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DIFFERENTIABLE ISOTOPIES ON THE 2-SPHERE

James Munkres

Let Diif S™ denote the group of diffeomorphisms of degree +1 and of class CT
(1 < r <) carrying the unit n-sphere onto itself, topologized by requiring close-
ness of the maps and their partial derivatives through order r. A path in this space
is called a regulay isotopy; it is a map of the reals R into the space which is con-
stant on the set t < 0 and on the set t > 1. We say a path is differentiable if the in-
duced map of S®X R onto S™ is of class C!; a differentiable path is also called a
diffeventiable isotopy. If two maps are regularly isotopic, they are differentiably
isotopic as well [2, Lemma 1.6].

The group I+l of Milnor and Thom is defined as a quotient group of the group

g (Diff S™) of path components of this space. The object of the present paper is to
give an elementary proof that 7,(Diff S?), and hence I'?, vanishes. This result has
since been generalized by Smale [3]. Interest in the group I'ntl stems from its
close connection with the existence of distinct differentiable structures on manifolds;
the fact that I'S = 0, for example, implies the uniqueness theorem for differentiable
structures on 3-manifolds [2]. The group 7y(Diff S®) does not in fact depend on the
choice of r; for simplicity we shall prove our result only in the case r = 1.

1. Let €¥(R™, R™ (m <n) denote the space of those embeddings of class CT of
R™ in R™ which equal the inclusion map i outside some compact subset of R™; it
is topologized as was Diff S™. (The map i is defined by the equation

i(xly X35 """ xm) = (X]_; Tty X 0, -+, 0) 2

A loop in this space will be assumed to be based at i and to be constant for t near 0
and for t near 1. Every element ¢ of Diff S" is regularly isotopic to an element ¢,
which equals the identity in a neighborhood of the north pole [2, Lemma 8.1]; stereo-

graphic projection carries ¢, into an element f of € (R", R™. A path in £T(R®, R®
is carried by the inverse of this projection into a path in Diff S™ hence our problem

reduces to showing that 7,(E*(R?, R?)) = 0.

1.1. LEMMA. Let f; be a diffeventiable loop in £3(R, R?®) which is homotopic
to a loop in the subspace €2(R, RY), the homotopy passing thvough diffeventiable
loops. Then theve exists a diffeventiable loop G in €'(R?, R®) such that for each t,
G f; maps R?! into itself.

Proof. Given g € £3(RY, R?), there exists a neighborhood of g such that if h lies
in this neighborhood, there exists a C* diffeomorphism J of R2? which carries the
set g(R!') onto h(R!). The diffeomorphism is obtained by sliding g(R!) along its
normal lines onto h(R!) and leaving everything fixed outside a neighborhood of these
sets. Because the maps are of class C?2, there is no difficulty in carrying out this
construction; details are left to the reader. Similarly, if h; is a differentiable loop
approximating closely enough the differentiable loop g, then the diffeomorphism J;
may be chosen to be a differentiable loop in E£!(R2, R2).
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Since f; is homotopic to a loop in £2%(R!, R!), there exist a finite number of such
diffeomorphisms J; such that their composition throws f.(R!) onto R for each t.
This composition is the required loop Gy.

1.2. LEMMA. Let Gt be a differentiable path in €Y (R2, R?) such that the map
Gt carries R! into itself for each t, and equals the identity on the intevsection of the
sets |y|<e and |t - 1/2|> 1/2 - €. Then theve exists a diffeventiable loop Hy in
E€Y(R?, R?) such that, for each t, H Gy equals the identity in a neighborhood of R

Pyroof. A differentiable path Gt in €'(R?, R?) induces a C! diffeomorphism
g(x, v, t) = (G(x, y), t) of R® onto itself which carries R? X t onto itself for each t,
and conversely. Let b be so chosen that Gi(x, y) = (X, y) except for le < b/2. Let
M be the subset of R3® on which |x| <b, y=0,and 0 <t<1. Consider the restric-
tion of g first to the half-space y > 0 and then to the half-space y < 0. Apply 8.3
and 8.4 of [2] with M as just defined and with A a neighborhood of Bd M. We obtain
a diffeomorphism g,(x, y, t), defined whenever (x, 0, t) is in M, such that

g,(x,y, t) = g(x, 0, t) + (0, y, 0)

for |y|< 6 (for some 8). We require g, to equal g except for |x|< 2b/3,

|y| < &/2, and lt - 1/2| <(1 - £)/2, so that g, may be extended to R3 by defining it
equal to g elsewhere. One must go to the proof of 8.3 of [2] to verify that g, maps
R? X t into itself for each t.

Now let 8(y) be a C* function which equals 1 for y near 0 and equals 0 for
{ylz 6/2. Set g,(x,y,t) =g,(x,y,t) for |y| >5/2 and

gz(x; y? t) = B(Y)(Xy 0, t) + (1 - B(Y)) g(X, 0’ t) + (O, y’ O)

for |y|< 6. Then g, is a diffeomorphism which maps R2 X t onto itself for each t,
and g,(x,y, t) = (%, y,t) for y near 0. Set h = g,g™!; the loop H; in £!(R?, R?) in-
duced by h satisfies the demands of the lemma.

1.3. THEOREM. If fe€ £XR?, R?), then £ is vegularly isotopic to the identity.

Proof. We may assume that f € £2(R2, R?), since

1 x+0 ~y+0
f(x, y) = —g S f(s, t) dtds
402 Yx-§ Yy-b

is in £2(R? R®) for small 6, and is regularly isotopic to f (as 6 — 0, f converges
to f in the C!-topology). We may also assume that f equals the identity in a
neighborhood of y < 0. Choose b so that f equals the identity for y > b/2. Let
a(t) be a C* function with a(t) = 0 for t <1/3, a(t) =1 for t>2/3, and a'(t)> 0.

Define a differentiable path F, in £ (R2, R®) by the equation
Fi(x, y) = i(x, y + a()b) - (0, a(t)b).

Now F; equals the identity in a neighborhood of R! for t near 0 and for t near 1.
Hence f(x) = F(x, 0) is a differentiable loop in £2(R!, R?). We shall prove (2.1) that
the loop f{ is homotopic to a loop in & (R!, R?), the homotopy passing through differ-
entiable loops. Let Gi be the loop constructed in 1.1; then G; F; is a differentiable
path in €'(R?, R?) which maps R! into itself for each t and equals the identity in a
neighborhood of R! for t near 0 or 1. By 1.2, there exists a differentiable loop H;
in €!(R? R?) such that H; G; F; is the identity in a neighborhood of R! for each t.
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Define hi(x, y) equal to H;G¢F for y > 0 and equal to the identity for y < 0.
Then h; is a differentiable path in €'(R2, R?). For t near 0, Fx, y) = {(x, y), so
that hy(x, y) = f(x, y). For t near 1 and y > 0,

Ft(x’ Y) = f(X’ y+ b) - (0’ b) = (X, y+ b) - (01 b) = (X, Y)-
Hence h,(x, y) = (%, y) for all (x, y).

2. One may ask where these arguments would break down if we attempted to
prove that y(€ }(R™®, R™) = 0 (which would imply that T™*! = 0). One such point
appears in the second paragraph of 1.2, where one would need to have

mEt@®@ !t r ) = 0.

(This is trivial in the case n = 2.) The other difficulty appears if we attempt to gen-
eralize to higher dimensions the following lemma, whose proof occupies the remain-
der of the paper.

2.1. LEMMA. A differentiable loop fi in £€2(R, R?) is homotopic to a loop in
€2(RY, RY), the homotopy passing thvough differventiable loops.

2.2. Definition. Let G be a polygonal curve in R2. A vertex q of G is said to
be admissible if it is not an end point of G and if the triangle based at q (that is, the
closed convex hull of p, q, r, where p and r are the vertices adjacent to q) inter-
sects G only in the edges pq and qr.

2.3. LEMMA. Let G be a simple closed polygonal curve in R? with movre than
thvee vertices; let 0 be an edge of G. Theve exists an admissible vertex r such
that the triangle based at r is contained in Cl(Int G), and r is not a vertex of o.

Proof (compare [1]). We proceed by induction on the number n of edges in G.
Let s, t be the vertices of 0. The sum of the interior angles of G is (n - 2)7; hence
there exists a vertex p # s, t whose interior angle is less than n. If p is admissible,
the lemma holds. Otherwise, there exists a vertex q of G in the triangle based at p,
such that the open segment pq lies in Int G. GU (pq) falls into two simple closed
curves, with disjoint interiors, having only the edge pq in common. One of these
curves contains o; application of the induction hypothesis (with pq taking the place
of o) to the other curve locates the required admissible vertex.

2.4. LEMMA. Let G be a simple polygonal curve in R? lying in the region
a < x < b except for its end points (a, 0) and (b, 0). If p; is an inadmissible inter-
ior vertex of G, then G has an admissible vertex not adjacent to Pi.

Proof. Let (a, 0) = pg, P1, ***, Pn = (b, 0) be the successive vertices of G. For
each inadmissible vertex pj # po, pn of G, define g(pj) as follows: Consider the
vertices of G lying in the triangle based at pj, other than pj_1 and pj+1. Consider
lines passing through these vertices and parallel to pj_jpj+1; pick g(pj) as a vertex
on the line closest to p;. Let G' denote the polygonal curve with successive vertices
pi, g(p;), g%(pi), -*-. There are several possibilities: G' may end at a vertex other
than p;_; or pi;1, in which case the lemma follows; G' may end at pj.] or pj+1; or
we may have gi(p;) = gk(p;) for some j < k. Consider the last case; let k be the
smallest such integer; let G" be the closed polygonal curve with successive vertices
gi(py), gt (pi), ---, gk~ 1(pi). One sees readily that G" is simple, and that it crosses
G at each of the vertices of G" but is otherwise disjoint from G. Consider the com-
ponents of GN Int G"; among these arcs are two that join adjacent vertices of G". At
least one of these two arcs contains neither p;_; nor pjy+3 as an interior point; ap-
plication of LLemma 2.3 to the union of this arc with the corresponding line segment of
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G" (with o set equal to this line segment) locates the desired admissible vertex. A
similar argument applies in the other case; the fact that G' ends at a vertex adjacent
to p;i on G is essential.

2.5. Let P n(RZ) denote the space of all simple polygonal curves (graphs) G in
R? from (a, 0) to (b, 0), lying in a < x < b except for these two end points, and hav-
ing n vertices (n > 3). The space is topologized by requiring closeness of corres-
ponding vertices; a path G; in this space is differentiable if the vertices are C!
functions of t. P,(R') is the subspace of graphs which lie in R!.

2.6. LEMMA. Let G, be a diffeventiable path in B (R3. Corresponding to any
6> 0 and 0<ty,<1, there is a homotopy of Gt to a path Ht such that Ht lies in
B n(Rl) Jor t neart,. The homotopy passes through differentiable paths, and it is
the identity for |t - to| > 6.

Proof. We proceed by induction on n. Let p be an admissible vertex of Gto; it

is then also an admissible vertex for all Gt with |t - t0| < 8, < 8 (for some such
d,). A homotopy is constructed by gradually pushing in the triangle based at p, for
those G with (t - t0| < 6,/2, so that the edges incident on p make a straight angle.
For 6,/2 < [t - tol < 0,, one pushes the triangle in only part-way, and for t—tol >0,
one does nothing at all.

Now that portion of the resulting path which corresponds to the interval
|t - to| < 6,/3 may be considered as an element of $,_1(R2), if we delete p as a
vertex, and the induction hypothesis may be applied to obtain a homotopy. We re-
quire it to be the identity for |t - tol > 6, /4, so that it may be extended to the entire
t-interval by making it the identity outside. The composition of these two homo-
topies satisfies the demands of the lemma.

2.7. LEMMA. Let Gy be (1) a differentiable path in Bn(R?) which (2) is constant
and lies in 2]3n(R1) Jor t mear O and for t near 1. There is a homotopy of Gt to a
path in ¢ (RY), the homotopy passing through paths satisfying (1) and (2).

Proof. Again we proceed by induction. Using 2.4, we may construct a subdivi-
sion tg, -*+, tm of the t-interval and a correspondence between the intervals
I; = [t;_3, t;] and the vertices of G, such that for each i the vertex p' correspond-
ing to I; is admissible in G for all t in a neighborhood of Ij, and p' and pitl
are distinct and non-adjacent. As in 2.6, we push in the triangle based at p' so that
the angle at p'! is straight, for those G with t in a neighborhood of I,. Near
t = t, = 0 there is no pushing in, since the angle at p'! is already straight; for t > ¢,
we taper off the “pushing in” sharply, so that the homotopy thus defined is the iden-
tity except in a small neighborhood of I,. Because p? is not adjacent to p!, its ad-
missibility for t € I, is not affected by the alteration we just carried out in G;. For
the same reason, a similar pushing in of the triangle based at p?, for all t € I,, will
not affect the straightness of the angle at p! for t € I, (as it would, of course, if p?
were adjacent to p'). We proceed in this way for each successive interval. Let the
resulting path be denoted by H;.

Now we consider the interval |t - tj] < 8, where 6 is chosen so that the angles
at pl and pit! are straight for these values of t. We then delete p' and pit! as
vertices, consider H; as a graph in $,_ (RZ), and apply 2.6: There is a homotopy
of H; to a path which lies in $,_» (Rl) for |t - ti| < 63 < 8/2; the homotopy is re-
quired to be the identity for |t - ti] > 6/2, so that it may be extended trivially to the
entire t-interval. Because we considered H¢ as lying in $,_2 rather than P, the
angles at pi and pit! remain straight for |t - t;| < 6.
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We proceed in the same way for each i. Let the resulting path be denoted by J;.
For t € Il, the angle at pi is flat, so that J; may be considered as a path in
%, _1(R?), on deletion of p! as a vertex. Since J¢ lies in $,_;(R!) for t near the
end points of Ij, the induction hypothesis applies. The resulting homotopies, defined
over the intervals I;, fit together to give the desired homotopy of J; to a path in

Pa®Y.

2.8. Proof of 2.1. Choose b so that fi(x) = (x, 0) for le > b/2. A subdivision
of the interval [-b, b] induces, for each t, a polygonal approximation G¢ to the
curve fi;. Let the subd1v151on be fine enough so that the graph G is simple for each
t, so that G; is a differentiable path in $,(R2). Given & very small, let Gt be the

C! curve obtained by rounding off the corners of the graph G; by inscribing a circle
at each vertex p which is tangent to the edges incident on p at a distance & from p.
For the moment, we do not parametrize this curve.

The curve f; may be slid along its normals onto the curve Gt, at least if the
subdivision defining Gt is suitably fine. For each t, the parametrization of the

curve G{ is taken to be that induced from the curve f,. Then G§ is a loop in
€Y(RY R?. By 2.7, G; may be deformed into a path H; in $,(R!); this deformation
carries the curve G% onto Hf for each t. Again, we take the parametrization of

each curve to be that induced from Gfg; the result is a homotopy through differenti-
able loops in £!(R!, R?) to the loop Hf in &R, RY).

This does not quite prove the lemma, because the homotopy took place in
£1(R, R?) rather than in £2. Let g(x, t, s) be the homotopy, with s the homotopy
parameter. Then

1 x+0
hix, t, s) = 255 gy, t, s)dy
is the desired homotopy, for 6 sufficiently small.
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