A NOTE ON CERTAIN CONNECTED METRIC DIVISION RINGS
Silvio Aurora

1. INTRODUCTION

A. Ostrowski has shown in [5] that if K is a connected metric field, with norm N
such that N(xy) = N(x) N(y) for all x and y, then K is a subfield of the complex
field. In[2], the same conclusion was obtained with the assumption that
N(xy) = N(x) N(y) for all x and y weakened to N(x?) = N(x)? for all x. Indeed, it was
shown that if K is a connected metric division ring in which N(x?) = N(x)2 for all x,
and N(---xy---) = N(...yx...) for all x and y, then K is a division subring of the
division ring of all real quaternions.

In this note some further embeddings of connected metric division rings in the
quaternions are obtained, but with the special assumptions concerning the behavior
of the norm now confined to a sufficiently large portion of the division ring. For in-
stance, Theorem 3 indicates that a connected metric division ring K is a division
subring of the quaternions if N(x?) = N(x)? throughout some neighborhood of zero and
N(---xy---) = N(---yx...) for every x in some neighborhood of zero. Similarly,
Theorem 4 shows that a connected metric division ring K may be embedded in the
quaternions if it contains a set B which fails to be nowhere dense, such that
N(x;-**x,) = N(x;)--- N(x,) whenever x,, ---, x,. are in B, and N(---xy---) = N(--- yx.--)
whenever x is in B.

2. THE SETS 2(N) AND %(N)

The notation and terminology of [2] are assumed known. A pseudonorm N on a
ring R with unit e is said to be unitary if N(e) = 1. We shall now introduce some
sets, similar to sets already considered in [1], which measure the extent to which a
given pseudonorm resembles a pseudo absolute value.

Definition. If N is a pseudonorm for a ring R, we let Z(N) denote the set of all
¢ in R such that N(ecx) = N(c) N(x) for all x in R.

LEMMA 1. Let N be a pseudonorm for a ving R. Thern (i) I(N) c Z(N); (ii) &
c, de Z(N), then cd € Z(N); (iii) if c, cd € Z(N) with N(c) # 0, then d e Z(N).

LEMMA 2. Let R be a ving with unit element e, and let N be a pseudonovm for
R. Then (i) 2(N) # I(N) only if N is unitary; (ii) e € ®(N) if and only if N is either
unitayvy ov is the zevo pseudonorm.

LEMMA 3. Lel R be a topological rving, and let N be a continuous pseudonovrm
for R. Then Z(N) is a closed set in R.

Proofs of these lemmas are left to the reader.

It is easily verified that N is a pseudo absolute value if and only if Z(N) is the
entire ring. Thus, the extent to which N resembles a pseudo absolute value is indi-
cated by the size of Z(N). As in[1], we find it useful to consider the regular ele-
ments of Z(N) when N is a unitary pseudonorm. (See [1] for the basic terminology
and notation relative to regular elements and to the group G of all regular elements.)
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Definition. If N is a unitary pseudonorm for a ring R, we let ¢(N) denote the
set of all regular elements ¢ in R such that N(c) N(c™%) = 1.

LEMMA 4. Let R be a ving with unit e, and let N be a unitary pseudonorm Jor
R. Thern (i) 9(N) = (N)N G; (ii) ¢(N) is a subgroup of G.

The proof is left to the reader.

LEMMA 5. Let R be a connected topological ring with unit e and with continuous
inversion. If N is a continuous unitary pseudonovrm for R such that Z(N) fails to be
nowhevre dense in R, then %(N) contains every component of G which it meets.

Proof. #(N) is closed, by Lemma 3, so that £(N) contains a nonempty open set
A, since Z(N) fails to be nowhere dense. If the ideal I(N) contained A, then Proposi-
tion 4 of [4; Chap. II, Section 2, No. 1] would imply that I(N) is an open subgroup of
the additive group of R and hence is also closed. Since R is connected, the nonempty
open and closed set I(N) would coincide with R, and N could not be unitary. Thus,
I(N) does not contain A, so that there exists an element ¢ in A with N(c) # 0.

If B is the preimage of A relative to the continuous mapping x — ¢x of R into
itself, then B is open and obviously contains e. Also, if x is in B, then c¢x isin A
and therefore in Z(N), so that Lemma 1 (iii) shows that x is in Z(N). That is,

B c Z(N), sothat BNGc N)NG = ¥(N). Since BN G is open in G and contains
e, this element is an interior point of %(N) in the topological group G, whence %(N)
is open in G by the previously cited result from [4], and %(N) is therefore open and
closed in G. It follows that %(N) contains every connected component of G which it
meets.

THEOREM 1. Let K be a connected topological division ving with continuous in-
version, and let N be a continuous unitary pseudonovm for XK such that #(N) fails
to be nowhere dense in K. Then K is algebraically isomovphic to a division subring
of the division ving Q of all veal quaternions.

Proof. By the preceding lemma, ¥(N) contains every component of G which it
meets. If G is connected, then %(N) = G, so that 9(N) = G. On the other hand, if
G is not connected, then the additive group of K is a connected topological group in
which the complement of 0 is not connected. It follows as in [4; Chap. V, Section 3,
Exercise 4] that G, the complement of 0, falls into two connected sets, G, and G,,
such that the negative of any element of G, is in G,. Thus, e is in one of these sets
and -e is in the other; since 9 (N) contains both e and -e, 9(N) meets both com-
ponents of G, so that again $(N) D G and therefore ¥(N) = G. In both cases,

G = g(N) c £(N), while 0 is always in Z(N), so that K= GU 0 ¢ Z(N). This shows
that N is a pseudo absolute value. But N is nonzero, so that the ideal I(N) is not

all of the division ring K and is consequently the zero ideal, whence N is an absolute
value. It is easily seen that every set open in the N-topology is open, so that the N-
topology of R is less fine than the given topology. Then K is connected in the N-
topology, since K is connected. Since N is an absolute value, the result follows
from Corollary 2 of Theorem 9 in [2], which was cited at the end of the first para-
graph of this note.

3. CONNECTED METRIC DIVISION RINGS

In this section we give a few embedding theorems lfor some connected metric
division rings. The terminology agrees with that in [3].

THEOREM 2. Let K be a connected metvic division ring, with noym N, such
that K contains an N-stable, N-power multiplicative semigroup A which fails to be
nowhere dense. Then K is algebraically isomovphic to a division subving of R.
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Proof. By the corollary of Theorem 3 in [3], if we choose a nonzero c in A,
there exists a pseudonorm N' subordinate to N, with N'(c) = N(c), such that N’ is
homogeneous on A. That is, Z(N') D A, so that Z(N'") fails to be nowhere dense in
K. Also, N'(c) = N'(ce) = N'(c) N'(e) since ¢ is in Z(N'), and N'(c) = N(c) # 0 since
N is a norm, so that N'(e) = 1. Thus, N' is unitary, while Lemma 5 of [2] indicates
that N' is continuous since it is a subordinate pseudonorm of K. The theorem fol-
lows if we apply the preceding theorem to N'; inversion in K, indeed in any metric
ring with unit, is easily proved continuous, so that all hypotheses of Theorem 1 are
satisfied.

THEOREM 3. Let K be a connected metric division ving, with novm N, such
that theve exists a neighborhood U of 0 which is N-stable, and a neighborhood V of
0 for which N(x?) = N(x)? for all x in V. Then K is algebraically isomovphic to a
division subring of 2.

Proof. Let ¢ be a positive number less than 1 so small that A = {x | N(x)< &}
is contained in U and in V. Then A is an N-stable semigroup, and N(x2) = N(x)?
for all x in A, so that A is N-power multiplicative by Theorem 1 of [3]. But A is
a nonempty open set and therefore fails to be nowhere dense; the preceding theorem
is then applied to A.

COROLLARY 1. Let K be a connected metric division rving, with novm N, such
that theve exists a neighborvhood U of 0 which is N-stable, and a neighborhood V of
0 for which N(xy) = N(x) N(y) for all X andy in V. Then K is algebraically iso-
morphic to a division subring of L.

COROLLARY 2. Let K be a connected metvic division ving, with norm N, such
that there exists a neighbovhood U of 0 which is N-stable, and a neighborhood V of
0 for which N(x) N(x~*) = 1 whenever x is a nonzevo element of V. Then K is alge-
braically isomorphic to a division subving of 2.

Proof. The condition N(x) N(x~!) = 1 implies that
N(x) N(y) = N(x) N(x™*xy) < N(x) N(x~*) N(xy) = N(xy),

so that N(xy) = N(x) N(y) for all y whenever x is a nonzero element of V. Since
N(xy) = N(x) N(y) for all y if x = 0, we have N(xy) = N(x) N(y) for all y whenever x
is in V, and the first corollary may then be applied.

In order to avoid the assumption that A is a semigroup in Theorem 2, we intro-
duce a stronger multiplicative property for the norm to have on A instead of merely
being multiplicative.

Definition. If N is a pseudonorm for a ring R, and A is a set in R such that
N(xj:--Xy) = N(xy)--- N(x.) whenever x;, -+, X, are elements of A, then A is said
to be strongly N-muliiplicative.

It is easily seen that a set A is strongly N-multiplicative if and only if the semi-
group generated by A is N-multiplicative.

THEOREM 4. Let K be a connected metric division ving, with norm N, which
contains an N-stable, strongly N-multiplicative set B such that B fails to be no-
wheve dense. Then K is algebraically isomorphic to a division subring of .

Proof. If A is the semigroup generated by B, then A is N-multiplicative and
therefore N-power multiplicative. Since A D B, A also fails to be nowhere dense.
It is easily verified that the set of elements at which a pseudonorm is stable consti-
tutes a semigroup, so that N is stable on A since it is stable on B. Theorem 2
may then be applied to the semigroup A to obtain the desired result.
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Note. In all of the theorems and corollaries, the assumption that K is a field
would render unnecessary any assumptions about stability of the norm, and in each
case the conclusion would then be that K is algebraically isomorphic to a subfield of
the field of all complex numbers.

We note that in Theorem 3 it would suffice to assume for each x in V that
N(x r(®) = N(x)*(x) for some integer r(x) greater than 1, since Lemma 3 of [3] would
then imply that N(x?) = N(x)? for each x in V.

REFERENCES
1. S. Aurora, Multiplicative norms for metvic rings, Pacific J. Math. 7 (1957),
1279-1304.
, On power multiplicative norms, Amer. J. Math. 80 (1958), 879-894.
, The embedding of certain metric fields, Michigan Math. J. 7 (1960)

4. N. Bourbaki, Elémenis de mathématique, Livve III. Topologie générale, Actualités
Sci. Ind. nos. 916 (1942), 1045 (1948), 1084 (1949); Hermann et Cie, Paris.

. A. Ostrowski, Uber einige Losungen dev Funktionalgleichung ¢(x)- ¢(y) = ¢(xy),
Acta Math. 41 (1918), 271-284.

a

New York City



