THE GEOMETRY OF
EXTREMAL QUASICONFORMAL MAPPINGS

Tilla Klotz

1. In this paper we consider Teichmiiller mappings between orientable C? sur-
faces immersed (without singularities) in E3. We investigate the geometric conse-
quences of the assumption that certain standard differential geometric correspon-
dences are Teichmiiller mappings. Since conformal mappings are the simplest
Teichmiiller mappings, it is not surprising that our results tend to generalize known
facts about the conformal mapping of surfaces in E3.

In order to describe the extremal problems which lend importance to Teich-
miiller mappings, and in order to define these mappings in an appropriate setting,
we begin with a brief review of some material from the theory of quasiconformal
mapping. A thorough explanation of the subject matter outlined in Section 2 can be
found in [1] or [2]; but for a quick reading of the theorems proved here, it is enough
to assume that Teichmiiller mappings satisfy the conclusion of Lemma 1 in Section 3.

2. Quasiconformal mappings of plane domains may be defined as follows. Let #
denote a fopological rectangle in EZ?, that is, a closed Jordan region with four dis-
tinguished boundary points. Then there exists a unique value m (m > 1) such that
some homeomorphism, conformal in the intevior of &, carries 9 onto the classical
rectangle

0<x<m, 0<y<1
in E? in such a way that the four distinguished boundary points are mapped onto the
four vertices of the classical rectangle. The value m is called the modulus of #
(notation: m = mod ).

An arbitrary (sense-preserving) homeomorphism w: D — E2? of a plane domain
D carries each topological rectangle 2 C D onto a topological rectangle w(®).
Such a w is k-quasiconformal if and only if

modw(,%)_K=1+k

1. u.b. mod & 1-k

where # ranges over the clas: of all topological rectangles % C D.

The constant K is called the maximal dilatation of w, a name it receives because
of the special case in which w is in C! and has a positive Jacobian. For here, w
carries an infinitesimal circle at any p in D onto an infinitesimal ellipse at w(p)
whose major and minor axes are in the ratio K(p) > 1. In this context, K(p) is

called the dilatation of w at p, and w is k-quasiconformal (by our previous defini-
tion) if and only if

1+k
1-k

sup K(p) = K =
peD

< oo,
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We note that, in general, K > 1, so that 0 < k < 1. A mapping is conformal if
and only if it is O-quasiconformal. The inverse of a k-quasiconformal mapping is
k-quasiconformal. And, finally, the composition (in either order) of a k-quasicon-
formal mapping with a conformal mapping is still k-quasiconformal.

The definition of k-quasiconformality can be extended as follows to cover (sense-
preserving) homeomorphisms f: R — R between Riemann surfaces. If f(p) = p, then
f maps some coordinate patch U on R containing p onto a coordinate patch U on R
containing p. Moreover, f induces a homeomorphism f of the conformal preimage of
U in EZ? onto the conformal prelma&e of U in E2. If there exists a E(O0<k<1)
such that, for all choices of p, f is k- quasmonformal (k < k), then f is said to be
k- quasmonformal where k is the least such kK. Once again, K = (1 + k)/(1 - k) is
called the maximal dilatation of f.

Every k-quasiconformal mapping f: R — R between Riemann surfaces is char-
acterized by a uniquely determined Beltrami differential

m = N(Z)—

on R with u(z) measurable and ] u(z)| < k < 1. This Beltrami differential has the
following property. Let z = x + iy designate a conformal parameter on R. Let w(z)
be a homeomorphic solution to the Beltrami equation

(1) Wz = p(2) Wy .

(By this we mean that w is a homeomorphism with generalized derivatives w, and

wy, and that, if we set w,, = (Wx - iwy)/2 and wz = (Wy + iwy)/2 (1) is satisfied al-
most everywhere.) Then the assignment of w(z) to the image under f of the point
with coordinate z on R yields a conformal parameter w on R.

A Teichmiiller mapping f: R — R is either a conformal mapping, or else it is the
k-quasiconformal mapping characterized by a Beltrami differential of the form

dz . ¥(2) dz
“(Z)ai =k |¢/(Z)|a—z-,

where 0 < k < 1, and where Q = Y(z)dz® is a meromorphic quadratic differential on
R. We note that in any neighborhood not containing zeros and poles of the defining
guadratic differential 2, special conformal parameters z = x + iy may be chosen so
that the assignment of w(z) = Kx + iy to the image under f of the point with coordi-
nate z on R yields a conformal parameter w on R. (This leads directly to Lemma
1 of Section 3, which will therefore be stated without proof.)

Thus, except at the zeros and poles of 2, a Teichmiiller mapping is real analytic
and has coastant dilatation equal to its maximal dilatation K. It can be shown that
the inverse mapping f-! of a Teichmiiller mapping is again a Teichmiiller mapping
defined by a quadratic differential whose zeros and poles correspond under f to
those of 2, and with the same maximal dilatation K.

An extremal quasiconformal mapping is one which minimizes the maximal dilata-
tion within some given class of quasiconformal mappings. Thus any quasiconformal
mapping is extremal in the narrow class containing only itself. Teichmiiller map-
pings arise as the solutions to more significant extremal problems.

Consider, for instance, the problem of finding the extremal mapping among all
the quasiconformal homeomorphisms between two closed Riemann surfaces of the
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same finite genus g > 2 that are homotopic to some fixed homeomorphism between
R and R. It is known that a unique solution to this problem always exists. More-
over, the extremal mapping is a Teichmiiller mapping defined by a holomorphic
quadratic differential on R.

It is thus ensured, for instance, that a Teichmiiller mapping exists {usually,
there are several), between any iwo closed, oriented C? surfaces immersed in E3,
And each such mapping yields, among all homeomorphisms homotopic to it, the
“most nearly conformal” mapping between the two surfaces in question.

Although Teichmiiller mappings defined by meromorphic quadratic differentials
with only simple poles are extremal among mappings that attain prescribed values
at preassigned points, it is not clear that Teichmiiller mappings defined by arbitrary
meromorphic quadratic differentials are automatically extremal in any significant
sense. The title of this paper is not meant to exclude such Teichmliiller mappings
from the considerations of Section 3.

3. Let S and S be oriented C2? surfaces immersed in E3. The Euclidean metric
imposes a specific conformal structure upon S and S. Conformal parameters
z = X + iy may be introduced on S, for instance, by means of isothermal coordinates
X, y. A mapping f: S — S which yields a Teichmiiller mapping between the Riemann
surfaces represented by S and S is called a Teichmiiller mapping between S and S.
Lemma 1 is a direct consequence of remarks made in Section 2.

LEMMA 1, If f: S — S is a Teichmuller mapping, then special isothermal co-
ovdinates X,y may be chosen, in the neighborhood of all but a discrete set of excep-
tional points on S, so that the first fundamental forms at corresponding points of S
and S respectively are given by

ds? = A(x, y) (dxZ + dy?),
(2) R
ds? = A(x, y) (K2 dx? + dyz) ,

where K is the maximal dilatation of f.

The exceptional points referred to in Lemma 1 are the zeros and poles of the
defining quadratic differential € of f. Lemma 1 leads immediately to our first
result.

LEMMA 2. If f: S — S isanon- conformal Teichmilley mapping which
preserves a net of lines of curvature, then S and S ave isotheymal except at ir-
removable umbilics.

(We note in passing that closed isothermal surfaces of arbitrary genus may be
formed by smoothly joining, by appropriate surfaces of revolution, spheres from
which holes have been removed. This recalls the problem (see Section 7 of [7]) of
finding surfaces of genus g > 2 free of spherical portions, and yet isothermal away
from irremovable umbilics.)

Before proving Lemma 2, let us clarify some terminology. A line of curvature
is a curve along which the formula of Rodrigues holds. In Lemma 2 we assume that
some fixed choice of a net of lines of curvature on S and § is preserved by f. Thus,
in case S has spherical portions, lines of curvature not part of the chosen net need
not be preserved.

An umbilic is a point at which normal curvature is independent of direction. A
removable umbilic is an umbilic in the neighborhood of which lines-of-curvature
coordinates (corresponding to the chosen net) are “good” coordinates. That is, an
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umbilic is removable if it is not a singular point in the chosen net of lines of curva-
ture. Thus, if one chooses meridians and parallels as a net of lines of curvature on
a surface of revolution, umbilics at the poles are irremovable, and any other
umbilics are removable.

It is our assumption, throughout, that a net of curves on a surface is regular on
a dense subset. Thus, the closed set of irremovable umbilics in any net of lines of
curvature never covers a neighborhood on the surface.

Proof of Lemma 2. Since f is not conformal, K> 1. But then, in some neighbor-
hood of any point which is not exceptional, (2) holds. Wherever (2) holds, the only
orthogonal net of curves which can be preserved is the net determined by setting
x = constant, y = constant.

If a net of lines of curvature is preserved, then, except at irremovable umbilics
and exceptional points, x and y must be lines-of-curvature coordinates on S, so
that Kx and y are lines-of-curvature coordinates on S. But every exceptional point
must be an irremovable umbilic. For every exceptional point p is either a zero (of
order m) or a pole (of order -m) of Q. If every neighborhood of p contains an ir-
removable umbilic q # p, then p must be an irremovable umbilic. If some neighbor-
hood of p contains no irremovable umbilic q # p, then the index of p in the chosen
net of lines of curvature must be -m/2 (see p. 82 of [6]). Here again, p must be an
irremovable umbilic. Thus, except at irremovable umbilics, x, y and Kx, y consti-
tute isothermal lines-of-curvature coordinates on S and S respectively.

The conclusion of Lemma 2 does not hold for conformal mappings, since transla-
tions, rotations and magnifications of arbltrary surfaces yield counterexamples. It
should be remarked that mappings £: S — S between isothermal surfaces preserving
lines of curvature need not be Teichmiiller mappings. One has only to consider a
projection from one surface of revolution onto another in the direction of their com-
mon axis of revolution. In most cases this is not a Teichmiiller mapping.

We turn now to the standard mapping between parallel surfaces S and S which
associates with each point p on S the point on S a fixed distance t# 0 from S
along the normal to S at p. It is well known that the standard mapping preserves
lines of curvature and normals (see p. 272 of [5]).

Moreover, this standard mapping is conformal if and only if S and S are pieces
of spheres or planes, or are surfaces of constant mean curvature 1/t and -1/t, re-
spectively. In the last case, S has singularities at points corresponding to umb111cs
on S (see p. 273 of [5]). As a generalization, we prove the following.

THEOREM 1. If the standavd mapping £ of S onto a parallel surface Sisa
Teichmiller mapping, then S and S are Weingarten suvfaces, isotherymal except at
irremovable umbilics. Moveover, if f composed with the m"merszon of S in E3
yields an immevsion (without singulavities) of S in E3, then S and S have no um-
bilics unless they ave pieces of spheves or planes.

Proof of Theorem 1. In order to prove the first portion of Theorem 1, we need
only show that if f is not conformal, then S and S are Weingarten .rfaces. For if
f is conformal, S and S have constant mean curvature and are therefore isothermal
Weingarten surfaces. On the other hand, if f is not conformal, Lemma 2 insures
the isothermality of S and S.

Take gij and gij as coefficients of the first fundamental forms on S and §, re-
spectively. Take lij as the coefficients of the second fundamental form on S. It
follows that
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where & and & are mean and Gaussian curvature on S, respectively (see p. 272

of [5]).

We choose the special isothermal coordinates referred to in Lemma 1. Then,
using the proof of Lemma 2, we obtain

811 = 822 = A, €12 =112=0,
111 = kl )"; 122 = kz)\ 9

where k, and k, are the principal curvatures in the directions determined by set-
ting y = constant and x = constant, respectively. Since §&,, = K2g,,, (3) yields

{1 - 2tk, + 322k, - H)} = K2{1 - 2tk, + t2(2#k, - HA)},
or
(4) (1 - tk,) = +K(1 - tk,).

Since f~! is a Teichmuller mapping with the same maximal dilatation K as f, we
have the corresponding Weingarten relation for S. (Note that (4) is satisfied even in
the conformal case. For here, K = 1, and either t = a with k, + k, = 2/a, or else

k, = k,.)

But more can be said. By continuity, (4) holds even at irremovable umbilics.
Therefore, unless K = 1, we obtain

(1-tk)=(1-tk)=0,
that is, k, = k, = 1/t at every umbilic. But then, (3) yields

gu g22 gm—o

at points on 8 corresponding to umbilics on S. This last fact and the remark just
preceding the statement of Theorem 1 are sufficient to prove the second portion of
Theorem 1. The following corollary is an immediate consequence of Theorem 1.

COROLLARY TO THEOREM 1. If the standavd mapping f: S — 8§ between
closed pavallel suvfaces of genus g > 1 composed with the immersion of S in E3
vields an immersion (without singularities) of S in E3, then f is not a Teichmiiller
mapping.

Theorem 1 suggests an investigation of Teichmiller mappings which preserve
normals. A study of conformal mappings which preserve normals can be found in
Chapter 11 of [4].

In Theorem 2, we obtain a restriction on Teichmiller mappings that preserve
both normals and a net of lines of curvature. The restriction in question is an equa-
tion W(k,, k; kl, kz) = 0 relating the principal curvatures Kk,, k,, k and k at points
of S and § in correspondence under the mapping. It seems natural to refer to such
an equation as a joint Weierstrass condition. Note, incidentally, that such a joint
Weierstrass condition holds automatically for the standard mapping between arbi-
trary parallel surfaces (see p. 82 of [3]). This implies, for instance, that surfaces
parallel to Weingarten surfaces are Weingarten surfaces.
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THEOREM 2. If £: S — S is a Teichmiiller mapping which presevves lines of
curvatyre and norvmals, then the principal curvatures k,, k,, k, and k, at points of
.S and S in correspondence undev f satisfy

k1122 =+ Kk, k,,

where K is the maximal dilatation of f.

Proof of Theorvem 2. In the conformal case, choose lines-of-curvature coordi-
nates in the neighborhood of any point on S which is not an irremovable umbilic.
Then

ds? = g, dx* + gy, dy?,
d§? = Mgy, dx® + g, dy?),
and
lp = 112 =0,

1, = k815 L, = Ky 8205

~

iu = Agu Ky, Iy = Agop ks -

The coefficients hjj of the first fundamental form of the spherical image mappings
of S and S must be equal, since normals are preserved, and thus (see p. 253 of [5])

(5) hij= 2‘7ﬂij"7{gij= 2‘%11j_’7{gij‘

But then

-~

2HK, - H = 2HNK, - KA,
2HK, - H = 2HNK, - A
or

Kk, k, = +k, Kk, .

By continuity, this last relation holds on all of S.

In the nonconformal case, we use the coordinates described in Lemma 1 in the
neighborhood of any point on S which is not an irremovable umbilic. Then the argu-
ments proving Lemma 2 imply that

g12=Llip=81=1,,=0,
€11 = 822 = A, éu = K22, ézz =A.

As a result,
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Thus, using (5), we obtain
2HNKEK, - HAK® = 2HNK, - AN,
200k, - AN = 290k, - HN,
or
(6) k,k, = + Kk, k, .

By continuity, (6) holds everywhere on S.

At nonplanar umbilics, K = 1 must hold, so that f must be conformal unless S
and S are free of nonplanar umbilics. The mapping f must also be conformal if
there are corresponding nonplanar points on S and S at which ¢ = & = 0. In par-
ticular, f must be conformal if S and S are pieces of spheres or of minimal sur-
faces. But this was clear from the outset, since the spherical image mappings of
such surfaces are conformal. As a generalization of the old fact just mentioned, we
have the following.

THEOREM 3. If the sphevical image mapping f of S is a Teichmuller mapping,
then S is an isothermal Weingarten suyvface on which

kl = iKkz ]

wheve K is the maximal dilatation of f{.

The theorem is known in the conformal case. If f is a nonconformal Teichmiil-
ler mapping, choose the coordinates described in Lemma 1 in the neighborhood of
any point on S which is not an exceptional point. Then, since hjj = 2#1;j - H'gij, we
obtain

2#1,, - AN = K2(2H1,, - HN),
21, = 0.

But then, 1,, = 0. Otherwise, &# = 0 in some neighborhood on S, and f would be con-
formal. Since 1, = 0, f preserves a net of lines of curvature.

But now we can apply Theorem 2. If we take for S the unit sphere and for f the
spherical image mapping of S, then (6) becomes

(7 k, =+ Kk,,

since El = 122 on the sphere S. In the conformal case, (7) holds with K = 1. The

+ sign yields all spheres, the - sign all minimal surfaces. It follows from (7) that S
can have no removable umbilics, nor nonplanar points at which H = 0, unless f is
conformal. (Much more can be said, naturally, about a surface which satisfies (7).)
As a trivial consequence of Theorem 3, we have the following slightly broader state-
ment.

COROLLARY TO THEOREM 3. If f: S — § is a Teichmiiller mapping which
preserves novmals, and S is eilhev a spheve ov a minimal suvface, then S is an

isothermal Weingarten surface satisfying k, = +Kk,, where K is the maximal dilata-
tion of f.
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