ISOMETRIC IMMERSION OF FLAT RIEMANNIAN MANIFOLDS
IN EUCLIDEAN SPACE

Barrett O’Neill

1. INTRODUCTION

Let ¥: M — M be an isometric immersion of Riemannian manifolds. If z is a
tangent vector of K/I-, orthogonal to dy/(M,,), there is a classically defined second
fundamental form operator S, on the tangent space M,,. Following [1], we express
the same information about { by associating with each vector x € M, a linear
operator Tx on _sz(m), called the differvence operator of x. The function T is
characterized by the fact that each Ty is skew-symmetric and Ty(z) = dy/(S,(x)) for
X € My, where z has the same meaning as above. The symmetry of S, is equiva-
lent to the relation Tx(dy(y)) = Ty(d¥(x)) for X,y € M. If m € M, let A4 (m) be the
subspace of My, consisting of all vectors x such that Tx = 0, and let v(m) be the
dimension of .#(m). Chern and Kuiper [2] call this integer the index of relative nul-
lity of ¥ at m. We denote by n the minimum value of the function » on M. Finally
let #“(m) be the orthogonal complement of A4 (m) in My,.

We shall deal with the immersion ¥: MY —» RY*X of a flat d-dimensional Rie-
mannian manifold in (d + k)-dimensional Euclidean space. In this case the proof of
Theorem 2 of [2] implies that for eack point m € M theve exists a vector x € #*(m)
such that Ty is one-to-one on dy(4*(m)). Since the latter subspace has dimension
d - v(m), it follows that k > d - v(m), so that the minimum relative nullity n of ¥
is at least d - k. We shall prove

THEOREM 1. Let y: M9 — Rtk pe an isometric immersion of a complete flat
Riemannian manifold in Euclidean space. Then MY contains a totally geodesic sub-
manifold that is carvied isometrically onto an entive n-dimiensional plane in RITK,
wheve n is the minimum relative nullity of V.

The theorem is trivially true if n is zero, but since n> d - k we can force n to
be positive:

COROLLARY 1. If the hypotheses of Theorvem 1 are satisfied and k < 4, then the
image of Y contains a (d - K)-dimensional plane in Rtk

This implies the fundamental result of Tompkins [4] that a compact flat M4 can-
not be isometrically immersed in R24-1, More generally, we have

COROLLARY 2. A complete flat Riemannian manifold M9 does not have a
bounded isometric immersion in R24-1,

As with Tompkins’ theorem, restrictions on dimension cannot here be weakened,
for R9 has bounded imbeddings in RZd, indeed, imbeddings whose images are as
small as one likes: imbed R! as, say, a small spiral in R2, then take the d-fold
Riemannian product.

For k = 1, that is, for the case of a hypersurface, Hartman and Nirenberg have
proved (Theorem III of [3]) that an isometric immersion of a complete flat M¢ in
RI+1 jg cylindrical. In Theorem 2 we give a sufficient condition for such immer-
sions to be cylindrical when k > 1.
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2. PROOF OF THEOREM 1

We deal throughout with a fixed immersion y: M4 — R4tk which, when it seems
safe to do so, we omit from the notation. For example, we simply write the above-
mentioned symmetry property of the difference operators as Tx(y) = Ty(x), where
X,y € M,. Let G be the set of points of M on which the relative nulhty takes its
minimum value n. Then G is an open set of M, and .4 is a differentiable field of
n-planes on G. To prove theorem 1, we shall show that .4 is completely integrable
and the leaves of .# are complete and totally geodesic, relative to i, in R4tk A
differentiable field e of orthonormal (d + k)-frames defined on an open set of G is
adapted to Y if, for each point m in its domain, e, -, e, provides a basis for
dy(#{(m)), ent+1, **-, €q a basis for dy(s™ (m)), and ed+1, .=+, €q+k a basis for
(dy(Mp)*" in (R "'k),’p(m) We adopt the index conventions

1<a,b<mn; n+1<r,s<d; 1<i,j<d; d+1<a,p<d+k.

Let us exclude the trivial cases n= 0, n =d of Theorem 1; then none of the cate-
gories above is empty. A frame field such as e is a differentiable mapping into the
frame bundle F of R4tk Pulling the Euclidean connection form @ of F down to G
by way of e, we get

¢’ijv = ‘-f;ij o de (connection forms of M),

T, = i © de (Codazzi forms),

0 g = b g o de (normal connection forms) .

The second structural equation on F then yields the second structural, Codazzi, and
Ricci (Koehne) equations for the frame field e. For the difference operators we have
Tei(ej) = ZTaj (e;)ey; hence the symmetry property of T is equivalent to

Taj(€;) = Tgi(e;). Thus from the definition of # we derive

(1) Taa =0, Tgle)=0.

The forms Tgr describe .# (on the domain of €) in the sense that
H(m) = {x € Mm| Tor(X) = 0} .

Thus the integrability of .# follows, by the Frobenius theorem, from the Codazzi
equations for 7., Which reduce to
(2) AT, o = -20 ¢, ATy -2 Tog N ga -

To prove that the leaves of .4 are totally geodesic in R4tk it suffices, by the
definition of .#, to prove they are totally geodesic in M. In fact, let @ be a geodesic
of aleaf LL of 4. If L is totally geodesic in M, then a is also a geodesic of M,

that is, it has acceleration a" = 0 when considered as a curve in M. But the veloc-
ity a' of a is always contained in .#, hence Ty = 0. Thus the general formula

(Y oca)" = Tegdy(a")) + dg(a™)

shows that (¢ © @)" = 0. We conclude that the immersion ¥ |L: L — Rtk ig totally
geodesic, which means, in this case, that the image (L) is a portion of an n-
dimensional plane in R d+k
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For an adapted frame field e, the restrictions of the forms ¢, to a leaf L of
4 are the Codazzi forms (relative to e) for L as a submanifold of M. Thus we
must show ¢ra(ep) = 0. The Codazzi equation for 7., is

ATag = - 20 $a3 N Ty - 20 Tag NOga -
By (1) this reduces to
(3) | 27 $ar ANTrg = 0.
By an earlier remark we can assume that e has been chosen so that at an arbitrary

point m the operator Ted is one-to-one on " (m). Applying the 2-form of (3) to

the vectors ep, eq at m, we get Z¢,.(ep) Tra(€g) = 0. By the one-to-one property
of Ted’ the (d - n) X k matrix (7,4(eq)) has rank d - n, and it follows that

¢,.(ey) = 0. It remains to prove
LEMMA 1. The leaves of 4 ave complete.

Let y: [0, ¢) — L be a geodesic ray in a leaf L of .#. It suffices to show that y
can be extended, as a geodesic of L, over the half-line [0, «). Suppose this cannot
be done; that is, suppose v as given is maximal. Since M is complete, ¥ can be
extended as a geodesic ¥ of M. Now, since L is totally geodesic in M, it follows
that ¥(c) is not in G. (I it were, ¥ would provide the required extension.) Again
using the facts that L is totally geodesic in M (flat) and that T,: = 0, we can choose
the frame field e so that y is an integral curve of e, and e is Euclidean parallel
on y. Furthermore, we can arrange for Ted to have rank d - n on My(p). Note

that e, and thus the forms associated with it, are defined only inside the set G; how-
ever ey can be extended by parallel translation along ¥ to the point p = ¥(c). Let T
be the operator Ty at p. Since is not in G, #(p) has dimension .r(p) > n. But
T is zero on .#(p); hence rank T Mp < d - n. Our aim now is to show the impos-
sibility of this drop in rank of Te d along ¥. The contradiction will prove the lemma

and thereby Theorem 1. To obtain it, we need some further lemmas.
LEMMA 2. The covariant devivative e (T ed(e v)) of the vectoy field T d(er) on
Y is -Zg ¢s1 (er) Ted es).

Proof. Since e is Euclidean parallel on y,
el(Ted(er)) = ?el("'ar (ed)) ey -

Now apply (2) to e;, eq. The parallelism of e implies that the forms Pij Tigs O B
are all zero on ' = e,; hence we get e (7rq(eg)) = 7ra([e1, eg]). The first struc-
tural equation applied to e;, ey yields

ley, egl = 'Zi; $iiede;.
Hence

eI(TOZ r(ed)) = '? ¢sl(ed) Tar(es) .

Now the left side of this equation is symmetric in r and d; reversal of r and d on
the right side gives the coordinate form of the required resuit.
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t
LEMMA 3. On v, SE¢r1(er) — +0 a8 t— c.
v

Proof. Let W be the function whose value at t € [0, c] is the multivector
Ted(en+1) VARRRIWAN Ted(e d. Using the previous lemma, we find that for t < c, the co-

variant derivative of this function is e; (W) = - (Z¢,; (e,))W. Hence, for t<c,

W(t) = {exp [ 5:2 ¢r1<er)]} W, (0),

where W, (0) is the result of the parallel translation of W(0) along y to y(t). But
from before we know that T, , has rank strictly less than d - n on M, (p = ¥(c)).

Hence W(c) = 0, and the result follows.
LEMMA 4. On v, e1(dr1(es)) = -Z4 ¢r1(eqg) dq1(eg).

Proof., Applying the second structural equation for the form ¢,] to the vectors
e, and ey along v, and using ¢;j(e;) = 0, we get

e1(¢r1(es)) = ¢r1([el’ es]) = _Zi> ¢il(es) ¢r1(ei) .

Since ¢.5(ep) = 0, the index i may here be replacedby q (n+ 1 < q < d).

We are now in a position to complete the proof of Lemma 1. If t € [0, c), let
P..(t) be the value of ¢.i(eg) at y(t). Then P = (P.g) is a differentiable
(d - n) X (d - n) matrix-valued function on [0, ¢). Lemmas 3 and 4 may be written
in the forms

t
(L3) 5 trace P — +o as t — ¢, and
0

(L4) P'= -P2,

The differential equation L.4 has the solution
(4) P(t) = P(O)(I+ tP(0))™* for t € [0, c).

We show by induction on d - n > 1 that L.3 and L4 are contradictory; this will
complete the proof of Theorem I. The contradiction is obvious when d - n = 1, since

t
the relation S P — +o as t — ¢ is incompatible with P' < 0. Suppose the contra-
0
diction holds for d - n < h, where h > 1. First consider the case where the hXx h
matrix P(0) is singular. We can assume that the first column of P(0) is 0. By (4)
the same is true of all P(t). Then the matrix function P = (P.s) n+2<r, s < d)
still satisfies L3 and L4, and therefore we have a contradiction. Now suppose P(0)
is nonsingular. From L4 it follows that the determinant A of P satisfies the differ-
ential equation A' = -(trace P)A. Thus L3 implies that A — 0 as t — ¢c. From (4)
we get

At) = A(0){det (I + t P(0))} ~1.

But A(0) # 0 and det(I + t P(0)) is bounded on [0, c); hence A can not approach 0
as t —c.
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I am indebted to E. Stiel and E. A. Coddington for decisive simplifications in the
above argument.

3. CYLINDRICAL IMMERSIONS

We say that an isometric immersion y: M4 — RItK is n-cylindrical provided M
and ¥ can be expressed as Riemannian products Md=B4d-"x RM and Yy =y X1,
where ¥ is an isometric immersion of B3-2 in R41K-n apd 1 is the identity map
of R™.

THEOREM 2. Let MY be a complete, flat Riemannian manifold. An isometvric
immersion Y: M@ — R 4K is n_cylindrical if

(a) the velative nullity function v has constant value n, and
(b) the relative curvature of Y is zevo.

We explain the second condition: let N be the bundle of normal k-frames of M
relative to y; that is, let

N={(m, f)] m € M, and f is a k-frame of RATE orthogonal to dy(My,)}

with natural bundle-structure. The Euclidean connection of R3tX induces a natural
connection on N. It is the curvature form of this connection which we assume to be
zero. In terms of the Codazzi forms T7j, of an adapted frame field e, this means
Z 7gi A 1ig = 0. In invariant terms, it says that the restriction of the operator

[Tk, Ty] to (dY(Mp,))* is zero for all X, y € M. (This is automatically true if x
or y is in «#(m).) Flatness of M is equivalent to [Tx, Ty] |d1p(Mm) = 0. Thus,
ungfi condition (b), any two difference operators Ty and Ty are commutative on
i3 )w(m).

Conditions (a) and (b) above are not necessary for an isometric immersion to be
n-cylindrical. In the theorem of Hartman and Nirenberg (referred to in the Introduc-
tion) we have k = 1; hence (b) holds automatically and (a) can be dispensed with by
the use of the special fact that disjoint d-planes in RA*T1l are parallel.

Proof of Theorvem 2. Condition (a) implies that . is a differentiable field of n-
planes on all of M. We know that ¢ carries the leaves L of .# isometrically.-onto
n-planes in RAtK, In the proof that ¥ is n-cXIindrical, the main point is to show
that all these planes (L) are parallel in RITK The relative position of the leaves
in M can be measured as follows: fix an adapted frame field e on a neighborhood
of m € M, and let PeaL be the linear operator on .# " (m) such that

P, (e)) =2 ¢ (e ) e,

Extending linearly, we get for each x € .#(m) a linear operator P, on /™ (m).
These operators are related to the difference operators by

LEMMA 5. If x € #(m) and y € 4" (m), then Ty (y)= Ty @ Py on A (m).
X

Proof. We have

Te (Pe_(es)) = 20 dgales) Ty qler) eq -
a,q
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Equation (3) shows we can here interchange s and r, so that this vector equals
Tes(Pea(e ). Hence for x,y as above and z € ./ (m), we get

Ty (Py(2)) = T, (Py(y)) = Tp_(y) (@ -

LEMMA 6. Each operator Py is symmelric.

Proof. Let x € A#(m), and choose y € #*(m) so that Ty is one-to-one on
A (m). Let

A = ap(A#(m)) + Ty(dp(Am) ¢ Ry, ().

One can verify that the subspace A is invariant under both Ty and Tp ¥ Further-

more, the restriction T |A is non-singular. S1nce Y has relatlve curvature zero,
the operators T and TP ) hence also (T |A) and Tp <) ]A commute—and

are skew-symmetrm Thus (TylA) -l o(Tp <) |A) is a symmetric operator which,
by the preceding lemma, agrees with P, on ./V (m).

Note that this lemma implies that 4™ is integrable. In fact, from the first
structural equation, we get

[er; es] =Zi> ((I’ri(es) - ‘;bsi(er)) €j.

So, since the matrix of Pea is symmetric, we get [er, es] € N, which implies in-
tegrability. For x € A#(m), Py is actually a second fundamental form operator of
the leaf K(m) of .#* through m and is thus independent of the choice of frame field
used in its definition.

LEMMA 7. P,=0 forall x € #(m), m € M.

Proof. If x € #(m), let ¥ be the geodesic of L = L(m) with initial velocity x.
We know that ¥ can be defined on the whole real line, and as before we can assume
that e is Euclidean parallel along y and that there e, = y'. The matrix P(t) of Pel

at y(t) is the matrix used in the proof of Lemma 1, hence it obeys the differential
equation P' = -P2, Since P, is symmetric, we can assume P(0) is diagonal; but by
(4) this implies that every P(t) is diagonal. Thus the differential equation reduces
to P1'~r = —(Prr)z. Since this holds on the entire real line, P__ = 0, hence P_= 0.

This lemma, together with the earlier result ¢,.,(e}) = 0, implies ¢, = 0. It
follows that both # and «# are parallel on M. Since all difference operators are

zero on #(m), we conclude that ¥ carries the leaves of . to parallel n-planes in
Rd+k,

Fix a point m, € M, and suppose ¥ carries m, to the origin of RAd+k, Let K,
and L, be the leaves of 4 and A4 through m,. Then let R™ be the vector subspace
Y(L,y) of R‘:1+k with RAtk-n the orthogonal vector subspace.

LEMMA 8. If L is a leaf of 4, and K is a leaf of N, then KN L contains
exactly one point.

Proof. Since all leaves of .# are carried to n-planes parallel to (L), it fol-
lows that ¥(K) is contained in some (d + k - n)-plane orthogonal to ¥(L). Thus if
p, q € KN L, then Y(p) = ¢(q). But ¢ is one-to-one on L, hence p = q. To show
that K N L is non-empty, let 7: R4 — M be the simply-connected Riemannian
covering of M, and let & and &£ be the plane-fields corresponding under dz to
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& and #*. Since & and #~ are parallel, the deRham decomposition theorem ap-
plies; in particular, each leaf of & meets each leaf of #". These leaves are
mapped onto corresponding leaves below, by #. Hence the result follows.

We can easily deduce from this lemma that .# and 4™ give a product structure
to M. In fact, the function u: M — K, X L, that sends m to

(m,, m,) = (L(m) N K,, K(m) N L)

is an isometry.

The proof of Theorem 2 will now be completed by showing that
Y= W|Kexy|Ly)on.

With the notation above, this may be rewritten as Y (m) = Y(m,) + ¥(m,), for all
meM. If meM, let o: [0, 1] — K, be a curve from the fixed point m, to m,.
Because of the product structure on M, there exists a parallel vector field X of
M, defined on o, such that exp (X(0)) = m,, exp(X(1)) = m. (Here exp is the map
whose value on a tangent vector x is the point attained in unit time by the geodesic
with initial velocity x.) The image dy@(X) of X is Euclidean parallel, since each
vector of the field X is contained in a plane of .#. If x € (R4tX), let {x) be the
canonically corresponding element of RI*K, that is, let { x> = q - p, where

q = exp (x). Using the facts above, we get

exp (dy(X(0))) = < dw(X(0)) = {dw(X(1))
Y(exp (X(1))) - ¥(o(1)) = Y(m) - Y(m,).

Y(m,) = Y(exp (X(0)))
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