ASYMPTOTIC EQUIVALENCE AND ASYMPTOTIC BEHAVIOUR
OF LINEAR SYSTEMS

Fred Brauer

1. Two systems of differential equations are said to be asymptotically equivalent
if, corresponding to each solution of one system, there exists a solution of the other
system such that the difference between these two solutions tends to zero. If we
know that two systems are asymptotically equivalent, and if we also know the -
asymptotic behaviour of the solutions of one of the systems, then it is clear that we
can obtain information about the asymptotic behaviour of the solutions of the other
system. In some cases, we can reduce the problem of asymptotic equivalence to
the problem of proving that a certain system has solutions which tend to any pre-
scribed limit. Then, by using slight extensions of some results of Wintner [10], we
obtain alternate proofs of some theorems of Wintner [8] on asymptotic equivalence,
as well as some results analogous to those of Levinson [6] and Yakubovi& [12] on
asymptotic behaviour of linear perturbations of linear systems with constant co-
efficients. In general, our hypotheses are considerably more stringent than Levin-
son’s, but our error estimates are correspondingly sharper. The same approach
yields results analogous to those of Cesari [2] and Levinson [6] on asymptotic be-
haviour of certain linear systems. Here too, our hypotheses are more stringent, but
our error estimates are sharper than earlier results. Unfortunately, we see no way
to obtain the earlier results from ours. Our proofs are simpler than previous proofs,
in that they avoid conversion to integral equations and construction of successive ap-
proximations. Instead, they depend on the results of Wintner [10] mentioned earlier,
whose proofs are quite elementary.

We shall always write systems of differential equations in the usual vector form
(see for example [3] or [4]). The norm |x| of a vector x will always mean the sum
of the absolute values of the components of x, and the norm |A| of a matrix A will
always mean the sum of the absolute values of the elements of A. All derivatives
with respect to t will be denoted by ', and the derivative of a vector or matrix will
always mean the vector or matrix respectively whose elements are the derivatives
of the elements of the original vector or matrix. We shall assume that all coeffi-
cients are continuous, without always stating this explicitly.

2. We wish to compare the solutions of the linear system
(1) ‘ X' = A(t)x
with the solutions of a perturbed system
(2) y' = Ay + (t, y) .
Sometimes we shall be interested in a linear perturbation giving a system

z

(3) yv' =[A®) + B()]y.
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Here, X, y, and f are n-dimensional column vectors, and A and B arenXn
matrices.

The systems (1) and (2) are said to be asymptotically equivalent if to each solu-
tion x(t) of (1) there corresponds a solution y(t) of (2) such that

(@) lim [y(t) - x(t)] = 0,

t—o0

and if, conversely, to each solution y(t) of (2) there corresponds a solution x(t) of
(1) such that (4) holds. Let X(t) be a fundamental matrix of (1), and set

y(t) = X(t) v(t). Then it is easy to verify that y(t) is a solution of (2) if and only if
v(t) satisfies

(5) v = XU(t) £(t, X(t) V).

The verification is simply the method of variation of constants. Any solution x(t) of
(1) can be written x(t) = X(t) ¢, where ¢ is a constant column vector. Suppose that
all solutions of (5) tend to limits as t — «, and that there exists a solution v(t) of
(5) such that lim;_, ., v(t) = c. This v(t) gives a solution y(t) of (2) such that

y(t) - x(t) = X(t) [v(t) - c].

If it is known that all solutions of (1) are bounded, so that X(t) is bounded, this im-
plies (4), and the asymptotic equivalence of (1) and (2) follows. We state this result
as a theorem, essentially a restatement of a theorem of Wintner [8], who treated the
linear case.

THEOREM 1. Suppose that all solutions of (1) arve bounded as t — . Suppose
also that every solution of (5) tends to a finite limit vector as t — «, and that there
exists a solution of (5) which tends to any prescvibed vector as t — «. Then (1) and
(2) are asymptotically equivalent.,

To apply this theorem in any particular case, we need a result such as the fol-
lowing one, due to Wintner [7, 10], whose proof may also be found in [3, p. 43].
LEMMA 1. If Sw ID(t)| dt < o, then every solution v(t) of
(6) v' =D(t)v
tends to a finite limit vector as t — », and, given any finite vector, theve exists a

solution of (6) which tends to this vector as t — .

We shall generalize this lemma slightly in the next section, still restricting it to
linear systems. Actually, Wintner proved the following result for non-linear systems
in [9, 10].

LEMMA 2. Let At) be a continuous non-negative function on 0 < t < oo, with
S A(t)dt < . If the system V' = g(t, V) satlisfies the condition

lgt, ] < |vira®  (O<t<w, [v]<),

then each of its solutions tends to a finite limit vector as t — «, and each finite vec-
tor is the limit (as t — «) of one of its solutions.
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For a linear perturbed equation of the form (3), the equation (5) takes the form

(7 v = X"(t) B(t) X(t) v.

[>e)
If X(t) and X~ *(t) are bounded and 5 |B(t)| dt < «, Lemma 1 gives the asymptotic
equivalence of (1) and (3). The boundedness of X *(t) is assured by the hypothesis

(8) lim inf " tr A(s)ds > -,
t— oo 0
and this gives another result of Wintner [8].
THEOREM 2. Suppose that all solutions of (1) are bozmcéed as t — o, that (8) is
satisfied, and that Soo |B(t)| dt < w. Then the linear systems (1) and (3) are
asymptotically equivalent.

Using Lemma 2, we can treat non-linear perturbations dominated by linear
terms as in (2). It is easy to obtain the following slight extension of Theorem 2.

THEOREM 3. Suppose that all solutions of (1) are bounded as t — «, that (8) is
[~ o]
satisfied, and that If(t, y)| < |y| A(t), where S A({t)dt < . Then the systems (1)
and (2) are asymplotically equivalent.

The proof follows from the inequality
|X~1(1) £(t, X(W) V)| < | X @] [X®] | v]at) < K |v]|A®),
valid for some constant K, and Lemma 2 and Theorem 1.

3. Now we shall discuss the asymptotic behaviour of solutions of linear systems.
First we require some extensions of Lemma 1.

LEMMA 3. If v(t) is a solution of the linear system (6) with lim,_, v(t) = c,
o0
and if lD(t)| < A(t), where S A(t) dt < «, then there exists a constant K such that
|v(t) - c| < KSOO A(u) du.
t

Proof.
|v(t) - c| = ISwD(u)v(u) duI _<_S°o lD(u)I lv(u)l duS_Sw A(u) ]v(u)l du.
t t t

It has been shown by Wintner [11, Appendix] (see also [1], [5]) that if .r(t) is the
solution of r' = A(t)r with r(0) = |v(0)|, then |v(t)] < r(t) for t> 0. Clearly, r(t)
is monotone increasing and tends to a finite limit r,, as t — «. This implies that

|V(t) - c| < Sw A() r(u)du = Soo r'(u) du=r, - r(t).
t t

To estimate r,, - r(t), we observe that each solution r(t) of r'= A(t)r has the form
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t
A(u)du
r(t) = ae’® ,

where a = r(0) = |v(0)|, and that it therefore tends to the limit

0
A (u)du
r, =ae 0
Consequently,
_[°° A(u)du - j°° A(u)du J’ A(uw)du
r, - r(t)=ae"0 1-e°t Sae 5 A(u) du,

by the elementary inequality 1 - e-P < b for b > 0. The result now follows, with
the constant

[+ o]
j A(u)du
K= |v(0)] e’ 0
depending only on the initial value |v(0)| .
LEMMA 4. For the non-homogeneous system

(9) v'=D({t)v + a(t),

o0
with | D) < A®), |a®)| < A, and S A(t)dt < «, every solution tends to a finite

limit vector as t — », and to each finite vector theve covvesponds a solution of (9)
which tends to this vector as t — «. Ifv(t) is a solution of (9) with lim_,, v(t) = c,
then

lv(t) - c|_<_ KSooh(u) du
t

Jor some constant K.

Proof. As in the proof of Lemma 3, we obtain
[>e]
Iv(t) - cl < St [A(u) |v(u)| + A(u)] du.

If r(t) is the solution of r' = A(t) r + A(t) with r(0) = |v(0)| then ]v(t)l < r(t) for

t> 0, as in Lemma 3, and r(t) is monotone increasing and tends to a limit r,, as

t — . Again |v(t) - c| < re - r(t), and we must estimate r, - r(t). Any non-

trivial solution ry(t) of the corresponding homogeneous equation r'= A(t)r tends to
o0

a limit ry(o) as t — «, and rglo) - ro(t) < KS A(u) du, by Lemma 3. We can write
t

r(®) = ro® - ro® { [AW/r o] au,
t
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for a suitable homogeneous solution ry(t), and r,, = ry(<). Then

r - r(t) = ry(o) - ro(t) + ro(t)St [A(u)/rg(u)] du.

Since ry(t) is monotone increasing, ry(t)/ry(u) < 1 for t < u, and
o0 (o]
Ty (t)S [x(u)/ro (W] du < S‘ A(u)du.
t t

The bound on ry(«) - ry(t) given by Lemma 3 now yields the result.
We can now prove the main result of this section.

THEOREM 4. Let A in (1) be a constant matvix. Let the distinct real parts of
the characteristic voots of A be u; (i=1, «--, s), with py < pz < - < pus. Let mj
be the lavgest multiplicity of any chavactevistic voot with veal part y; (i=1, -, s),
and let m = max) i< mj. Suppose

10 " eltem ™ By at <o,

Jor some k > 0 and some real a, subject to the restviction a > mj) + mg - 2 if
k = 0. Then to each solution x(t) of (1), there corresponds a solution y(t) of (3)
such that

2m+mg-3-a e(p, 1-k)t]

(11) y(t) - x(t) = oft (t = ).

Conversely, to each solution y(t) of (3) theve corvesponds a solution x(t) of (1) such
that (11) holds.

Proof. There exists a constant matrix which transforms (3) to a system of the
same form with the same integrability condition (10), but with A replaced by a suit-
able canonical form. Thus we may assume that A has the form

Each block A;j corresponds to the characteristic roots with real part pj. Then we
can write

X, Xt
X, X
X(t) = ' , X)) = - ’

where
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(12) |x:0] < k™, xiln] <keTIT e 21, 0, 8).

We can decompose the matrix B(t) into blocks of the same size as the Aj. Thus, if
Aj is an nj X nj matrix, we obtain blocks Bij(t) with n; rows and nj columns
(i, i= 1’ " S)’ and

Bji(t) - Bjs(h)
B(t) =
Bg(t) - Bgg(t)

The system (7) becomes
S
(13) vi= XM B®O Xt vy (=1, 8),
i=1

where v is a vector decomposed into s vectors v; of dimension n;. In view of (12),

%70 By 0 X 0] < KeTEI2 i)t B gy

Because of the assumption (10), each vector c is the limit of a solution v(t) of (13).
Each equation in (13) (actually an n;-dimensional system) can be regarded as a
linear non-homogeneous system for v; with the non-homogeneous part consisting of
all terms in v; for j# i. Then, because of (10) and (12), the equations in (13) can be
written as v} = D, (t) v, + a,(t), with |D;(t)| < 3;(1), |ayt)] < AyD), for

. - TR . —a - —(u:-
A = REPTs T2 gl lit g ()] - iR 2 o (i I gy

for some non-negative integrable function qj(t). Then n;-dimensional vector v;(t)
tends to an n;-dimensional vector c;, made up of the appropriate components of c,
and by Lemma 4,

mit+mg —a.—Ze- (1 -1 tk)u

|vi(t) - Cil < K'St As(u)du < K'S‘t u q;(w) du.

mi+mg-a-2 e-(p,i-u 1+k)u

Since u is monotone decreasing for sufficiently large u, we

have

mi-t-ms—a-ze—(ui—y.l +k)t] (t — <)

(14) | vi(®) - ci| = ot

Let xi(t) and yi(t) be the n;-dimensional vectors whose components are the compo-
nents of x(t) and y(t) corresponding to the components of v(t) which appear in v;(t)
for any solutions x(t) of (1) and y(t) of (3). Then, corresponding to each solution
x(t) of (1), with x(t) = X(t) c, there exists a solution y(t) of (3) with y(t) = X(t) v(t).
For these solutions, x;(t) = X;(t) ¢; and y;(t) = X;(t) v;(t). In view of (12) and (14),

7, ®) - %, (@)] = o(t?™iT™s 23 100 _ (q2mims-a-3(H1-KY (¢,

Since this estimate holds for all i, we obtain (11).
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We note that in order to draw a conclusion y(t) - x(t) — 0 as t — «, we may take
k=pu, and a=2m + mg - 3 if p, > 0. Thus the condition

[+ o]
S 2P 3 o Bst Bt dt < w

implies y{t) - x(t) = 0 as t > ». If 4, <0, we may take a=2m + mg- 3 and k=0,
and we see that

implies y(t) - x(t) = o(e‘u'lt).

Of course, Theorem 4 also applies to a non-linear perturbation (2) with
| £(t, ¥)] < |y|» (), where A(t) is a continuous non-negative scalar function satisfying
the same integrability condition as IB(t)I . The proof is a straightforward adapta-
tion of the proof of Theorem 3.

To indicate the relation between Theorem 4 and earlier results of this type, we
quote two of these results.

THEOREM 5 (Levinson [6]). Let A be a constant matrix, and suppose the dis-
tinct rveal parts of the characteristic voots of A ave p; (i=1, -, s), with

1 <pa< - pm<-B<0< tm+1 < - < Ug.

[+ o]
Suppose B(t) is a matvix with S | B(t)| dt < . Then therve exist n linearly inde-

pendent vector solutions y(k) (t) k=1, ---, n) such that, as t — =,

) Yy -0 k=1, m), y¥e~cMeHt kem+1,-, ),
where the C(k) are n - m independent constant column vectors, characteristic vec-
tors of the matrix A (k=m+ 1, +--, n).

THEOREM 6 (Yakubovic [12]). Let A be a constant matrix. Use the notation of
Theovem 4 and, in addition,let p be the largest multiplicity of any characteristic
rvoot with veal part zevo, with the convention that p = 1 if theve are no such charac-
teristic voots. Consider a non-linear system (2) with |f(t, y)| < |y| x®). If

S tTstP-2 sty (1) gt < oo,

then (1) and (2) are asympiotically equivalent.

Theorem 4 is weaker than Theorem 5 in the sense that it requires a much
stronger integrability condition. However, it is stronger in the sense that it gives a
sharper conclusion than the asymptotic relation (15).

If in Theorem 4 we take a = mg+ p - 2 and k= u, when pu, > 0, we have the
same hypotheses as in Theorem 6. However, Theorem 4 yields only

y(t) - x(t) = o(t?™-P-1y

while Theorem 6 yields y(t) - x(t) = o(1). If m = 1, which implies p = 1, the results
are the same, but otherwise our result is weaker than Yakubovié¢’s. However, under
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stronger integrability conditions, our result yields sharper estimates. In general,
the smaller the perturbation, the smaller the difference between the solutions of the
perturbed and unperturbed equations.

4. This section deals with linear perturbations of linear systems with variable
coefficients. Let A be a constant matrix with distinct characteristic roots
0], ***y Op, With Ro;=p; (=1, -, n) and p) < py < ** < p,. Let V() be a dif-
ferentiable matrix, and suppose A + V(t) has characteristic roots A(t), -+, A,(t),
arranged in order of increasing real parts. Suppose lim;_,  V(t) = 0. Then, by re-
ordering the o; if necessary, we can assume that lim A;(t) = o5 (i =1, .-+, n).

We now require an extension of a method of Cesari [2] for diagonalizing variable
matrices.

LEMMA 6. Suppose that limy_,, V(t) = 0 and that V'(t) satisfies some inte-
grability condition of the form

(16) Swf(t)[V'(t)l dt < e,

where {(t) is a non-negative continuous function. Then theve exists a differentiable
matvix S(t), which tends to a non-singular constant matvix T as t — o, such that
S™Ht) [A + V(B)]S(t) = A(t), where A(t) is a diagonal matrix whose diagonal elements
are \(t), ***, Ap(t). S(t) and S~ (t) are bounded, and

1 Soof(t) |s')] dt < w.

Proof There exists a non-singular constant matrix T such that T 'AT = A
where A denotes the diagonal matrix with diagonal elements 0,, ---, 6,,. We let
S = TS, and we attempt to find §. We require

S=1(A +V)S=8"1T"YA + V)TS = S~ (T-*AT + T-VT)S = §-* (A + V)§,
where V = T"'VT. Since V is linear and homogeneous in the elements of V, it is

differentiable and satisfies

> o]

lim V(t) = 0, S £(t) | V' (t)] dt < .

t—00

Consider the matrix M(a, t) = A + V(t) - AE. The roots of det M(A, t) = 0 are X (t)
(i=1, ---, n). Let the cofactor of m;;(x, t) in M(a, t) be cij()\, t), and let

(18) 8;;(8) = c3;05(1), £/ I (0 - 03).
k]
Because,_ c;; (A J(t), t) tends to the cofactor of the element in the jth row and ith col-

umn of A - ojE as t — o, limg_,,, s1 (t) = GJ We let S(t) be the maftrix with ele-
ments §;(t), and then it is clear that lim,_,  §(t) = E. Also,

M:s

(19) Ay + 150 - A4() 01y €35 (N (1), 1) =

—

J=
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For i # k, this is true because a determinant with two identical rows is zero. For

i =k, it is true because Ait) is a characteristic root of A+ V(t) Now (18) and (19)
1mp1y that [A + V(t)]S(t) = S(t)A(t) Since limi—e S(t) = E, S™1(t) exists for large t,
and

A=S51A+V)S=51(A+V)S,

as desired.

It remains to prove (17). The elements of S'(t) are linear and homogeneous in
the elements of V'(t) and the Al 1(t). Because of (16), we need only prove

(20) Soof(t)l M) dt<ewo  (i=1, -, n).

Let F(), t) = det M(, t). Since F(Ai(t), t) = 0,
Fy (1), DAL() + F;(0), t) = 0.

Because A has distinct characteristic roots, F)(i(t), t) tends to a non-zero limit
as t — ., The term F¢(r;i(t), t) is linear and homogeneous in the elements of Vi),
and thus (16) implies (20).

By means of Lemma 6, we can compare the solutions of

(21) x'= [A+ V({H)]x
and

(22) v' = [A+V(@H) + RO]y.
We let

t
S RNN(s)ds =y;(t) (=1, --,n); pt) =y, () - 7).
0

Our assumptions imply that y;(t) < y,@t) < - <y, (t) for 0 < t < o,
THEOREM 7. Suppose that

(23) Sco PR |y (ty | at < e, Soo eP(D+k(t) | R(t)| dt < o,

for some function k(t) > 0. Then, to each solution x(t) of (21), there corvvesponds a
solution y(t) of (22) such that y(t) - x(t) = o(e71(t) 'k(t)) as t — o,

Proof. By Lemma 6, there exists a matrix S(t) which tends to a non-singular
constant matrix T as t — «, and such that S™![A + V]S = A. The matrices S(t) and
S-(t) are bounded for large t, and

(24) {7 P40 |51t at < .

The changes of variable x = S(t) w, y = S(t) z transform (21) to
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(25) w' = [A®f) + By(t)]w,  By(t) = -S~(t) S'(t),
and (22) to
(286) z' = [A(t) + By(t) + B(t)]z, B(t) = S™1(t) R(t) S(t).

Because of (23) and (24),
(27) % ep4®) | gy at <, 7 PO By 1) at < 0.

We compare (25) and (26) with
(28) u'=A@)u,
which has a fundamental matrix U(t) such that

el (t) —y1(t)

Ut) = - U-l(t) =
' e'yn(t) ’ e"'}’n(t)

In comparing (25) with (28) as in Theorem 4, we are led to consider the system
v = U™1(t) By(t) Ut) v, or

(t) eyj(t)v .

(29) vi=2 e 7il%p i

0ij
=1 ’

where v; is the ith component of v. The maximum coefficient in (29) is
t) -y;(t t) —y; (t) -k(t
e?’n( ) 71( ) IBOin(t)l - eyl( ) ')’1( ) ( ) qi(t) ,

where qi(t) is a non-negative integrable function because of (27). We follow the

argument of Theorem 4, noting that V1 (0 -7i(0 k() 4o onotone decreasing since
Y1) - y;(0) - k(t) < v1(t) - 75(t) < 0. We see that there exists a correspondence
between components vj(t) of solutions of (29) and components c; of any constant
vector ¢ such that

IVi (t) _ C1| - O(e‘}/]_(ﬁ _Yi(t)-k(t)) (t — 00) .

This leads to a correspondence between solutions u(t) = U(t) ¢ of (28) and
w(t) = U{t) v(t) of (25) such that

(t)- k(t)

|u(t) - w(t)] = o(e”? ) (o).

An analogous argument yields a correspondence between solutions u(t) of (28) and
z(t) of (26) such that

lu®) - 2(0] = 0”10 ¢ oy,
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Consequently,

-k
| 2(t) - w()] = 0@’ (¢ o).
Since S(t) and S™(t) are bounded for large t, this implies the conclusion. of the
theorem.

If v,(t) > 0, we can take k(t) = y,(t), and we see that
* walt © a®
S 7l [y ()|t < o, S e’ |R(t)|dt < =

implies y(t) - x(t) = o(1).

The standard results of this type ([2], [3, p. 38], [4, p. 92]) differ from Theorem
7 in that they require only integrability of IV' (t)l and IR(t) I, and give somewhat dif-
ferent error estimates. They are sharper in the sense that they can single out a

particular solution of (21) for estimates, while we must always consider the worst
possible solution.
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