A GENERALIZATION OF A CONTINUOUS CHOICE FUNCTION THEOREM

J. W. Jaworowski

1. Many applications of the Vietoris Mapping Theorem are known (see, for example, [2] and references in that paper). We give another such application concerning multi-valued functions defined on sets of hyperplanes in Euclidean space. Our theorem generalizes a certain known theorem on continuous choice functions. A special case of the theorem of the present paper was first proved in a different way by A. Kosinski, who subsequently proved a still more general theorem which will be published in [3].

We recall some of the simplest concepts concerning multi-valued functions. A multi-valued function $F: X \to Y$, where X and Y are topological spaces, is a function which assigns to each point $x \in X$ a non-empty subset F(x) of Y. The set

$$\Gamma(F) = \{(x, y): y \in F(x)\} \subset X \times Y$$

is called the graph of F.

Let X be a compact space. Then a multi-valued function $F: X \to Y$ is said to be *continuous* if the graph $\Gamma(F)$ is compact. If Y is compact, this condition is equivalent to the upper semi-continuity of F, when F is regarded as a single-valued mapping of X into the hyperspace of non-empty compact subsets of Y. If F is single-valued, then the above notion of continuity is equivalent to the continuity of a single-valued function in the ordinary sense.

2. We shall use the reduced Čech homology groups $H_k(X)$ of a compact space X with coefficients modulo 2. The space X is called *acyclic* if it is non-empty and if $H_k(X) = 0$ for every k > 0. A multi-valued function $F: X \to Y$ is said to be *acyclic* if the sets F(x) are acyclic for every $x \in X$.

VIETORIS MAPPING THEOREM. Let X and Y be compact spaces, and let $f: X \to Y$ be a continuous (single-valued) mapping such that $f^{-1}(y)$ is acyclic for every $y \in Y$. Then f induces an isomorphism $f_*: H_k(X) \approx H_k(Y)$ for every $k = 0, 1, 2, \cdots$ (see [1] and [2], Nr. 3).

3. Let \mathscr{H}_m^n denote the set of all m-dimensional hyperplanes in Euclidean n-dimensional space E^n (m < n) that pass through a fixed point (the origin). For each m-dimensional hyperplane $H \in \mathscr{H}_m^n$, denote by H^* the (n - m)-dimensional hyperplane that passes through the origin and is orthogonal to H.

THEOREM. Let F be a multi-valued continuous acyclic function which assigns to each hyperplane $H \in \mathcal{H}_m^n$ a subset F(H) of E^n . Then there exists a hyperplane $H_0 \in \mathcal{H}_m^n$ such that $F(H_0)$ intersects H_0^* .

Proof. Evidently it is sufficient to prove this theorem for the case when m=n-1. Then the set \mathscr{H}_{n-1}^n is the (n-1)-dimensional projective space P^{n-1} . Let S^{n-1} be the unit (n-1)-dimensional sphere in E^n with its center at the origin,

Received August 15, 1961.

and let ϕ be the natural mapping of S^{n-1} onto P^{n-1} ; then ϕ assigns to each point $x \in S^{n-1}$ the hyperplane orthogonal to the vector \overrightarrow{x} .

Consider the multi-valued mapping $F: P^{n-1} \to E^n$ and the mapping

$$G = F\phi: S^{n-1} \rightarrow E^n$$
.

Consider the graphs of F and G:

$$\Gamma(G) = \{ (x, u): u \in G(x) \} \subset S^{n-1} \times E^n,$$

$$\Gamma(F) = \{ (y, u) : u \in F(y) \} \subset P^{n-1} \times E^n.$$

The mapping ϕ induces a mapping $\Phi \colon \Gamma(G) \to \Gamma(F)$ defined by

$$\Phi(x, u) = (\phi(x), u).$$

Let $r: \Gamma(G) \to S^{n-1}$ be the projection of the graph $\Gamma(G)$ defined by r(x, u) = x, and let $p: \Gamma(F) \to S^{n-1}$ be the projection of $\Gamma(F)$ defined by p(y, u) = y.

Let f be the mapping of $\Gamma(F)$ into S^{n-1} defined by the condition that if $(y, u) \in \Gamma(F)$, then u' is the orthogonal projection of the point $u \in E^n$ onto the (n-1)-dimensional hyperplane represented by y, that is, onto the hyperplane orthogonal to the vector \overrightarrow{x} . If the theorem is false, then the point u' never falls at the origin, and therefore we can consider its central projection u'' from the origin onto the sphere S^{n-1} . Thus we obtain a point u'' which we denote by f(y, u). Evidently f is a continuous (single-valued) mapping of $\Gamma(F)$ into S^{n-1} . Finally, let us put $g = f \Phi \colon \Gamma(G) \to S^{n-1}$.

Consider the commutative diagram

Since the multi-valued mappings F and G are continuous and acyclic, it follows that the single-valued mappings r and p satisfy the assumptions of the Vietoris Mapping Theorem. Therefore r_* and p_* are isomorphisms. Moreover, observe that if (x, u) is a point of $\Gamma(G)$, then the points r(x, u) = x and g(x, u) are never antipodal, for g(x, u) lies on the hyperplane orthogonal to the vector \overrightarrow{x} . It follows that the mappings r and g are homotopic. Therefore $r_* = g_*$ and g_* is an isomorphism.

On the other hand, the homomorphism ϕ_* is zero (for the homology groups are taken modulo 2), and, since p_* is an isomorphism, g_* must be zero, which is impossible since $H_{n-1}(S^{n-1}) \neq 0$. This completes the proof.

In the special case where the mapping F is single-valued and where, for each $H \in \mathcal{H}_{n-1}^n$, the point F(H) lies in the hyperplane H, our theorem reduces to the following corollary:

Let f be a continuous function which selects from each (n-1)-dimensional hyperplane $H \in \mathcal{H}_{n-1}^n$ a point f(H). Then there exists a hyperplane $H_0 \in \mathcal{H}_{n-1}^n$ such that the selected point $f(H_0)$ of H_0 is the origin.

This fact was used by K. S. Stein to prove that if V is a convex body in E^n and p is an arbitrary point of V, then there exists an (n-1)-dimensional cross-section through p whose center of gravity is at p (see [4]). A special case of it was also proved by H. Steinhaus in [5]. Evidently, the assumptions that V is convex or that the point p belongs to V are not essential here. Stein's theorem is true for any set $V \subset E^n$ and $p \in E^n$ which satisfy the condition that each (n-1)-dimensional cross-section through p has a center of gravity and that the centers of gravity depend continuously on the hyperplanes of cross-section.

REFERENCES

- 1. E. G. Begle, The Vietoris mapping theorem for bicompact spaces, Ann. of Math. (2) 51 (1950), 534-543.
- 2. A. Granas and J. W. Jaworowski, Some theorems on multi-valued mappings of subsets of the Euclidean space, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 7 (1959), 277-283.
- 3. A. Kosinski, A theorem on acyclic sets and its applications (to appear).
- 4. Sherman K. Stein, Continuous choice functions and convexity, Fund. Math. 45 (1958), 182-185.
- 5. H. Steinhaus, Quelques applications des principes topologiques à la géométrie des corps convexes, Fund. Math. 41 (1955), 284-290.

University of Chicago and University of Warsaw