THE TAYLOR COEFFICIENTS OF INNER FUNCTIONS
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INTRODUCTION

The object of the present paper is to study bounds on the Taylor coefficients of a
funct1on f(z) that is regular and bounded by 1 in |z| < 1 and has boundary values
f(el ) of modulus 1 for almost all 8. We call such a function an inner function
(terminology introduced by Beurling [1]). Inner functions play an important role in
the study of functions of class Hp (see for example Privalov [6, p. 53], Zygmund [9,
Vol. I, p. 271]), in certain approx1mat10n questions [1], and in the study of the in-
variant subspaces of the “shift operator” in {, [1]. It is known [6] that the most
general inner function is the product of a Blaschke product and a function of the

form
2 z+e
exp ‘S‘ d (t)
Jo z - eit

where p(t) is a positive measure singular with respect to Lebesgue measure. The
set of Taylor coefficients of an inner function can also be described, without refer-
ence to analytic functions, as a solution of the infinite system of quadratic equations

o0
|a'n|2 =1
n=0

oo
2iaga g =0 (k=1,2, ).
n=0

Qualitatively, our main results are these: the coefficients of an inner function that
is not a finite Blaschke product cannot be o(1/n), although they can be O(1/n); and if
the function does not vanish in lzl < 1, they are sometimes O(n~%"%) and never
o(n~¥14),

1. COEFFICIENTS OF INNER FUNCTIONS
THEOREM 1. Let {(z) = Z;;Oan z" be an inner function, and denote by A, the
infinite matrix
laal  lan+1] |ansz| -
lant1] |an+2| |antal -
lan+2| |an+s]| |ansal -
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If for some n> 0 the quadratic form with matvix Ay is bounded, and its bound is
less than 1, then {(z) is a rational function (finite Blaschke product). (By a some-
what more delicate argument, which we shall not give here, the conclusion may be
shown to hold even when the bound equals 1, under the assumption that f is a
Blaschke product.)

Before proceeding to the proof, we note two cases in which the hypothesis con-
cerning A, is satisfied.

(i) Let |ap|< Cm+ 1)7! + b,, where C < 1/7 and by > 0, Zby < . Indeed, in
in this case the form with matrix A, is majorized by the form with matrix
CH, + B, where H = [|[(m+i+j-1)1| (4, j=1, 2, -) is a section of the Hilbert
matrix and has bound at most 7 (it is easy to show that the bound is equal to #) and
where B, = || bn+it+j-2 " By a theorem of Schur [2, p. 198], B, has a bound not ex-
ceeding its largest row sum; for large n this is arbitrarily small, and in particular
less than 1 - Cw. For such n, A, has norm less than 1. We see in particular that
an inner function for which a, = o(1/n) (and even an inner function for which
lim sup nlanl < 1/7) must be a finite Blaschke product.

(ii) Let =7 nlanl2 < «, Here the sum of the squares of all the entries of the ma-
trix A, is arbitrarily small for large n. As is well known, the square root of the
sum (Hilbert-Schmidt norm) is an upper found for the form with matrix A,. We thus
see that an inner function with finite Dirichlet integral is a finite Blaschke product;
that is, a nonrational inner function maps |z|< 1 onto a Riemann surface of infinite
area.

Proof of Theorem 1. Suppose f(z) is not a finite Blaschke product. Then
f(z,) — 0 for some sequence {z,} (|zn| — 1). For, in the contrary case,
|£(z)] >6 > 0 when |z|> r,. This implies f(z) has at most finitely many zeros
in |z| < 1. Let B(z) denote the Blaschke product with these zeros. Then
F(z) = B(z)/f(z) is regular and bounded in |z | <1, and |F(e19) | =1 a.e., Hence
|F(z)| <1 in |z| < 1. In like manner F(z)-! is regular and bounded by 1 in |z|< 1.
Hence F is a constant, a contradiction,

Let now g(z) be any function of class H, (bounded analytic functions, with the
sup norm). Then || z? - 1(2z) g(z) ||‘,o = 1. Thus, the distance (based on the norm of
ess sup on |z|=1) from einf f(eif) to the set of boundary functions of class He is
1. By the duality theorems of Havinson [3] and of Rogosinski and Shapiro [7], there
exists for every &€> 0 a function h(z) = hg(z) of class H, satisfying

27
(1) Inll; = 1, [zlﬂj ei(nt1)0 f(eif) n(eif) dJ >1-¢.
o
Now (see Zygmund [9, Vol. I, p. 275]) we may write
h(z) = Z{bnzn,
n=0
where

n

[~ o] [~ ]
b, = 27 Pr9n _ks 2 lpn|2= 2 lqnl2= 1.
k=0 n=0 n=0
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Further, the left side of (1) is formally equal to

> o]
|bg @nsy + bransz + | = Z Antk+l 22 Pigqj| -
k=0 it+j=k

The last member is a bilinear expression in the p; and qj, and the absolute values
of the coefficients are precisely the elements of the matrix An+31. Hence the last
series is absolutely convergent; this justifies the formal manipulation, and the sum
cannot exceed the bound of A, ). Hence this bound exceeds 1 - g. Since ¢ is arbi-
trary, the bound is at least 1. This is a contradiction, and the theorem is proved.

THEOREM 2. There exists an infinite Blaschke product with Taylor coefficients
O(1/n).

LEMMA 1. Let u(t) be nonnegative and of class C! on 0 < t < «, and let
1img o tu(t) = limg o tu'(t) = 0. Then

27 u(k) < V() +S°° u(t) dt,

k=1 o

wheve V denotes total variation.

Proof. Clearly,

5 k) = ” t)dt] = - oQt '(t) dt
Do = | udd = - §

o (o]

= Sw(t - [t]) u'(t) at - Soo tu'(t) dt.

The first of the integrals in the last member is bounded by V(u), the second equals

o0
S u(t) dt, and the lemma is proved.
o

LEMMA 2. Let f(z) denote a Blaschke product whose zevos zn satisfy

1- Izn+1|§ a(l - Iznl)

b .
Sfor some a (0< a<1). Then |f'(zn)| > ————I, where b is a positive constant.
1 - !Zn

We refer to Newman [5] for the simple proof.

Proof of Theorem 2. Let £(z) be the Blaschke product with zeros at z =1 - e -k
k=1, 2, ). Then

{ (2T _
an = 2_7750 f(eif) e-inf gg ,

Hence
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1 zn-1

T Em ), T

and simple considerations concerning the boundary behavior of f(z) justify computa-
tion of this integral by residues. We get

whence, by Lemma 2,
1 D) n
lan+1|S5k_1 (1 - zy) 2z,

and it suffices to show that Z;~; u(k) < C/n, where u(t) = e~t(1 - e~H™. Now

V@) =2 maxu = 2 (1— 1 )n=0(1/n),

n+1 n+1
and
[+e)
1
5 u() dt = —=.

o

The theorem is proved.

Remark. It is clear from the construction that a, = O(1/n) for any Blaschke
product whose zeros satisfy the hypothesis of Lemma 2. We have not been able to
determine the lower bound of numbers C such that there exists an infinite Blaschke
product with lim sup n ]anl = C. .

THEOREM 3. Let f(z) = 23 a,z™ be an inner function for which z = 1 is a vregu-
lay point, If, for some K, Akan = o(1/n), then f is a finite Blaschke product (here
A denotes the difference operator: Aa,= a, - antyil.

Proof. The proof is similar to that of Theorem 1. If f is not a finite Blaschke
product, then, for any g in H,,

22 (1 - 2)k - £(z) g(2) [l > 6,

where 0 is a positive number depending only on k and f. This is so because £(z)
tends to zero along a sequence of points that converge to a point z, (zo # 1, |zol = 1).
We now proceed as in the proof of Theorem 1, except that we replace the numbers an
by their k-th differences.

Remark. By the same method it becomes clear that any moving average of the
coefficients of a nonrational inner function f can never be o(1/n), if we postulate that
the inner function be small near some boundary point where the “characteristic func-
tion” of the moving average is not. For example, if a, - a2 = 0o(1/n), the only
possible singularities of £ on |z|=1 are at +1.
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s 2. COEFFICIENTS OF A SPECIAL FUNCTION

In this section we obtain estimates for the Taylor coefficients of a special inner
function that will be needed in the sequel. Let

> e}
I.(z) = exp(az+i) = 2, cpz™  (a>0).
Z - n=0

The asymptotic behaviour of the c,, may be deduced from known results concerning
confluent hypergeometric functions. (This was also noted by G. T. Cargo and by A.
L. Shields).

We have the known identity [8, p. 100]

-bz
1-2

exp = 2 Ll(l—l)(b)zn,
n=0

where the Lgl'l) denote generalized Laguerre polynomials. For b = 2a, this gives

c, =e2L;! (2a).

Applying a formula of Fejér (see [8, p. 196]), we obtain

Cp = /2 (2a) /47374 o5 (2(2an)1/2 + %) + O(n"5/4) .

Thus, the ¢, behave qualitatively like n'3/ 4 cos(n1 / 2), From (1) we deduce readily
@) Z 2>BN1/2
nzN

where B is a positive constant depending only on a.

3. FUNCTIONS WITHOUT ZEROS

THEOREM 4. If {(z) = S neo 8y 2" iS a nonconstant inney function that does not
vanish in |z|< 1, then

> agf > BNY?,
n>N

wher; B is a positive constant depending only on a,. In particular, a, cannot be
o(n~%1),

Proof. We may assume f£(0) > 0. Let g(z) = log f(z), where that branch of the
logarithm is chosen for which g(0) is real. Let

_ g(z) - g(0)
(3 @@ = ST e
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Then w(z) is regular in |z]|< 1 and bounded by 1, and w(0) = 0. Solving (3), we ob-
tain

glz) = g(0) T2
Let a = -log a, > 0; then
(4) f(z) = Ia[w(z)]’

where

B z+1)
I,(z) = exp (az_ i) -

Thus, £(z) is subordinate to 1,(z) in |z] < 1 (Littlewood [4, p. 163]) and hence [4,
Theorem 215]

n n
Elailz_{ch (n> 1),
1 1

where the c¢; are the Taylor coefficients of Ia(z). Since a,=cg, and

o0

o0
2 2 _
2 lail = Zci =1,
0 0
we conclude that

Z) EN %> E c
n+1l
The theorem now follows from inequality (2).

With the use of Theorem 214 of [4], we could also exploit the subordination rela-
tion (4) to obtain information about the zeros of f(z) - A, where |r|< 1.

REFERENCES

1. A. Beurling, On fwo problems concerning linear tvansformations in Hilbert space,
Acta. Math. 81 (1949), 239-255.

2. G. H. Hardy, J. E. Littlewood, and G. Pdlya, Irequalities, Cambridge University
Press, 1934.

3. S. Ya. Havinson, On some extremal problems of the theory of analytic functions,
Moskov. Gos. Univ. U¢. Zap. 148 (1951), 133-143.

4. J. E. Littlewood, Lectmfes on the theory of functions, Oxford University Press,
1944.

5. D. J. Newman, Inferpolation in H_, Trans. Amer. Math. Soc. 92 (1959), 501-507.

oo?



THE TAYLOR COEFFICIENTS OF INNER FUNCTIONS 255
6. 1. I. Priwalow, Randeigenschaften analytischer Funktionen, (authorized German
translation), VEB Deutscher Verlag der Wissenschaften, Berlin, 1956.

7. W. W. Rogosinski and H. S. Shapiro, On certain extremum problems for analytic
Sfunctions, Acta Math. 90 (1953), 287-318.

8. G. Szegd, Orthogonal polynomials, Amer. Math. Soc. Colloquium Publications 23,
Revised Edition, New York, 1959.

9. A. Zygmund, Trigorometrical series, Second Edition, Cambridge University
Press, 1959.

New York University






