ISOTROPY STRUCTURE OF COMPACT LIE GROUPS
ON COMPLEXES
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1. INTRODUCTION

In this paper we prove the following conjecture of Floyd [1, page 95]:

THEOREM. If G is a compact Lie group operatling on a finite complex K, then
there are only finitely many distinct conjugate classes of isotvopy subgvoups. In the
proof we use a decomposition of K into a finite number of invariant open manifolds,
each of which has an orientable covering manifold whose integral cohomology (with
compact supports) is finitely generated. Lifting the action of G to the covering
manifolds, we apply a result of Mann [4] to establish the theorem.

The theorem is false when K is a locally-finite complex having finitely gener-
ated integral cohomology. To see this, consider the 2-complex consisting of a line
and a sequence of closed discs, with centers on the line and going off to infinity.
Define an action of the circle group S! on this complex by defining 8 in S?!

(0 < 6 < 2m) to act as the rotation j# on the jth disc. Then Zj (the subgroup of S!
isomorphic to the integers, modulo j) leaves the j-th disc point-wise fixed, and
therefore Zj is an isotropy subgroup for each j. On the other hand, the one-point
compactification of this complex is of the same homotopy type as the circle, and
therefore the finitely generated integral cohomology condition is satisfied.

2. CONSTRUCTION OF COVERING MANIFOLDS WITH
FINITELY GENERATED COHOMOLOGY

Let K be any n-dimensional complex. Denote by F(K) the subset of K consist-
ing of points which have neighborhoods homeomorphic to E®, Then F(K) is an n-
manifold. If F(K) is connected and K = Cl [F(K)], then K will be said to be F-
connected.

LEMMA 1. Letl K be a finite n-complex which is F-connected and such that
F(K) is a non-ovrientable n-manifold. Then there exist a finite n-complex K* and a
simplicial map p: K¥ — K such that

p |p~{(F(K)): p~YF(K)) — F(K)

is the orientable double covering of F(K) and p~(F(K)) has finitely generated
cohomology.

Proof. Let K™"! pe the (n - 1)-skeleton of K, let A be the subcomplex formed
from the union of all (n - 1)-simplexes which are faces of exactly two n-simplexes,
and let B be the union of all the other (n - 1)-simplexes in K®-1. Note that

FK)YcK-Bc (K-K>-Hua,
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Let o1, 02, **+, of be the n-simplexes in K. For each i =1, e f, take 0{" and oy,
two oriented n-simplexes with opposite orientation. K* is formed from these 2f
n-simplexes as follows: let p;¢: cis —-0; be a simplicial map identifying c? with o
(e =+ or -). We determine intersections of simplexes in K* as follows: Let 7 be
an (n - 1)-simplex in A which is a face of o; and 03, say. Then choose ¢ and &'
such that if 7€ is the face of of corresponding to 7 under p;¢, and 7€' is the face
of 0§' corresponding to 7 under p;c,, then P, (T%) and pje: (1€') induce opposite
orientations on 7. We identify pi‘é (x) with pj'sl' (x) for all x in 7. Do this for each
7 in A and each pair & and g'. The resulting identification space is the complex
K* having simplexes {of}, and the map p: K* — K is obtained on each ¢f by using
Pig -

If x is in F(K), then x has a neighborhood contained in K - B, hence the inter-
section pattern in K*, locally at each of the two points in p~!(x), is identical with the
intersection pattern in K around x, hence p|p‘1(F(K)): p~Y(F(K)) — F(K) is a local
homeomorphism. We can see that p~!(F(K)) is orientable, by triangulating it in such
a way that every simplex in the triangulation occurs in some rectilinear subdivision
of K* The orientation of simplexes in K* induces an orientation of each simplex in
the triangulation. Clearly, any two n-simplexes meeting in an (n - 1)-face 7 induce
opposite orientations in 7, hence p~*(F(K)) is orientable. Note that the cohomology
of p~Y(F(K)) is finitely generated, since K* - p~(F(K)) is a subcomplex.

3. LIFTING THE ACTION OF G

All spaces will be locally compact, metric, connected and locally connected. The
term covering space is used in the sense of Chevalley [3]. The following lemma was
suggested by Section 3 in [5].

LEMMA 2. Let M* be a covering space for M wilth the projection map =«
finite-to-one. Let G be a compact connected Lie group operating on M, and let K
be a compact G-invariant subset of M on which G acts effectively. Then there
extist a compact connected Lie group G*, a neighbovhood U* of 1 in G*, and a
homomorphism ¢: G¥ — G such that

(1) ¢|U* is a homeomorphism of U* onto a neighborhood U of 1 in G,

(2) G* acts effectively on m-*(K) = K*, and wg*(x*) = ¢(g*) n(x*) for x* in K*,
g* in G¥.

Proof. Cover K by Nj, -+, Ny, evenly covered connected open sets in M. Let
U be a neighborhood of 1 in G which is compact, connected, symmetric, and such
that U(x) = {g(x)]g in U} is contained in some N;, for each x in K. For each g in
U, we define 8(g), a mapping of K* into itself, as follows: if x* is in K* and
x = m(x*), then U(x) ¢ N; for some i. Let N¥ be the component of 7-1(N;) contain-
ing x*, and let y* = 7-1(g(x)) N N¥. Then y* is independent of i, hence, if we de-
fine 6(g)(x*) = y*, then 6(g) is well-defined and continuous. It is one-to-one, and its
inverse is continuous, since 6(g~!) is the inverse map. Let s#(K*) denote the set of
all homeomorphisms of K* onto itself with the compact-open topology. Then
0: U — #(K*) is continuous and, since G is effective on K, 6 is one-to-one. Let
U* = 9(U), and define ¢: U* — G to be 6~ Since U is compact, ¢ is a homeomorph-
ism, and condition (1) is satisfied. Note that ng* = ¢(g*)7 for all g* in U*.

Now let G* be the subgroup of s#(K*) generated by U*. Then G* is connected,
since U* is connected. Let g* = g’f g;---g; be in G*, where g;" is in U*, Then
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ng* = mgied - gf) = o(gP) nl(gd - g,
and by iteration
mg* = (g} o(g3) -+ d(g)m.

Therefore, if we define ¢(g*) = ¢(g¥) p(g3) --- p(g), then ¢: G* — G is a well-defined
homomorphism, and condition (2) is satisfied. The kernel of ¢ contains only cover-
ing transformations, hence is finite, and G* is a compact Lie group. If g* is near

1 in G*, then ¢(g*) is near 1 in G, hence in U, and this implies that g* lies in U*,

Therefore U* is a neighborhood of 1 in G*, and the proof is complete.

The next lemma is a strong form of the uniqueness in Lemma 2.

LEMMA 3. Suppose that M*, M, G and Ki (i = 1, 2) satisfy the hypotheses in
Lemma 2, with K, C K,, and that G¥, U} and ¢; satisfy conditions (1) and (2), for
i=1, 2. Then Kf is tnvariant under G;" , and the vestriction map p of the action of
G¥ to K¥ is a homomoyphism of G¥ onto G¥ such that ¢,p = ¢,.

Proof. Let V* be a small neighborhood of 1 in #(K¥), so that g¥, g¥ in V*
with 7g¥ = mg¥ implies g¥ = g¥. Clearly, K¥ is G¥-invariant, by (2), and ¢ is a
homomorphism of G¥ into s(K¥). Without loss of generality (using (1)), assume

that U¥ and p(U}) are contained in V* and that U is the common image of U%
under ¢; (i = 1, 2). It suffices to show that

pg*) = (9,] U)-1o,(e*)

for g* in U¥. Now

$2(g®) [1(x*)] = ¢,((¢, | V)2 a(g™)) [m(x*)]
m(@, | U)"1o,(g*) (x*),

m[p(g*) (x*)] = 7 [g*(x*)]

for all x* in K¥; hence mp(g*) = m(¢, | U)"1¢,(g*), and, by the argument above,
ple*) = (@, | V)1¢,(g*).
LEMMA 4. Let M*, M, G and 7w satisfy the hypotheses in Lemma 2. Then

there exist a compact connected Lie group G*, a homomovphism ¢: G¥ — G, and a
neighborhood U* of 1 in G* such that

1) ¢ IU* is a homeomorphism of U* onto a neighborhood U of 1 in G,

(2) G* acts on M*, and wg*(x*) = ¢(g*) m(x*) for x* in M*, g* in G*.

Pyoof. Express M as the union of an ascending sequence of compact invariant
subsets {K;}. Employ Lemma 2 to get G} and ¢;, for each i. Let pij be the “re-
striction” map of G¥ into G’J? for i>j. Then {GI, pij} forms an inverse system.
Let G* be the inverse limit. By Lemma 3, ¢; pij = ¢;, hence G* operates in an ob-
vious manner on M*, and the ¢; define a homomorphism of G* into G satisfying

(2). For large j, Pij is an isomorphism and G’J'-‘ is isomorphic to G*. From this,
(1) readily follows.
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4. PROOF OF THE THEOREM

By [1; p. 94], it suffices to prove the theorem for the case where G is a toral
group. If K is n-dimensional, then K - F(K) is a G-invariant subcomplex having
dimension less than n. Thus if we can show that the isotropy groups {lex in
F(K)} fall into finitely many conjugate classes, we can work inductively to obtain the
theorem. Finally, since F(K) has finitely many components and each is G-invariant,
we may assume in the proof that F(K) is connected and that K is C1[F(K)], in other
words, that K is F-connected.

If F(K) is an orientable manifold, we use the main result in {4] directly, and we
are done. If F(K) is non-orientable, we use Lemma 1 to show that its orientable
double covering M* has finitely generated cohomology. We use Lemma 4 to lift the
action of G to an action of G*, an abelian group, on M*. By [4], G* has finitely
many distinct isotropy groups. The map ¢: G* — G is at most two-to-one, since
the kernel of ¢ consists of covering transformations of M*, If x* is in M¥*, then
o1 (Gw(x*)) contains G:* as a subgroup of index at most two. By [5, Lemma 2]
there are at most a finite number of distinct qb-l(Gﬂ(x*)), hence only a finite number
of distinct Gp(x*), and the theorem is proved.

The referee points out that Bredon [2] has proved the special case of Lemma 4
where M* is the orientable covering.
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