ON THE COEFFICIENTS OF CLOSE-TO-CONVEX FUNCTIONS

Ch. Pommerenke

1. Let K¢ (0 < a <1) be the class of all functions

(1) f(z) =z + 2 a,z"

n=2

analytic in |z| < 1 that satisfy f'(z) # 0 and

0, 5
‘g -é—g-arg[eig f'(reif)]do > - 7o
0

1
for all 6, < 6, and 0 < r < 1. The class K, is the class of close-to-convex func-
tions [4], and the classes Ky are subclasses of K,. Hence all functions f € Ky

(0 <a< 1) are univalent. The class K, consists of the convex functions. A func-
tion of the form (1) belongs to K, if and only if there exists a function

(2) g(z) = 22 byz",

n=1

starlike in |z| < 1, such that (see [4] and [12])

M. O. Reade [12] has proved that
(3 lan|_<_1—a+na.

For ¢ = 0 and o = 1, this reduces to the sharp inequalities

(4) lan] <1 (fe Ko
and [11]
(5) la,|<n  (feKp.

For n = 2, inequality (3) is best possible for every «. On the other hand, it will be
shown that

a, = O(n%) (n— ).

For 0 < a <1 and large n, this estimate is better than (3). For a function f of
boundary rotation not greater than 2z + ma (which implies f € K, ), Rényi has proved
that |a,| < n®.

Received January 30, 1962,

259
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More generally, we shall consider m-fold symmetric functions of class K, (by
definition, every function is 1-fold symmetric). We shall first derive estimates for
the length L(r) of the image curve of |z| = r, from which estimates of the coeffi-
cients will follow.

THEOREM 1. Let

o0
f(z) = 2+ 20 agg z0FH

k=1

be a function of class Ky (m=1, 2, ---; 0< a < 1), and let

27
L(r)=r SO |f'(rei®)jas O <r<1).

Ha+;2-1>1 then,as r — 1,

6 L@ < {ZZ'Z/me‘ (a +—§-;- 1) [F(%ﬁ*%) ]_2

+ o(1)}(1 _pmyl-a-2/m

and#a+£=1, then
m

&) L(r) < (22’2/m+ o(1))logy—-

Hence for o +%> l,as n — e,
(8 |an] < [Am(@) + o(1)]n®~2+2/™
with

Apm(a) < 21_2/mr(a +% - 1) [r(g_+ % ]_Z[e/(ma L. m)]a—2+2./m’

2
andfora+r—n-=1,

(9) lanl = O(n'1 log n).
Remarks. 1. It will be shown later that inequalities (6) and (7) are best possible.

The exponent of n in (8) is best possible, but certainly not the given upper bound for
An(a). In equation (9), the correct order of magnitude of an is probably O(n™?%).

2. For m = 1, inequalities (6) and (8) become

L{r) < {frr‘(a +1) [r(§+ 1) ]72 + 0(1)}(1 -r)-1

and
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(10) lap| <[A1(@) + o()In®,

with
Aj(a) S%P(a + 1) [r(g‘-+ 1) ]-z[e/(a + e+t

This gives A,(0) < e/2 and A,(1) < e®*/(27). Hence (10) is less sharf than (4) and (5).
For a = 1, we shall later find the best possible bound A, (1) = m!- /m[r'(z/m)]-l
(Theorem 3).

3. It is not difficult to show that under the assumptions of Theorem 1

(11) M(r) = max |f(z)| = O((1 - r)1-2-2/m)

Z |=r

if a + —3—1 > 1. Since f(z) is univalent, we could then appeal to the following general

result: If f(z) is univalent and if g8 > l, then

(12) M(r) = O((1 - r)P) = a, = o@P-1),

[3, p. 46]. Thus (11) implies that a, = O(®*~2+2/m) it o 4+ -E—l> 523- But this proof
breaks down for g—z o+ % > 1. Indeed, J. E. Littlewood [6] has shown that there

exist a positive o, an m,, and a bounded m,-fold symmetric function whose coeffi-
cients satisfy |a,|> n® for infinitely many n. Hence (12) does not hold for small 8,
and (8) is not trivial. (If f(z) is starlike, then (12) holds for all 8 > 0 [10]. It is an
interesting question whether this is also true for all close-to-convex functions.)

In Theorem 1 we considered the case a + % > 1. The case a + % <1 is en-

tirely different if @ > 0. Instead of (8) we only have a, = o(n-1), and this inequality
cannot be improved.

THEOREM 2. Let

o
£(z) = z+ 20 agy zoKt
k=1

be a function of class K, (m= 3,4, «; 0<a <1), and let a + % < 1. Then f'(z)
belongs to the Hardy class H, Sfor y <1/ (a + 'r%) . Hence {(z) is continuous in
|z| < 1, maps ]z| < 1 onto a domain with rectifiable boundary, and satisfies

(13) a,=o(n1).

If also 1 <y < 2, then

(14) 27 02772 |a,l¥ < .

n=1
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2. To prove our first two theorems, we need two lemmas.

LEMMA 1. Let g(z) = b,z + --- be starlike in |z| < 1 and m-fold symmetric
(m=1,2, ). Then for every > 0

21 2m
(15) I'_)" \S‘O Ig(reia)lhdes So ‘]_ - rm eit'-Zdet.

Proof. Golusin [2] has proved that
(16) EE) by (1 - 2)2/m,

where —< denotes subordination [7, p. 163]. Since z-lg(z) =by + by 2 + +++, a
slight generalization [9, Hilfssatz 5] of a theorem of Littlewood [7, p. 165] on sub-
ordination shows that (16) implies (15).

LEMMA 2. As p — 1,

. '2->\+1I‘()t - 1) [P(A/Z)]_Z-(—]-——}-)TT for A > 1,
1 tl— ) - p)r-
% J, |1 - peit|-rat ~
-1
7~ 1o for A=1.
€1 - o
For A< 1, the integral vemains bounded in 0 < p < 1.
Proof. Let
2w 2w
_1 itj=A g _ 1 ity~-A/2)2
®(p) = 5 o |1 - pe dt = 5= . |1 - pe™) |“at
(17)
b 2
AM2+n-1
B (V1)
n=0
Also, let
©0
¥(p) =————12A—1= 2 (?“’ n- 2) p2n  for A> 1,
(1 - p“"*" n=0 n
(18)
X .2n
¥(p) = log 12=E—p—— for A =1.

1-p 1 n

These functions have positive even-numbered coefficients, and the series diverge
for p=1. Hence [8, vol. I, p. 14], for A > 1,

lim ®(p)/%(p) = lim (M2¥ - 1)2 (**n- 2)—1 -ro- 1 [r(3) ]_2

p— 1 n—: oo
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where we have used the relation
. y +n- 1 ~ __.1— 7"‘1 -—_
a B B e

(valid for v > 0). For A =1 we find that

(") -

lim ®(p)/¥(p) = lim n —.

p—)l n—» oo

The first part of the lemma now follows from (17) and (18). The statement about the
case A< 1 follows at once from (17) and (19).

Proof of Theorems 1 and 2. a) An inspection of Kaplan’s proof [4, Theorem 2]
shows that we can choose the starlike function (2) to be m-fold symmetric. Also,
we may assume that |b1| = 1. Then

(20) F(z) = %'((ZZ_)) _By 4 ez e

Since Iarg F(z)| < g-a, we obtain
éB 4 e iBz\”
P )

with 8 = a~'arg b,. Because F(z) has the form (20), the version of Littlewood’s
theorem mentioned in the proof of lemma 1, shows that

2m . 2| LiB , o-if it
(21) S | F(rei%)|*do < S [e rerrie
0 — Jo 1 - rme11:

aA
dt

for A > 0.
b) Let y > 1. We apply Holder’s inequality with p= 1 + -‘122 and q=1+ &%

(with the usual interpretation if p=1 and q = «). We find that

2T

SO

_ 2w
|f'(rele)| Ydo = SO | r-lg(reig) P’ l F(reie) |Yd9

e 1/ 2 1/
S(SO |r'1g(rei9>|”f’d9) p(SO IF(reiB)P’qde) :

Because of Lemma 1 and (21), this is not greater than
2 ) 1 2 . 1/9
(S |1 - ™ eit]-2p/m dt) /» (20‘?"1S |1 - r™e't 'O"’th) :
0 0

Since 2yp/m = ayq =y ( o+ %) , it follows that
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\ 2m . 2T )

(22) § | t(reif) | dg < 207 S |1 - rmeit]-v(@+2/m) gt
0 - 0

c) Let first @ + 2/m > 1. We take ¥ = 1. Then (6) and (7) follow from (22) and
Lemma 2 (with A = a@ + 2/m). To prove the estimates for the coefficients, we use
the easily established inequality i

In the case o + 2/m > 1, we take r = (n/(n + £)) l/m, where £ = m(ae + 2/m - 1) > 0.
Then, as n — o,

1 -
nr? (1 - r;n) £/m”

() () 7 em b/,

=R

Therefore (8) follows from (6). In the case a@ + 2/m = 1, we take r, =1 - 1/n and
apply (7). This completes the proof of Theorem 1.

d) Let @ + % <1. Hy< 1/(a + %) then (22) and Lemma 2 show that

27 .
S | £1(rei?) |7 ao
0

remains bounded in 0 < r < 1. Hence f'(z) belongs to the Hardy class H,. If
1< y<L2, then

o o]

£'(z) = 22 na, z%! € H,

n=1
implies
[-e]
2 (n]ay|)Yn? 2 < w.
n=1

{15, vol. II, p. 110]. The other assertions of Theorem 2 follow from the fact that
f' € H, and from well-known properties of this class [15, Vol. I, p. 285].

3. We shall now study the question how far Theorems 1 and 2 can be improved.
a) Let @ + 2/m > 1. The function

23) | f(z) = j:(l FETYE (1 - gy @-2/m g,

is m-fold symmetric and belongs to K, (with g(z) = z(1 - z™)-2/m and
F(z) = (1 + 2% (1 - 2™)-%), It is easy to show that
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27 ll + rmeimf |0! SZTT o

L(r)=r 50 dt

|1 - rmeim9|a+2/m 0 |1- I,mei'c|oz+2./m

as r — 1. Hence Lemma 2 shows that equality holds in (6) or (7) for the function
(23). Also, it can be shown that the coefficients of (23) satisfy

-1
a, ~ 2% ml-@-2/m [1" (a +%) ] n®-2+2/m (n=1(mod m), n — ).

Hence the exponent of n in (8) cannot be replaced by a smaller one.

As an example, take a = 1 m = 1. Then the function (23) satisfies

2’
95/23-1,-1/2 /1 (25/23-15-1/2 1 064),

whereas (8) gives

gl/23/2g1/2

[ (1”4)]

la, Vn + o(vn) < 1.316 Vn

for large n.

b) Let @ > 0, @ + 2/m < 1. We shall prove that the estimate a, = o(n~!) cannot
be improved. Let {n,} be any sequence with 1, > 0 and nny, — 0. We choose a

subsequence {nnk} with n; =1 (mod m) and ny, > 1 such that

LT
(24) El 1y 7y < sin 7@ .

Then the function

f(z) = z + Z) My 2 Pk

k=1

is m-fold symmetric and satisfies

| £1(z) - 1|< E Dk Ty < smga
k=1

because of (24). Hence zf'(z)/z = F(z) with |arg F z)| <3 a so that f € K,. Since

(14) implies that a, = o(nz/ Y=2) it also follows that (14) does not always hold for
Y > 2.

4. If f € K,, that is, if f(z) is convex, and if m > 2, then the estimate a, = o(n 1)
is no longer best possible. This follows from a theorem of Waadeland [14], who
proved that every starlike m-fold symmetric function
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o0
g(z) = 2+ 20 by z™EHL
k=1
satisfies
2/m+k-1
(25) bl < (1)

Since g(z) = zf'(z) is starlike if f(z) is convex, it follows from (25) that

(2/m+k—1) kz/m_z

1
(26) ‘amk"'ll <mEr1 mk mk + 1 “"mr2/m)
for every m-fold symmetric convex function. For o + 2/m<1, there is thus a
surprising discontinuity between the case @ > 0, where only a, = o(n” 1y holds, and
the case a = 0, where (26) holds.

We can easily generalize Waadeland’s inequality (25) to obtain the sharp bounds
for the coefficients of f € K,.

THEOREM 3. Let £(z) = z + --- be close-to-convex and m-fold symmeltric in
|z| < 1. Then

2/m + k -1 2/m-1
27 |amie | < ( ) 1"(2/m)k /m-1,
This inequality is best possible.
Proof. We may assume that F(z) = zf'(z)/g(z) with
g(z) = 2 by 275, F@) = 2 e 7Pk
k=0 k=0

and that |b,] =1 and |co| = 1. Then we find

k
Since |co| =1 and % F(z) > 0, it follows that |c,,,| < 2 for v > 1, hence that

k-1
(28) (mk + 1) {2, 4] <2 2 1bmj+1] + 1Pl -
j=0

From (25) we obtain
gl 2/ j -1 2/m+k-1 2/m+ k
m+ 3 - m+ K - _ m +
(mk+1)|amk+1|§2j§)( ]. )+( I )-(nk+1)(k+1 )

‘For the starlike function (z) = z(1 - z™) 2/ ™ we have equality in (27).
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5. We can introduce classes of mappings of |z| > 1 onto domains containing o
that are analogous to the classes Ky. Let K3 denote the class of all functions

[~ e}
f(z) =z + 2o a,z ",
n=0

analytic in 1 < |z| < o, for which there exists a function g(z) = bz + by + ---, star-
like in |z|> 1, such that

zf'(z)
g(z)

It is not difficult to show that the functions in K need not be univalent if a > 0.
The class K& is again the class of convex functions (hence f € Kf,", is univalent), and
K’l" is the class of functions close-to-convex in |z| > 1, introduced by Libera and
Robertson [5] and also by the author [9]. It is known that

(29) | arg | < %a .

(30) a, =0(n~?% (f e Ky

(this follows from a result of Clunie [1] and the fact that zf'(z) is starlike if f(z) is
convex), and that

an=0m-Y) (feKY

([9, Satz 3]; if f(z) is univalent, the proposition also follows from [5]).

THEOREM 4. Let f€ K} and 0< a < 1. Then £'(¢-!) belongs to the Hardy
class Hy, if v < 1/a. Hence f(z) is continuous on |z| = 1, maps |z| > 1 onito a
domain with vectifiable boundary, and satisfies
(31) a,= o(n-Y).

df also 1 <y < 2, then
2202772 |a,|? <.
1
Proof. Let F(£) = £71£'(&Y)/g(€™Y) (| €| < 1). Then, for p < 1,

2w . 2m i i
{ e teinlrat - p¥ { IR e g e[ at.
o 0

We may assume that |b| =1, |F(0)| = 1. Since g(z) is univalent in |z| > 1, it fol-
lows that |g(p-!e-it)| < p-1 + 2+ p [8, Vol. I, p. 25]. Using (29), we find that

S

0

o
(1+ p)*?

|1 B pe-itla'y

2T
|f'(p”1 e‘lt)l'ydts pMp=1 + 2+ p)Y S dt.
0

Since ay < 1, Lemma 2 shows that this expression remains bounded as p — 1, and
Theorem 4 follows as in the proof of Theorem 2.
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We shall show that (31) is best possible, even in the class of univalent functions
in K} (0<a <1). Given {n,} with nn, — 0, we again choose {n_} so that

< W
(32) = nknnkf_ sin 5 < 1.

Then the function
o0
f(z)=2z+ 2 n._ =
_7 Dk
k=1

belongs to KE . From (32) it follows that f(z) is starlike and univalent [9, Hilfssatz
4]. Again we notice the discontinuity between the case o = 0, where (30) holds, and
the case 0 < a@ < 1, where only (31) holds.
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