UNIQUENESS THEOREMS FOR ORDINARY AND HYPERBOLIC
DIFFERENTIAL EQUATIONS

V. Lakshmikantham

1. This note is concerned with uniqueness theorems for the ordinary differential
equation x'= f(t, x) and for the hyperbolic partial differential equation

Uxy = f(x, y, u, p, a).

We first consider a uniqueness result for the ordinary differential equation, under
assumptions more general than the uniqueness hypothesis of Kamke [2, pp. 48-52],
and then extend this result to prove the analogous uniqueness theorem for the hyper-
bolic partial differential equation.

Uniqueness theorems for the partial differential equation, under what may be
called Nagumo’s uniqueness conditions, have been considered by Diaz and Walter [3]
and Shanahan {4]. A “crude analogue” of Kamke’s uniqueness assertion also appears
in [4].

2. Consider the ordinary differential equation
(1) x'={(t, x), x(0) =0,

where f(t, x) is a real-valued function defined on 0 < t < a, le < b. A solution of
(1) in the classical sense will mean a real-valued function x(t), continuous in

0 < t < a and having a finite derivative x'(t), for 0 < t < a, that satisfies

x'(t) = f(t, x(t)) for 0 < t < a. Suppose x(t) and y(t) are solutlons of (1) existing on
0 < t < a; then the requirement

| x(t) - y(®)|

lim i

+—0+

=0,

which is satisfied when f is continuous at (0, 0), is a necessary condition for the
uniqueness of solutions. This requirement can be generalized. Suppose

|x(t) - y(©)|

(2) lim B

t—0+

=0,

where the function B(t) is continuous, positive on 0 < t < a and such that B(0+) = 0.
This condition is necessary for uniqueness, but not sufficient. As a matter of fact,
we prove

LEMMA 1. Suppose the function B(t) is continuous, positive on 0 < t < a, with
B(0+) = 0. Then there exists an infinity of functions f such that (1) has more than
one solution satisfying the condition (2).

Proof. We first construct a function Af(t) having a non-negative derivative on
0 < t< a and such that lim;_, 4, A(t)/B(t) = 0. We proceed as follows:
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Divide the interval 0 < t < a into subintervals I, such that

a a a
L=(3a). n=(%3)

Suppose b, = inf B(t). Find a positive linear function L,; in I, such that
In

Ly(a)=b and L, (%) < %. L,(a).
Then find L, in I, such that

L(3) -3 wy<n(3)

L. (5) S%Ll(%) and L, (3) S—;-Lz(%), otherwise.

Continue this process. We then connect the linear functions near the points a/2% by
suitable functions having non-negative derivatives (for example, by arcs of para-
bolas). This modification gives us the function with the required properties.

When we have constructed the function A(t), it is easy to define f(t, x). For ex-
ample, if we take f(t, x) = xX¥ A'(t) (0 < a < 1), then

1 1
xt)=0 and x(t)=(1 - a)'l_—_EAT:E

are solutions of (1) with x(0) = 0. It is clear that any two solutions satisfy the con-
dition (2). Hence the proof is complete.

It is also easy to prove the following fact.

LEMMA 2. Suppose {(t, x) is a real-valued function, defined on 0 <t
|x| < b and continuous at (0, 0). Then theve exists a function B(t) on 0 <
such that (2) is satisfied.

Proof. Let x(t) and y(t) be the maximal and minimal solutions of (1) on
0 < t < a. Define m(t) = [x(t) - y(t)l . Then m(0) = 0, and because of the assured
continuity of f at (0, 0), lim;_,o4+ m(t)/t = 0. If we now take

b

<a
t<1

_ Sup m(s)
B() = <t<1 s ’

it is easy to verify that lim;_,g, m(t)/B(t) = 0. This can be done if m(s) # 0 in some
neighborhood of the origin; otherwise, the existence of B(t) is trivial. This implies
the stated result.

Remark. We note that the continuity requirement of f at (0, 0) is stronger than
condition (2). This can be seen from the following example. Define f(t, x) for
0<t<a by
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1 (x > t),
ftt, =<7 (0<x<W),
0 x<0).

The solutions of (1) are x = ct, where 0 < c < 1. Taking B(t) = t¥2, we see that
condition (2) is satisfied, even though f is not continuous at (0, 0).

Thus the considerations above show that condition (2) is natural. If (2) is not
satisfied, then the solution is clearly not unique.

Now we state our uniqueness result.

THEOREM 1. Suppose two solutions x(t) and y(t) of (1) satisfy the condition
(2), where B(t) is positive, continuous on 0 <t < a, with B(0) = 0. Let the function
h(t, r) > 0 be continuous on 0 < t< a, r > 0. Suppose the only solution r(t) of

(3) r' = h(t, r)

on 0< t<a such that limy—, g4 r(t)/B(t) = 0 is the trivial solution. Suppose further
that the function {(t, x) of (1) satisfies the condition

(4) |£(t, x,) - £(t, x,)| < h(t, |x, - x,|)

for (t, x,) and (t, x,) in a region 0 < t< a, lxI < b. Then theve exists at most one
solution of (1) on 0 <t < a.

Proof. (The proof follows, with minor modifications, the general outline of that
of Kamke’s uniqueness theorem. We include it, so that we can use it in the proof of
our uniqueness theorem for partial differential equations.) Suppose there exist two
solutions x(t) and y(t) of (1) on 0 < t < a, and let m(t) = |x(t) - y(t)l . Then
m(0) = 0 and

(5) |m' (O] < [, x(®) - £(t, y(©)] < h(t, m())
almost everywhere. Suppose m(o) > 0 for some ¢ (0 < 0 < a). Consider a solution

r{t) of (3) through (0, m(0)), existing on some interval to the left of 0. As far as the
left of o as r(t) exists, it satisfies the inequality

(6) r(t) < m(t).
To prove this, we observe that
(7 r'=h(, r) + ¢, r(o) = m(o),

has solutions r(t%) for all sufficiently small ¢ > 0, existing as far to the left of o
as r(t) exists, and with lim;_ 4 r(t, €) = r(t) [2]. Thus it is enough to prove

(8) r(t, €) < m(t)
for all € > 0 and all solutions r(t, €) of (7). If this inequality does not hold, there

exists a least upper bound s of numbers t < o for which (8) is false. Since
r{o) = m(o) = r(o, €) and the functions r(t) and r(t, ¢) are continuous,
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(9) m(s) = r(s, €), m'(s) > r'(s, €).
It then follows that

h(s, m(s)) > h(s, r(s, €) + €,

by (7) and (9). This contradiction proves (8), which implies (6).

The solution r(t) can be continued to t = 0. If r(c) = 0 for some ¢ (0 < c < 0),
the continuation can be effected by defining r(t) = 0 for 0 < t < c; otherwise, (6) en-
sures the possibility of continuation. Since m(0) = 0, lim; g4 r(0) = 0, and we de-
fine r(0) = 0. Now we have a non-trivial solution r(t) of (3) on 0 < t < ¢ such that
r(c) = m{0), and 0 < r(t) < m(t). Then, because of the assumed condition,

r(t)
B(t) =

m(t)

t— 0+

<1m =0.

— 0+

which, by hypothesis, implies that r(t) = 0. This contradicts r(o) = m(o) > C, and
hence m(t) =0 on 0 <t < a. This completes the proof.

Remark. If B(t) = t, this theorem reduces to Kamke’s uniqueness theorem. This
result also contains the result of Brauer [1], since the extra conditions of Brauer
imply the assumption (2).

3. Consider the initial value problem of the partial differential equation

( ) uxy = f(X, y,- 4, D, CI), u(x, 0) = E(X); 11(0, y) = F(y)
10
and F(0) = E(0),

where the functions E(x) and F(y) are defined on 0 < x < a, 0 <y < b respectively.
Suppose the real-valued function f(x, y, h, p, q) is defined for 0 < x <a, 0<y <b,
- < u, p, q, < . By a solution of (10), we mean a continuous function u(x, y) hav-
ing partial derivatives ux(x, y), uy(x, y), and uxy(x, y) in the domain 0 < x < a,
0<{y<b.

Now we have the analogue of Theorem 1 for partial differential equations.
THEOREM 2. Suppose that for any two solutions u(x, y) and v(x,y) of (1),

Iuy (X’ Y) - VV(X’ y)l
K(x) ’

|ux(x, y) - vxx, ¥)|

(11) lim L.E)

y— 0+

=0 and lim
x— 0+

where the functions K(x) and L(y) ave positive and continuous on 0 < x < a,
0 <y < b, with K(0) = 0, L(0) = 0 vespectively. Suppose the function f(x,y, u, p, q)
of (10) satisfies the condition

(12) |f(x, ¥, Uy, Dy, q,) - £(X, ¥, u,, Dy, Q2)| < h(x, y, |u1 - uzl ’ Ip1 - pzl ’ |Q1 - 'Q2l)

for x,y # 0, wheve the function h(x, y, r, rx, ry) > 0 is continuous on 0 < x < a,
0<y<hb cmd r, rx, ry > 0. Suppose that for all non-negative functions m, n, and
8, the only solutzon r(x, -) of

(13) g:;{ = h(X, i) m(X9 ')’ n(x, '), I‘)
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on 0 < x< a such that

r(xy ') =0

(14) lim K

x— 0+

is the trivial solution, and that the only solution R(-, y) of

dR
(15) & = by, m(, ¥), R, 6C, y))
y
on 0<y<b suck that
(16) 1im B ¥)

is also the trivial solution. Then theve exists a unique solution fov.the problem (10)
on 0<x<4a 0<y<Lh.

Remark. If K(x) = x, L(y) = y, the theorem above reduces to an analogue of
Kamke’s uniqueness theorem for ordinary differential equations.

Proof. Suppose that there exist two solutions u(x, y) and v(x, y) of (10) on
0<x<a, 0<y<b. Define

Alx, y) = |u(x, y) - v(x, y)|,
(17) B(x, y) = |ux(x, y) - w(x, y)|,
Cx, y) = |uy(x, y) - vy(x, y)|.
Since
u(x, 0) = v(x, 0) = E(x); Ux(x, 0) = vx(x, 0) = Ex(x) on 0 < x< a,
a8 u(0, y) = v(o, y) = F(y);  uy(0, y) = vy(0, y) = Fy(y) on 0 <y < b,
it follows that
(19) A(,0 =0, B(x,0=0, ¢c(0,y)-=0.
To prove that the solution is unique, we have to show that A(x, y) =0, B(x, y) = 0,
and c(x,y) =0 on 0<x<a, 0<y<b. Since A(0, 0) = 0, it is enough to show that
B(x,y)=0and c(x,y) =0 on 0<x<a, 0<y<b. We see from (12) and (17) that

'l_d_(%{x,_ll—i If(X, i) U(X, '), ux(xr ')’ uy(X’ ')) - f(X.v i) V(X5 '), VX(X, '), VY(X, '))l

<h(x, -, Alx, -), B(x, *), c(x, *)).

Suppose that for some o (0 < 0 < x), we have c(o, -) > 0. Then, proceeding as in
the proof of Theorem 1, we can conclude that there exists a solution r(x, -) of (13)
on 0 < x < 0, satisfying
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r(O', ') = C(U', ') > 0, O_<_ r(X, ') S C(X, '), r(oy ') = 0.

Then, by condition (11),

. or(x, ) . c(x, -)
0< lim ———T’ < lim —3%—- =0,
T x—0+ k(x} = x—0+ k(x)

which implies r(x, ) = 0. This contradicts the fact that r(0‘ ) = ¢(o, ) > 0, and
hence it follows that c(x, ©) =0 on 0 < x< a.

A similar argument shows that B(-, y) =0 on 0 <y < b, and this completes the
proof.
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