ISOMETRIC IMMERSION OF FLAT RIEMANNIAN MANIFOLDS IN EUCLIDEAN SPACE

Barrett O'Neill

1. INTRODUCTION

Let $\psi\colon M\to \overline{M}$ be an isometric immersion of Riemannian manifolds. If z is a tangent vector of \overline{M} , orthogonal to $d\psi(M_m)$, there is a classically defined second fundamental form operator S_z on the tangent space M_m . Following [1], we express the same information about ψ by associating with each vector $x\in M_m$ a linear operator T_x on $\overline{M}_{\psi(m)}$, called the difference operator of x. The function x is characterized by the fact that each x is skew-symmetric and x is equivalent to the relation x is a same meaning as above. The symmetry of x is equivalent to the relation x is equivalent to the relation x is equivalent to the relation x consisting of all vectors x such that x is an equivalent x is equivalent to x is equivalent to the relation x consisting of all vectors x such that x is equivalent to x is equivalent to x in x

We shall deal with the immersion $\psi\colon M^d\to R^{d+k}$ of a flat d-dimensional Riemannian manifold in (d+k)-dimensional Euclidean space. In this case the proof of Theorem 2 of [2] implies that for each point $m\in M$ there exists a vector $x\in \mathcal{N}^\perp(m)$ such that T_x is one-to-one on $d\psi(\mathcal{N}^\perp(m))$. Since the latter subspace has dimension $d-\nu(m)$, it follows that $k\geq d-\nu(m)$, so that the minimum relative nullity n of ψ is at least d-k. We shall prove

THEOREM 1. Let $\psi \colon M^d \to R^{d+k}$ be an isometric immersion of a complete flat Riemannian manifold in Euclidean space. Then M^d contains a totally geodesic submanifold that is carried isometrically onto an entire n-dimensional plane in R^{d+k} , where n is the minimum relative nullity of ψ .

The theorem is trivially true if n is zero, but since $n \ge d$ - k we can force n to be positive:

COROLLARY 1. If the hypotheses of Theorem 1 are satisfied and k < d, then the image of ψ contains a (d-k)-dimensional plane in R^{d+k} .

This implies the fundamental result of Tompkins [4] that a compact flat M^d cannot be isometrically immersed in \mathbb{R}^{2d-1} . More generally, we have

COROLLARY 2. A complete flat Riemannian manifold M^d does not have a bounded isometric immersion in R^{2d-1} .

As with Tompkins' theorem, restrictions on dimension cannot here be weakened, for \mathbb{R}^d has bounded imbeddings in \mathbb{R}^{2d} , indeed, imbeddings whose images are as small as one likes: imbed \mathbb{R}^1 as, say, a small spiral in \mathbb{R}^2 , then take the d-fold Riemannian product.

For k=1, that is, for the case of a hypersurface, Hartman and Nirenberg have proved (Theorem III of [3]) that an isometric immersion of a complete flat M^d in R^{d+1} is cylindrical. In Theorem 2 we give a sufficient condition for such immersions to be cylindrical when k>1.

Received September 14, 1961.

2. PROOF OF THEOREM 1

We deal throughout with a fixed immersion $\psi\colon M^d\to R^{d+k}$, which, when it seems safe to do so, we omit from the notation. For example, we simply write the abovementioned symmetry property of the difference operators as $T_x(y)=T_y(x)$, where $x,y\in M_m$. Let G be the set of points of M on which the relative nullity takes its minimum value n. Then G is an open set of M, and $\mathscr N$ is a differentiable field of n-planes on G. To prove theorem 1, we shall show that $\mathscr N$ is completely integrable and the leaves of $\mathscr N$ are complete and totally geodesic, relative to ψ , in R^{d+k} . A differentiable field e of orthonormal (d+k)-frames defined on an open set of G is adapted to ψ if, for each point m in its domain, e_1, \cdots, e_n provides a basis for $d\psi(\mathscr N(m))$, e_{n+1}, \cdots , e_d a basis for $d\psi(\mathscr N^+(m))$, and e_{d+1}, \cdots , e_{d+k} a basis for $(d\psi(M_m))^+$ in $(R^{d+k})_{\psi(m)}$. We adopt the index conventions

$$1 \leq a, \ b \leq n; \quad n+1 \leq r, \ s \leq d; \quad 1 \leq i, \ j \leq d; \quad d+1 \leq \alpha, \ \beta \leq d+k \,.$$

Let us exclude the trivial cases n=0, n=d of Theorem 1; then none of the categories above is empty. A frame field such as e is a differentiable mapping into the frame bundle F of R^{d+k} . Pulling the Euclidean connection form $\bar{\phi}$ of F down to G by way of e, we get

$$\phi_{ij} = \bar{\phi}_{ij} \circ \text{de}$$
 (connection forms of M),
$$\tau_{i\alpha} = \bar{\phi}_{i\alpha} \circ \text{de}$$
 (Codazzi forms),
$$\theta_{\alpha\beta} = \bar{\phi}_{\alpha\beta} \circ \text{de}$$
 (normal connection forms).

The second structural equation on F then yields the second structural, Codazzi, and Ricci (Koehne) equations for the frame field e. For the difference operators we have $T_{e_i}(e_j) = \sum \tau_{\alpha j}(e_i)e_{\alpha}$; hence the symmetry property of T is equivalent to $\tau_{\alpha j}(e_i) = \tau_{\alpha i}(e_j)$. Thus from the definition of $\mathscr N$ we derive

(1)
$$\tau_{\alpha a} = 0, \qquad \tau_{\alpha r}(e_a) = 0.$$

The forms $au_{ extsf{Qr}}$ describe $\mathscr N$ (on the domain of e) in the sense that

$$\mathcal{N}(\mathbf{m}) = \left\{ \mathbf{x} \in \mathbf{M}_{\mathbf{m}} \middle| \ \tau_{\alpha_{\mathbf{r}}}(\mathbf{x}) = 0 \right\}.$$

Thus the integrability of ${\mathscr N}$ follows, by the Frobenius theorem, from the Codazzi equations for $\tau_{{\bf r}\,\alpha}$, which reduce to

(2)
$$d\tau_{r\alpha} = -\sum \phi_{rs} \wedge \tau_{s\alpha} - \sum \tau_{r\beta} \wedge \theta_{\beta\alpha}.$$

To prove that the leaves of $\mathscr N$ are totally geodesic in R^{d+k} , it suffices, by the definition of $\mathscr N$, to prove they are totally geodesic in M. In fact, let α be a geodesic of a leaf L of $\mathscr N$. If L is totally geodesic in M, then α is also a geodesic of M, that is, it has acceleration $\alpha''=0$ when considered as a curve in M. But the velocity α' of α is always contained in $\mathscr N$, hence $T_{\alpha'}=0$. Thus the general formula

$$(\psi \circ \alpha)'' = \mathbf{T}_{\alpha'}(\mathrm{d}\psi(\alpha')) + \mathrm{d}\psi(\alpha'')$$

shows that $(\psi \circ \alpha)$ " = 0. We conclude that the immersion $\psi \mid L: L \to \mathbb{R}^{d+k}$ is totally geodesic, which means, in this case, that the image $\psi(L)$ is a portion of an n-dimensional plane in \mathbb{R}^{d+k} .

For an adapted frame field e, the restrictions of the forms ϕ_{ra} to a leaf L of $\mathcal N$ are the Codazzi forms (relative to e) for L as a submanifold of M. Thus we must show $\phi_{ra}(e_b) = 0$. The Codazzi equation for $\tau_{a\alpha}$ is

$$\mathrm{d}\tau_{\mathrm{a}\alpha} = -\sum \phi_{\mathrm{ai}} \wedge \tau_{\mathrm{i}\alpha} - \sum \tau_{\mathrm{a}\beta} \wedge \theta_{\beta\alpha} \,.$$

By (1) this reduces to

$$\sum \phi_{ar} \wedge \tau_{rQ} = 0.$$

By an earlier remark we can assume that e has been chosen so that at an arbitrary point m the operator T_{e_d} is one-to-one on $\mathscr{N}^{\perp}(m)$. Applying the 2-form of (3) to the vectors e_b , e_d at m, we get $\Sigma \phi_{ar}(e_b) \tau_{r\alpha}(e_d) = 0$. By the one-to-one property of T_{e_d} , the $(d-n) \times k$ matrix $(\tau_{r\alpha}(e_d))$ has rank d-n, and it follows that $\phi_{ar}(e_b) = 0$. It remains to prove

LEMMA 1. The leaves of \mathcal{N} are complete.

Let $\gamma\colon [0,\,\mathrm{c})\to \mathrm{L}$ be a geodesic ray in a leaf L of \mathscr{N} . It suffices to show that γ can be extended, as a geodesic of L , over the half-line $[0,\,\infty)$. Suppose this cannot be done; that is, suppose γ as given is maximal. Since M is complete, γ can be extended as a geodesic $\widetilde{\gamma}$ of M . Now, since L is totally geodesic in M , it follows that $\widetilde{\gamma}(\mathrm{c})$ is not in G . (If it were, $\widetilde{\gamma}$ would provide the required extension.) Again using the facts that L is totally geodesic in M (flat) and that $\mathrm{T}_{\gamma^1}=0$, we can choose the frame field e so that γ is an integral curve of e_1 and e is Euclidean parallel on γ . Furthermore, we can arrange for $\mathrm{T}_{\mathrm{e}_{\mathrm{d}}}$ to have rank d - n on $\mathrm{M}_{\gamma(0)}$. Note

that e, and thus the forms associated with it, are defined only inside the set G; however e_d can be extended by parallel translation along $\widetilde{\gamma}$ to the point $p=\widetilde{\gamma}(c)$. Let T be the operator T_{ed} at p. Since p is not in G, $\mathscr{N}(p)$ has dimension $\nu(p)>n$. But T is zero on $\mathscr{N}(p)$; hence rank T $\mid M_p < d$ - n. Our aim now is to show the impossibility of this drop in rank of T_{ed} along $\widetilde{\gamma}$. The contradiction will prove the lemma and thereby Theorem 1. To obtain it, we need some further lemmas.

LEMMA 2. The covariant derivative $e_1(T_{e_d}(e_r))$ of the vector field $T_{e_d}(e_r)$ on γ is $-\Sigma_s \phi_{s1}(e_r) T_{e_d}(e_s)$.

Proof. Since e is Euclidean parallel on γ ,

$$e_{1}(T_{e_{d}}(e_{r})) = \sum_{\alpha} e_{1}(\tau_{\alpha r}(e_{d})) e_{\alpha}$$
.

Now apply (2) to e_1 , e_d . The parallelism of e implies that the forms ϕ_{ij} , $\tau_{i\alpha}$, $\theta_{\alpha\beta}$ are all zero on $\gamma' = e_i$; hence we get $e_1(\tau_{r\alpha}(e_d)) = \tau_{r\alpha}([e_l, e_d])$. The first structural equation applied to e_l , e_d yields

$$[e_1, e_d] = -\sum_i \phi_{il}(e_d) e_i.$$

Hence

$$e_1(\tau_{\alpha r}(e_d)) = -\sum_s \phi_{s1}(e_d) \tau_{\alpha r}(e_s)$$
.

Now the left side of this equation is symmetric in r and d; reversal of r and d on the right side gives the coordinate form of the required result.

LEMMA 3. On
$$\gamma$$
, $\int_0^t \Sigma \phi_{r1}(e_r) \to +\infty$ as $t \to c$.

Proof. Let W be the function whose value at $t \in [0, c]$ is the multivector $T_{e_d}(e_{n+1}) \wedge \cdots \wedge T_{e_d}(e_d)$. Using the previous lemma, we find that for t < c, the covariant derivative of this function is $e_1(W) = -(\Sigma \phi_{r_1}(e_r))W$. Hence, for t < c,

$$W(t) = \left\{ \exp \left[- \int_0^t \sum \phi_{rl}(e_r) \right] \right\} W_t(0),$$

where $W_t(0)$ is the result of the parallel translation of W(0) along γ to $\gamma(t)$. But from before we know that T_{e_d} has rank strictly less than d - n on M_p $(p = \tilde{\gamma}(c))$. Hence W(c) = 0, and the result follows.

LEMMA 4. On
$$\gamma$$
, $e_1(\phi_{r1}(e_s)) = -\Sigma_q \phi_{r1}(e_q) \phi_{q1}(e_s)$.

Proof. Applying the second structural equation for the form ϕ_{rl} to the vectors e_1 and e_s along γ , and using $\phi_{ij}(e_1) = 0$, we get

$$e_1(\phi_{r1}(e_s)) = \phi_{r1}([e_1, e_s]) = -\sum_i \phi_{i1}(e_s) \phi_{r1}(e_i).$$

Since $\phi_{ra}(e_b) = 0$, the index i may here be replaced by q $(n + 1 \le q \le d)$.

We are now in a position to complete the proof of Lemma 1. If $t \in [0, c)$, let $P_{rs}(t)$ be the value of $\phi_{r1}(e_s)$ at $\gamma(t)$. Then $P = (P_{rs})$ is a differentiable $(d-n) \times (d-n)$ matrix-valued function on [0, c). Lemmas 3 and 4 may be written in the forms

(L3)
$$\int_0^t \text{trace } P \to +\infty \text{ as } t \to c, \text{ and }$$

(L4)
$$P' = -P^2$$
.

The differential equation L4 has the solution

(4)
$$P(t) = P(0) (I + t P(0))^{-1} \quad \text{for } t \in [0, c).$$

We show by induction on d - $n \ge 1$ that L3 and L4 are contradictory; this will complete the proof of Theorem I. The contradiction is obvious when d - n = 1, since

the relation $\int_0^t P \to +\infty$ as $t \to c$ is incompatible with $P' \le 0$. Suppose the contra-

diction holds for d - n < h, where h > 1. First consider the case where the h × h matrix P(0) is singular. We can assume that the first column of P(0) is 0. By (4) the same is true of all P(t). Then the matrix function $P = (P_{rs})$ $(n + 2 \le r, s \le d)$ still satisfies L3 and L4, and therefore we have a contradiction. Now suppose P(0) is nonsingular. From L4 it follows that the determinant \triangle of P satisfies the differential equation $\triangle' = -(\text{trace P})\triangle$. Thus L3 implies that $\triangle \to 0$ as $t \to c$. From (4) we get

$$\triangle(t) = \triangle(0) \left\{ \det \left(I + t P(0) \right) \right\}^{-1}.$$

But $\triangle(0) \neq 0$ and $\det(I + t P(0))$ is bounded on [0, c); hence \triangle can *not* approach 0 as $t \rightarrow c$.

I am indebted to E. Stiel and E. A. Coddington for decisive simplifications in the above argument.

3. CYLINDRICAL IMMERSIONS

We say that an isometric immersion $\psi \colon M^d \to R^{d+k}$ is n-cylindrical provided M and ψ can be expressed as Riemannian products $M^d = B^{d-n} \times R^n$ and $\psi = \overline{\psi} \times 1$, where $\overline{\psi}$ is an isometric immersion of B^{d-n} in R^{d+k-n} and 1 is the identity map of R^n .

THEOREM 2. Let M^d be a complete, flat Riemannian manifold. An isometric immersion $\psi\colon M^d\to R^{d+k}$ is n-cylindrical if

- (a) the relative nullity function ν has constant value n, and
- (b) the relative curvature of ψ is zero.

We explain the second condition: let N be the bundle of normal k-frames of M relative to ψ ; that is, let

$$N = \{(m, f) | m \in M, \text{ and } f \text{ is a } k\text{-frame of } R^{d+k} \text{ orthogonal to } d\psi(M_m)\}$$

with natural bundle-structure. The Euclidean connection of R^{d+k} induces a natural connection on N. It is the curvature form of this connection which we assume to be zero. In terms of the Codazzi forms $\tau_{i\alpha}$ of an adapted frame field e, this means $\Sigma \; \tau_{\alpha i} \wedge \tau_{i\beta} = 0$. In invariant terms, it says that the restriction of the operator $[T_x, \; T_y]$ to $(d\psi(M_m))^\perp$ is zero for all x, y \in M_m . (This is automatically true if x or y is in $\mathscr{N}(m)$.) Flatness of M is equivalent to $[T_x, \; T_y] \; | \; d\psi(M_m) = 0$. Thus, under condition (b), any two difference operators T_x and T_y are commutative on $(R^{d+k})_{\psi(m)}$.

Conditions (a) and (b) above are not necessary for an isometric immersion to be n-cylindrical. In the theorem of Hartman and Nirenberg (referred to in the Introduction) we have k = 1; hence (b) holds automatically and (a) can be dispensed with by the use of the special fact that disjoint d-planes in \mathbb{R}^{d+1} are parallel.

Proof of Theorem 2. Condition (a) implies that $\mathscr N$ is a differentiable field of n-planes on all of M. We know that ψ carries the leaves L of $\mathscr N$ isometrically onto n-planes in R^{d+k} . In the proof that ψ is n-cylindrical, the main point is to show that all these planes $\psi(L)$ are parallel in R^{d+k} . The relative position of the leaves in M can be measured as follows: fix an adapted frame field e on a neighborhood of m ϵ M, and let P_e be the linear operator on $\mathscr N^+(m)$ such that

$$P_{e_a}(e_s) = \sum_r \phi_{ra}(e_s) e_r.$$

Extending linearly, we get for each $x \in \mathcal{N}(m)$ a linear operator P_x on $\mathcal{N}^+(m)$. These operators are related to the difference operators by

LEMMA 5. If
$$x \in \mathcal{N}(m)$$
 and $y \in \mathcal{N}^{\perp}(m)$, then $T_{P_{\mathbf{Y}}(y)} = T_{y} \circ P_{x}$ on $\mathcal{N}^{\perp}(m)$.

Proof. We have

$$T_{e_r}(P_{e_a}(e_s)) = \sum_{\alpha,q} \phi_{qa}(e_s) \tau_{\alpha q}(e_r) e_{\alpha}$$
.

Equation (3) shows we can here interchange s and r, so that this vector equals $T_{e_s}(P_{e_s}(e_r))$. Hence for x, y as above and $z \in \mathcal{N}^+(m)$, we get

$$T_y(P_x(z)) = T_z(P_x(y)) = T_{P_x(y)}(z).$$

LEMMA 6. Each operator Px is symmetric.

Proof. Let $x \in \mathcal{N}(m)$, and choose $y \in \mathcal{N}^{\perp}(m)$ so that T_y is one-to-one on $\mathcal{N}^{\perp}(m)$. Let

$$A = d\psi(\mathcal{N}(m)) + T_y(d\psi(\mathcal{N}(m))) \subset (R^{d+k})_{\psi(m)}.$$

One can verify that the subspace A is invariant under both T_y and $T_{P_x(y)}$. Furthermore, the restriction $T_y|A$ is non-singular. Since ψ has relative curvature zero, the operators T_y and $T_{P_x(y)}$, hence also $(T_y|A)^{-1}$ and $T_{P_x(y)}|A$, commute—and are skew-symmetric. Thus $(T_y|A)^{-1} \circ (T_{P_x(y)}|A)$ is a symmetric operator which, by the preceding lemma, agrees with P_x on $\mathcal{N}^+(m)$.

Note that this lemma implies that \mathcal{N}^{\perp} is integrable. In fact, from the first structural equation, we get

$$[e_r, e_s] = \sum_i (\phi_{ri}(e_s) - \phi_{si}(e_r)) e_i.$$

So, since the matrix of P_{e_a} is symmetric, we get $[e_r, e_s] \in \mathcal{N}^\perp$, which implies integrability. For $x \in \mathcal{N}(m)$, P_x is actually a second fundamental form operator of the leaf K(m) of \mathcal{N}^\perp through m and is thus independent of the choice of frame field used in its definition.

LEMMA 7. $P_x = 0$ for all $x \in \mathcal{N}(m)$, $m \in M$.

Proof. If $x \in \mathcal{N}(m)$, let γ be the geodesic of L = L(m) with initial velocity x. We know that γ can be defined on the whole real line, and as before we can assume that e is Euclidean parallel along γ and that there $e_1 = \gamma'$. The matrix P(t) of P_{e_1} at $\gamma(t)$ is the matrix used in the proof of Lemma 1, hence it obeys the differential equation $P' = -P^2$. Since P_x is symmetric, we can assume P(0) is diagonal; but by (4) this implies that every P(t) is diagonal. Thus the differential equation reduces to $P'_{rr} = -(P_{rr})^2$. Since this holds on the entire real line, $P_{rr} = 0$, hence $P_x = 0$.

This lemma, together with the earlier result $\phi_{\rm ra}(e_{\rm b})=0$, implies $\phi_{\rm ra}=0$. It follows that both $\mathscr N$ and $\mathscr N^\perp$ are parallel on M. Since all difference operators are zero on $\mathscr N({\rm m})$, we conclude that ψ carries the leaves of $\mathscr N$ to parallel n-planes in ${\rm R}^{\rm d+k}$.

Fix a point $m_0 \in M$, and suppose ψ carries m_0 to the origin of R^{d+k} . Let K_0 and L_0 be the leaves of $\mathscr N$ and $\mathscr N^\perp$ through m_0 . Then let R^n be the vector subspace $\psi(L_0)$ of R^{d+k} , with R^{d+k-n} the orthogonal vector subspace.

LEMMA 8. If L is a leaf of \mathcal{N} , and K is a leaf of \mathcal{N}^{\perp} , then $K \cap L$ contains exactly one point.

Proof. Since all leaves of \mathscr{N} are carried to n-planes parallel to $\psi(L)$, it follows that $\psi(K)$ is contained in some (d+k-n)-plane orthogonal to $\psi(L)$. Thus if p, $q \in K \cap L$, then $\psi(p) = \psi(q)$. But ψ is one-to-one on L, hence p = q. To show that $K \cap L$ is non-empty, let $\pi \colon R^d \to M$ be the simply-connected Riemannian covering of M, and let \mathscr{P} and \mathscr{P}^\perp be the plane-fields corresponding under $d\pi$ to

 \mathcal{N} and \mathcal{N}^{\perp} . Since \mathscr{P} and \mathscr{P}^{\perp} are parallel, the deRham decomposition theorem applies; in particular, each leaf of \mathscr{P} meets each leaf of \mathscr{P}^{\perp} . These leaves are mapped onto corresponding leaves below, by π . Hence the result follows.

We can easily deduce from this lemma that \mathscr{N} and \mathscr{N}^{\perp} give a product structure to M. In fact, the function $\mu \colon M \to K_0 \times L_0$ that sends m to

$$(m_1, m_2) = (L(m) \cap K_0, K(m) \cap L_0)$$

is an isometry.

The proof of Theorem 2 will now be completed by showing that

$$\psi = (\psi \mid K_0 \times \psi \mid L_0) \circ \mu$$
.

With the notation above, this may be rewritten as $\psi(m) = \psi(m_1) + \psi(m_2)$, for all $m \in M$. If $m \in M$, let $\sigma: [0, 1] \to K_0$ be a curve from the fixed point m_0 to m_1 . Because of the product structure on M, there exists a parallel vector field X of M, defined on σ , such that $\exp(X(0)) = m_2$, $\exp(X(1)) = m$. (Here exp is the map whose value on a tangent vector x is the point attained in unit time by the geodesic with initial velocity x.) The image $d\psi(X)$ of X is Euclidean parallel, since each vector of the field X is contained in a plane of \mathscr{N} . If $x \in (R^{d+k})_p$, let $\langle x \rangle$ be the canonically corresponding element of R^{d+k} , that is, let $\langle x \rangle = q - p$, where $q = \exp(x)$. Using the facts above, we get

$$\psi(m_2) = \psi(\exp(X(0))) = \exp(d\psi(X(0))) = \langle d\psi(X(0)) \rangle = \langle d\psi(X(1)) \rangle$$
$$= \psi(\exp(X(1))) - \psi(\sigma(1)) = \psi(m) - \psi(m_1).$$

REFERENCES

- 1. W. Ambrose, The Cartan structural equations in classical Riemannian geometry, J. Indian Math. Soc. 24 (1960), 23-76.
- 2. S. S. Chern and N. H. Kuiper, Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space, Ann. of Math. (2) 56 (1952), 422-430.
- 3. P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901-920.
- 4. C. Tompkins, Isometric embedding of flat manifolds in Euclidean space, Duke Math. J. 5 (1939), 58-61.

University of California, Los Angeles