit is taken as the indices d,m,μ of \mathfrak{S} tend to zero.

The invariance of the Cesari surface integral can now be established in exactly the same manner as in [7, Theorem 4]. Theorem 2 replaces [7, Theorem 3] in Turner's proof.

THEOREM 4. Let (T, A) and f(x, d) be as above. Let α be an orthogonal linear transformation of E_n onto itself, and let β be the orthogonal linear transformation of E_N onto itself given in the lemma above. Let $g(x, d) = f(\alpha^{-1}x, \beta^{-1}d)$ on $(\alpha K) \times E_N$. Then $I(\alpha T, A, g)$ exists and equals I(T, A, f).

REFERENCES

- 1. L. Cesari, Surface areas, Princeton University Press, 1956.
- 2. L. Cesari and Ch. J. Neugebauer, On the coincidence of Geöcze and Lebesgue areas, Duke Math. J. 26 (1959), 147-154.

- 3. H. Federer, On Lebesgue area, Ann. of Math. (2) 61 (1955), 289-353.
- 4. W. H. Fleming, Nondegenerate surfaces and fine-cyclic surfaces, Duke Math. J. 26 (1959), 137-146.
- 5. ——, Nondegenerate surfaces of finite topological type, Trans. Amer. Math. Soc. 90 (1959), 323-335.
- 6. T. Nishiura, The Geöcze k-area and a cylindrical property, Proc. Amer. Math. Soc. 12 (1961), 795-800.
- 7. L. H. Turner, An invariant property of Cesari's surface integral, Proc. Amer. Math. Soc. 9 (1958), 920-925.

Wayne State University Detroit, Michigan