DIFFERENTIABLE ISOTOPIES ON THE 2-SPHERE

James Munkres

Let Diff S^n denote the group of diffeomorphisms of degree +1 and of class C^r $(1 \le r \le \infty)$ carrying the unit n-sphere onto itself, topologized by requiring closeness of the maps and their partial derivatives through order r. A path in this space is called a *regular isotopy*; it is a map of the reals R into the space which is constant on the set $t \le 0$ and on the set $t \ge 1$. We say a path is *differentiable* if the induced map of $S^n \times R$ onto S^n is of class C^1 ; a differentiable path is also called a *differentiable isotopy*. If two maps are regularly isotopic, they are differentiably isotopic as well [2, Lemma 1.6].

The group Γ^{n+1} of Milnor and Thom is defined as a quotient group of the group $\pi_0(\mathrm{Diff}\ S^n)$ of path components of this space. The object of the present paper is to give an elementary proof that $\pi_0(\mathrm{Diff}\ S^2)$, and hence Γ^3 , vanishes. This result has since been generalized by Smale [3]. Interest in the group Γ^{n+1} stems from its close connection with the existence of distinct differentiable structures on manifolds; the fact that $\Gamma^3=0$, for example, implies the uniqueness theorem for differentiable structures on 3-manifolds [2]. The group $\pi_0(\mathrm{Diff}\ S^n)$ does not in fact depend on the choice of r; for simplicity we shall prove our result only in the case r=1.

1. Let $\mathcal{E}^{\mathbf{r}}(\mathbb{R}^m, \mathbb{R}^n)$ ($m \leq n$) denote the space of those embeddings of class $\mathbf{C}^{\mathbf{r}}$ of \mathbb{R}^m in \mathbb{R}^n which equal the inclusion map i outside some compact subset of \mathbb{R}^m ; it is topologized as was Diff \mathbb{S}^n . (The map i is defined by the equation

$$i(x_1, x_2, \dots, x_m) = (x_1, \dots, x_m, 0, \dots, 0).)$$

A *loop* in this space will be assumed to be based at i and to be constant for t near 0 and for t near 1. Every element ϕ of Diff Sⁿ is regularly isotopic to an element ϕ_1 which equals the identity in a neighborhood of the north pole [2, Lemma 8.1]; stereographic projection carries ϕ_1 into an element f of $\mathcal{E}^r(\mathbb{R}^n, \mathbb{R}^n)$. A path in $\mathcal{E}^r(\mathbb{R}^n, \mathbb{R}^n)$ is carried by the inverse of this projection into a path in Diff Sⁿ; hence our problem reduces to showing that $\pi_0(\mathcal{E}^1(\mathbb{R}^2, \mathbb{R}^2)) = 0$.

1.1. LEMMA. Let f_t be a differentiable loop in $E^2(R^1, R^2)$ which is homotopic to a loop in the subspace $E^2(R^1, R^1)$, the homotopy passing through differentiable loops. Then there exists a differentiable loop G_t in $E^1(R^2, R^2)$ such that for each t, $G_t f_t$ maps R^1 into itself.

Proof. Given $g \in \mathcal{E}^2(\mathbb{R}^1, \mathbb{R}^2)$, there exists a neighborhood of g such that if g in this neighborhood, there exists a g diffeomorphism g of g which carries the set g(g) onto g onto g onto g diffeomorphism is obtained by sliding g of g along its normal lines onto g and leaving everything fixed outside a neighborhood of these sets. Because the maps are of class g there is no difficulty in carrying out this construction; details are left to the reader. Similarly, if g is a differentiable loop approximating closely enough the differentiable loop g, then the diffeomorphism g may be chosen to be a differentiable loop in g.

Received July 31, 1959; in revised form, June 23, 1960.

Presented to the American Mathematical Society August 26, 1958. This work was supported by contract AF 18(600)-1494.

Since f_t is homotopic to a loop in $\mathcal{E}^2(R^1,\,R^1)$, there exist a finite number of such diffeomorphisms J_t such that their composition throws $f_t(R^1)$ onto R^1 for each t. This composition is the required loop G_t .

1.2. LEMMA. Let G_t be a differentiable path in $E^1(R^2,\,R^2)$ such that the map G_t carries R^1 into itself for each t, and equals the identity on the intersection of the sets $|y|<\epsilon$ and $|t-1/2|>1/2-\epsilon$. Then there exists a differentiable loop H_t in $E^1(R^2,\,R^2)$ such that, for each t, H_tG_t equals the identity in a neighborhood of R^1 .

Proof. A differentiable path G_t in $\mathcal{E}^1(R^2,\,R^2)$ induces a C^1 diffeomorphism $g(x,\,y,\,t)=(G_t(x,\,y),\,t)$ of R^3 onto itself which carries $R^2\times t$ onto itself for each t, and conversely. Let b be so chosen that $G_t(x,\,y)=(x,\,y)$ except for |x|< b/2. Let M be the subset of R^3 on which $|x|\leq b$, y=0, and $0\leq t\leq 1$. Consider the restriction of g first to the half-space $y\geq 0$ and then to the half-space $y\leq 0$. Apply 8.3 and 8.4 of [2] with M as just defined and with A a neighborhood of $\overline{B}d$ M. We obtain a diffeomorphism $g_1(x,\,y,\,t)$, defined whenever $(x,\,0,\,t)$ is in M, such that

$$g_1(x, y, t) = g(x, 0, t) + (0, y, 0)$$

for $|y| < \delta$ (for some δ). We require g_1 to equal g except for |x| < 2b/3, $|y| < \epsilon/2$, and $|t - 1/2| < (1 - \epsilon)/2$, so that g_1 may be extended to R^3 by defining it equal to g elsewhere. One must go to the proof of 8.3 of [2] to verify that g_1 maps $R^2 \times t$ into itself for each t.

Now let $\beta(y)$ be a C^{∞} function which equals 1 for y near 0 and equals 0 for $|y| \ge \delta/2$. Set $g_2(x, y, t) = g_1(x, y, t)$ for $|y| > \delta/2$ and

$$g_2(x, y, t) = \beta(y)(x, 0, t) + (1 - \beta(y))g(x, 0, t) + (0, y, 0)$$

for $|y| < \delta$. Then g_2 is a diffeomorphism which maps $R^2 \times t$ onto itself for each t, and $g_2(x, y, t) = (x, y, t)$ for y near 0. Set $h = g_2 g^{-1}$; the loop H_t in $E^1(R^2, R^2)$ induced by h satisfies the demands of the lemma.

1.3. THEOREM. If $f \in \mathcal{E}^1(\mathbb{R}^2, \mathbb{R}^2)$, then f is regularly isotopic to the identity.

Proof. We may assume that $f \in E^2(\mathbb{R}^2, \mathbb{R}^2)$, since

$$\widetilde{f}(x, y) = \frac{1}{4\delta^2} \int_{x-\delta}^{x+\delta} \int_{y-\delta}^{y+\delta} f(s, t) dt ds$$

is in $\mathcal{E}^2(\mathbb{R}^2,\,\mathbb{R}^2)$ for small δ , and is regularly isotopic to f (as $\delta \to 0$, \tilde{f} converges to f in the C^1 -topology). We may also assume that f equals the identity in a neighborhood of $y \le 0$. Choose b so that f equals the identity for $y \ge b/2$. Let $\alpha(t)$ be a C^∞ function with $\alpha(t) = 0$ for $t \le 1/3$, $\alpha(t) = 1$ for $t \ge 2/3$, and $\alpha'(t) \ge 0$.

Define a differentiable path F_t in $\mathcal{E}^2(\mathbb{R}^2, \mathbb{R}^2)$ by the equation

$$F_t(x, y) = f(x, y + \alpha(t)b) - (0, \alpha(t)b)$$
.

Now F_t equals the identity in a neighborhood of R^1 for t near 0 and for t near 1. Hence $f_t(x) = F_t(x, 0)$ is a differentiable loop in $\mathcal{E}^2(R^1, R^2)$. We shall prove (2.1) that the loop f_t is homotopic to a loop in $\mathcal{E}^2(R^1, R^1)$, the homotopy passing through differentiable loops. Let G_t be the loop constructed in 1.1; then G_t F_t is a differentiable path in $\mathcal{E}^1(R^2, R^2)$ which maps R^1 into itself for each t and equals the identity in a neighborhood of R^1 for t near 0 or 1. By 1.2, there exists a differentiable loop H_t in $\mathcal{E}^1(R^2, R^2)$ such that H_t G_t F_t is the identity in a neighborhood of R^1 for each t.

Define $h_t(x, y)$ equal to $H_tG_tF_t$ for $y \ge 0$ and equal to the identity for $y \le 0$. Then h_t is a differentiable path in $\mathcal{E}^1(\mathbb{R}^2, \mathbb{R}^2)$. For t near 0, $F_t(x, y) = f(x, y)$, so that $h_0(x, y) = f(x, y)$. For t near 1 and y > 0,

$$F_t(x, y) = f(x, y + b) - (0, b) = (x, y + b) - (0, b) = (x, y).$$

Hence $h_1(x, y) = (x, y)$ for all (x, y).

2. One may ask where these arguments would break down if we attempted to prove that $\pi_0(\mathcal{E}^1(\mathbb{R}^n,\mathbb{R}^n)) = 0$ (which would imply that $\Gamma^{n+1} = 0$). One such point appears in the second paragraph of 1.2, where one would need to have

$$\pi_1(\mathcal{E}^1(\mathbb{R}^{n-1}, \mathbb{R}^{n-1})) = 0$$
.

(This is trivial in the case n = 2.) The other difficulty appears if we attempt to generalize to higher dimensions the following lemma, whose proof occupies the remainder of the paper.

- 2.1. LEMMA. A differentiable loop f_t in $\mathcal{E}^2(\mathbb{R}^1, \mathbb{R}^2)$ is homotopic to a loop in $\mathcal{E}^2(\mathbb{R}^1, \mathbb{R}^1)$, the homotopy passing through differentiable loops.
- 2.2. Definition. Let G be a polygonal curve in R². A vertex q of G is said to be *admissible* if it is not an end point of G and if the triangle based at q (that is, the closed convex hull of p, q, r, where p and r are the vertices adjacent to q) intersects G only in the edges pq and qr.
- 2.3. LEMMA. Let G be a simple closed polygonal curve in R^2 with more than three vertices; let σ be an edge of G. There exists an admissible vertex r such that the triangle based at r is contained in Cl(Int G), and r is not a vertex of σ .

Proof (compare [1]). We proceed by induction on the number n of edges in G. Let s, t be the vertices of σ . The sum of the interior angles of G is $(n-2)\pi$; hence there exists a vertex $p \neq s$, t whose interior angle is less than π . If p is admissible, the lemma holds. Otherwise, there exists a vertex q of G in the triangle based at p, such that the open segment pq lies in Int G. $G \cup (pq)$ falls into two simple closed curves, with disjoint interiors, having only the edge pq in common. One of these curves contains σ ; application of the induction hypothesis (with pq taking the place of σ) to the other curve locates the required admissible vertex.

2.4. LEMMA. Let G be a simple polygonal curve in R^2 lying in the region a < x < b except for its end points (a, 0) and (b, 0). If p_i is an inadmissible interior vertex of G, then G has an admissible vertex not adjacent to p_i .

Proof. Let $(a, 0) = p_0, p_1, \cdots, p_n = (b, 0)$ be the successive vertices of G. For each inadmissible vertex $p_j \neq p_0$, p_n of G, define $g(p_j)$ as follows: Consider the vertices of G lying in the triangle based at p_j , other than p_{j-1} and p_{j+1} . Consider lines passing through these vertices and parallel to $p_{j-1}p_{j+1}$; pick $g(p_j)$ as a vertex on the line closest to p_j . Let G' denote the polygonal curve with successive vertices p_i , $g(p_i)$, $g^2(p_i)$, There are several possibilities: G' may end at a vertex other than p_{i-1} or p_{i+1} , in which case the lemma follows; G' may end at p_{i-1} or p_{i+1} ; or we may have $gj(p_i) = g^k(p_i)$ for some j < k. Consider the last case; let k be the smallest such integer; let $g^{(i)}$ be the closed polygonal curve with successive vertices $gj(p_i)$, $g^{j+1}(p_i)$, ..., $g^{k-1}(p_i)$. One sees readily that $g^{(i)}$ is simple, and that it crosses $gj(p_i)$, $g^{j+1}(p_i)$, ..., $g^{k-1}(p_i)$. One sees readily that $g^{(i)}$ is simple, and that it crosses $gj(p_i)$ at each of the vertices of $g^{(i)}$ but is otherwise disjoint from $g^{(i)}$. Consider the components of $g^{(i)}$ Int $g^{(i)}$; among these arcs are two that join adjacent vertices of $g^{(i)}$. At least one of these two arcs contains neither p_{i-1} nor p_{i+1} as an interior point; application of Lemma 2.3 to the union of this arc with the corresponding line segment of

- G" (with σ set equal to this line segment) locates the desired admissible vertex. A similar argument applies in the other case; the fact that G' ends at a vertex adjacent to p_i on G is essential.
- 2.5. Let $\mathfrak{P}_n(\mathbb{R}^2)$ denote the space of all simple polygonal curves (graphs) G in \mathbb{R}^2 from (a, 0) to (b, 0), lying in a < x < b except for these two end points, and having n vertices (n \geq 3). The space is topologized by requiring closeness of corresponding vertices; a path G_t in this space is *differentiable* if the vertices are C^1 functions of t. $\mathfrak{P}_n(\mathbb{R}^1)$ is the subspace of graphs which lie in \mathbb{R}^1 .
- 2.6. LEMMA. Let G_t be a differentiable path in $\mathfrak{P}_n(R^2)$. Corresponding to any $\delta>0$ and $0< t_0<1$, there is a homotopy of G_t to a path H_t such that H_t lies in $\mathfrak{P}_n(R^1)$ for t near t_0 . The homotopy passes through differentiable paths, and it is the identity for $|t-t_0|>\delta$.

Proof. We proceed by induction on n. Let p be an admissible vertex of G_{t_0} ; it is then also an admissible vertex for all G_t with $|t-t_0|<\delta_1<\delta$ (for some such δ_1). A homotopy is constructed by gradually pushing in the triangle based at p, for those G with $|t-t_0|<\delta_1/2$, so that the edges incident on p make a straight angle. For $\delta_1/2<|t-t_0|<\delta_1$, one pushes the triangle in only part-way, and for $|t-t_0|>\delta_1$ one does nothing at all.

Now that portion of the resulting path which corresponds to the interval $|t-t_0| \leq \delta_1/3$ may be considered as an element of $\mathfrak{P}_{n-1}(\mathbb{R}^2)$, if we delete p as a vertex, and the induction hypothesis may be applied to obtain a homotopy. We require it to be the identity for $|t-t_0| > \delta_1/4$, so that it may be extended to the entire t-interval by making it the identity outside. The composition of these two homotopies satisfies the demands of the lemma.

2.7. LEMMA. Let G_t be (1) a differentiable path in $\mathfrak{P}_n(R^2)$ which (2) is constant and lies in $\mathfrak{P}_n(R^1)$ for t near 0 and for t near 1. There is a homotopy of G_t to a path in $\mathfrak{P}_n(R^1)$, the homotopy passing through paths satisfying (1) and (2).

Proof. Again we proceed by induction. Using 2.4, we may construct a subdivision t_0, \cdots, t_m of the t-interval and a correspondence between the intervals $I_i = [t_{i-1}, t_i]$ and the vertices of G_t , such that for each i the vertex p^i corresponding to I_i is admissible in G_t for all t in a neighborhood of I_i , and p^i and p^{i+1} are distinct and non-adjacent. As in 2.6, we push in the triangle based at p^i so that the angle at p^i is straight, for those G_t with t in a neighborhood of I_i . Near $t = t_0 = 0$ there is no pushing in, since the angle at p^i is already straight; for $t > t_1$ we taper off the "pushing in" sharply, so that the homotopy thus defined is the identity except in a small neighborhood of I_i . Because p^i is not adjacent to p^i , its admissibility for $t \in I_2$ is not affected by the alteration we just carried out in G_t . For the same reason, a similar pushing in of the triangle based at p^i , for all $t \in I_2$, will not affect the straightness of the angle at p^i for $t \in I_1$ (as it would, of course, if p^i were adjacent to p^i). We proceed in this way for each successive interval. Let the resulting path be denoted by H_t .

Now we consider the interval $|t-t_i|<\delta$, where δ is chosen so that the angles at p^i and p^{i+1} are straight for these values of t. We then delete p^i and p^{i+1} as vertices, consider H_t as a graph in $\mathfrak{P}_{n-2}(R^2)$, and apply 2.6: There is a homotopy of H_t to a path which lies in $\mathfrak{P}_{n-2}(R^1)$ for $|t-t_i|<\delta_i<\delta/2$; the homotopy is required to be the identity for $|t-t_i|>\delta/2$, so that it may be extended trivially to the entire t-interval. Because we considered H_t as lying in \mathfrak{P}_{n-2} rather than \mathfrak{P}_n , the angles at p^i and p^{i+1} remain straight for $|t-t_i|<\delta$.

We proceed in the same way for each i. Let the resulting path be denoted by J_t . For $t \in I_i$, the angle at p^i is flat, so that J_t may be considered as a path in $\mathfrak{P}_{n-1}(\mathbb{R}^2)$, on deletion of p^i as a vertex. Since J_t lies in $\mathfrak{P}_{n-1}(\mathbb{R}^1)$ for t near the end points of I_i , the induction hypothesis applies. The resulting homotopies, defined over the intervals I_i , fit together to give the desired homotopy of J_t to a path in $\mathfrak{P}_p(\mathbb{R}^1)$.

2.8. Proof of 2.1. Choose b so that $f_t(x) = (x, 0)$ for |x| > b/2. A subdivision of the interval [-b, b] induces, for each t, a polygonal approximation G_t to the curve f_t . Let the subdivision be fine enough so that the graph G_t is simple for each t, so that G_t is a differentiable path in $\mathfrak{P}_n(\mathbb{R}^2)$. Given ϵ very small, let G_t^{ϵ} be the C^1 curve obtained by rounding off the corners of the graph G_t by inscribing a circle at each vertex p which is tangent to the edges incident on p at a distance ϵ from p. For the moment, we do not parametrize this curve.

The curve f_t may be slid along its normals onto the curve $G_t^{\mathcal{E}}$, at least if the subdivision defining $G_t^{\mathcal{E}}$ is suitably fine. For each t, the parametrization of the curve $G_t^{\mathcal{E}}$ is taken to be that induced from the curve f_t . Then $G_t^{\mathcal{E}}$ is a loop in $\mathcal{E}^1(\mathbb{R}^1, \mathbb{R}^2)$. By 2.7, G_t may be deformed into a path H_t in $\mathfrak{P}_n(\mathbb{R}^1)$; this deformation carries the curve $G_t^{\mathcal{E}}$ onto $H_t^{\mathcal{E}}$ for each t. Again, we take the parametrization of each curve to be that induced from $G_t^{\mathcal{E}}$; the result is a homotopy through differentiable loops in $\mathcal{E}^1(\mathbb{R}^1, \mathbb{R}^2)$ to the loop $H_t^{\mathcal{E}}$ in $\mathcal{E}^1(\mathbb{R}^1, \mathbb{R}^1)$.

This does not quite prove the lemma, because the homotopy took place in $\mathcal{E}^1(R^1,\,R^2)$ rather than in \mathcal{E}^2 . Let $g(x,\,t,\,s)$ be the homotopy, with s the homotopy parameter. Then

$$h(x, t, s) = \frac{1}{2\delta} \int_{x-\delta}^{x+\delta} g(y, t, s) dy$$

is the desired homotopy, for δ sufficiently small.

REFERENCES

- 1. S. S. Cairns, An elementary proof of the Jordan-Schoenflies theorem, Proc. Amer. Math. Soc. 2 (1951), 860-867.
- 2. J. R. Munkres, Obstructions to the smoothing of piecewise-differentiable homeo-morphisms (to appear in Ann. of Math. (2) 72 (1960)).
- 3. S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10 (1959), 621-626.

Princeton University