SEPARATION AND UNION THEOREMS FOR GENERALIZED
MANIFOLDS WITH BOUNDARY

Frank Raymond

INTRODUCTION

Generalized manifolds are a class of spaces which reflect many of the local and
global homology properties of locally Euclidean manifolds. Moreover, they form a
class of spaces in which certain operations are closed with respect to this class,
whereas this may not be true for classical manifolds; for example, if a generalized
manifold is the Cartesian product of two spaces, then both factors are generalized
manifolds. (See Theorem 6 for a proof of this fact.)

It is well-known that every 2-sphere imbedded in a 3-sphere separates the 3-
sphere into two open connected sets both of whose frontiers coincide with the 2-
sphere. However, neither open set need be an open 3-cell, and even if the sets are
3-cells, the 2-sphere may not fit onto a complementary domain to form a closed 3-
cell. Wilder [10] has shown that these complementary domains, nevertheless, are
generalized cells. This follows as an application of the Jordan-Brouwer separation
theorem and its converse [10; Chap. 10]. Wilder’s theorems are cast in the frame-
work of orientable, sphere-like, compact generalized n-manifolds over a field. P. A.
White[9], has extended the results by relaxing some of the sphere-like conditions. The
purpose of this paper is to extend the results to noncompact, locally orientable gen-
eralized n-manifolds with boundary defined over an arbitrary principal ideal domain
(see Section 3).

The separation of a generalized n-manifold with boundary by a generalized
(n - 1)-manifold with boundary is converse to the problem of showing that the union,
along the boundary, of two generalized n-manifolds with boundary is again a general-
ized n-manifold with boundary. Consequently, we shall treat both problems.

I wish to thank Professor R. L. Wilder for reading this paper and for making
helpful suggestions concerning it.

1. NOTATION AND DEFINITIONS

By a space we shall mean a locally compact Hausdorff space. By a neighborhood
of a point in a space we shall mean any open set containing the particular point. If A
is a subset of the space X, then by A~ we shall mean the closure of the subset A in
X.

The p-dimensional Cech cohomology group of X with compact supports and co-
efficients in the principal ideal domain L will be denoted by HE(X; L). However, in
general, we shall omit the ring L from the notation, since no confusion can arise. If
U is an open subset of the space X, then the sequence
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-1 da* j* i* d*
— HP'(X - U) = HE(U) - HE(X) - HE(X - U) —

is exact.

If V and U are open sets of X, and j: V C U is the inclusion map, then HZ(V c U)
will denote the image of HZ(V) in the group H (U) under the map j*, induced by the
inclusion j.

By dim, X we shall mean the cokomology dimension of X with respect to the co-
efficients L, as defined by H. Cohen in [4].

DEFINITION 1. We say that the space X has local r-co-Belti number 0 at
x € X, if whenever we are given a neighborhood U, we can find a neighborhood V
(x € V c U) suchthat H(V c U) = 0. We write this in the form p*(x; X) = 0.

We shall say that X has local r-co-Belti number equal to k at x€ X
(p*(x; X) = k) if, given a neighborhood U, we can find neighborhoods V and W such
that if W' is a neighborhood of x (x € W' ¢ W V c U), then H (W' C V) = H (W cV)
and HI(W C V) is a free L-module of rank k.

If X is a space and A a closed subset, then X has local r-co-Betti number at

x € X, mod A, equal to k, if given U we can find V and W as before such that if W'
is as before, then

HL (W' - A) C (V- A) = Ho (W - A) C (V - A))
and HE((W - A)c (V - A)) is afree L-module of rank k. We write this in the form
pT(x; X - A) = k.

These definitions are given in [10] for a field L; some have been generalized to a
principal ideal domain, for example in[2].

PROPOSITION 1.1. If &imL X <, then a necessary and sufficient condilion that
dimy, X <n is that p*(x; X) = 0, for all r> n and for all x € X.

This proposition is merely a cohomological version for a space of a theorem of
Alexandroff {1] concerning Euclidean space.

DEFINITION 2. By a generalized n-wmanifold (n-gm) with respect to the ring L
(usually suppressed) we shall mean a space X such that
(i) dim;, X < oo,
(i) p*(x; X) =0 (r #n, x€ X),
(iii) p*(x; X) = 1.

By an orvientable n-gm we shall mean an n-gm X such that if O is any compon-
ent of X, and U is a connected open subset with compact closure (U C O), then

j*: HY(U) — HZ(0) is an isomorphism.

By a locally ovientable n-gm (l.0. n-gm) we mean an n-gm X such that there
exists a covering of X by open sets, each element of which is an orientable n-gm.

REMARKS. The definitions given above are equivalent to the plethbra of defini-
tions that have recently been given to generalize the definition adopted by Wilder.

It is easy to show that any open subset of an orientable n-gm is orientable. With
the help of a minimality argument, it follows that HZ(A) = 0, for all closed proper
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subsets A of any component of a 1.0. n-gm. A connectedl.o. n-gm X is orientable
if and only if HZ(X) =~ L. An n-gm is locally connected and in fact is clc [2], or in
Wilder’s terminology, is 1lc®™.

Yang in [11] and I in[7] show that a locally compact subset A of a l.0. n-gm X
has dimp, <n if and only if A contains interior points.

In fact, if A is closed in X, then the interior points of A are identical with the
points x of A for which p?(x; A) # 0.

Similar methods yield

PROPOSITION 1.2. If A is a closed subset of a 1.0. n-gm X, then the points x
of A such that p-1(x; A)# 0 are identical with those points x of A for which A
separates X locally at x.

DEFINITION 3. By ar n-gm with boundary B we shall mean a space X and a
closed subset B such that

(i) Bisan (n - 1)-gm,
(ii) X - B is an n-gm,
(iii) p¥(x; X) = 0, for all x€ B, all r.

The definition was first given by White [8] for compact X, and then by Brahana [3]
for locally compact X. In both instances L was a field. Our definition, when L is a
field, is not the same as theirs, but is equivalent to it, as the next lemma shows.

2. THE UNION OF TWO n-gm’s WITH BOUNDARY

LEMMA 2.1. Let X be an n-gm with boundary B. Thern (X - B)” =X and
p*(x; X - B) =0 (r+ n, x€ B). Moveover, if L is afield, ov if B is l.o., then
pi(x; X -B) =1.

Proof. If B contains an interior point y, then p?-1(y; X) # 0, contradicting (iii)
of Definition 3. Hence (X - B)” = X.

Let x € B, and let U be any neighborhood of x. Choose neighborhoods V and W
of x such that Hg((VﬂB) c(UNnB))=0 (r+ n- 1), and HE(W c V) =0 (all r). This
is clearly possible, by the definitions. For r+ n - 1, consider the commutative
diagram

Hr+l(w -B) — HZ+1(W)

HIVnB) - HI'Y(V -B) » HE (V)

C
H (UNB) — HI"Y(U - B)
That p*(x; X - B) = 0 (r # n), follows immediately from Lemma 6.3 (Appendix).

Let us assume now that B is l.0. and that x € B. Choose a neighborhood U of
x such that UN B is connected and orientable. Choose neighborhoods W and V such
that WNB and VNB are connected, WcC Vc U, and H2"Y(Vc U) = HXW c V) = 0.
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Consider the commutative diagram

d
H-L(WNB) — HR(W - B) — HXW) — 0
C C (o4

o | |

-1 -1 _2; — —
Hg (V) — ng (VN B) HICI(V - B) HE(V) 0

1 [ |

H-1(U) — H2-1(UNB) — HA(U - B).
The vertical maps of the second column are all isomorphisms, and
B2 {WNB) ~ L
Since H l(V c U) =0, d, is an injection. Let
= HZ((W - B) c (V - B)).

Because HJ(W c V) =0, dZ(Hg“l(Vfﬂ B)) D K, and obviously dz(Hg'l(Vﬂ B)) c K. If
W'c W,

H2-lw'c V) = H2-l(Wc V).
Consequently,
H:((W' - B) C (V - B)) D Ho((W - B) c (V - B)).

From these facts, it follows that p?(x; X - B) = 1.
When L is a field, one applies [10; 1.4, p 291], and this completes the proof.

LEMMA 2.2. Let X be arn n-gm with boundary B. Let X - B and B be l.o.
Then, given x € B, theve exists a connected neighbovhood U of x such that UNB
and U - B ave connected and ovientable.

Proof. Choose connected neighborhoods U and V of x€ B such that UNB is
connected and orientable, Vﬂ B is connected, Vc U, H2-1(V c U) = HIY(V c U) = 0,
and such that d maps Hn" (UNB) isomorphically onto Hn((V B) C ((U B)~ L
This last condition follows from the argument used in Lemma 2.1. Therefore, there
exist orientable components of V - B which are mapped into an orientable component
of U - B. (Each component (V - B)y of (V - B) is open and orientable if and only if
HY(V - B)y = L. Furthermore,

n n
HY(V - B) = Z,, Ho(V - B),,

and (dchl'l(VnB)) c H’C‘(V - B) is mapped isomorphically into HE(U - B).) Let
(U - B)' denote the orientable component whose n-th cohomology group contains
dH2-L(UN B). Clearly, UNB must meet ((U - B)')", for otherwise d would be

trivial. Let D= (UNnB) N ((U - BY)-. We shall show that D = B NU, and hence the
lemma will be proved. Clearly, D is the frontier of (U - B)' in U, and therefore we
may consider the commutative diagram
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Hg-l(U NB) d H((U-B)).
[ix a
-1
H? (D)
Since d: H’g‘l(U NB) — HY((U - B)') is nontrivial, H‘é'l(D)q& 0. However, by the re-
marks following Definition 2, this is only possible if D = BN U.

For convenience, we shall say that X is a l.0. n-gm with 1l.0. boundary B, when
we mean that X is an n-gm with boundary B such that X - B and B are l.o. The
following theorem is a generalization of results of White [8] and Brahana [3].

THEOREM 1. Let X, and X, be closed subsets of a space X = X,UX,, and sup-
pose that they ave l.0. n-gm’s with 1. 0. boundaries B, and B,. Suppose that
X,NX,=BcB,NB, isal.o. (n- 1)-gm. Then X is a 1l.0. n-gm with 1. 0. boundary
(B,UB,) - (X;NnX,).

Proof. The points of B = X, NX, form an open set relative to both B; and B,.
(See the remarks following Definition 2.) Therefore, we need only show that the points
of B have the correct local co-Betti numbers as points of X, and that they lie within
an orientable part of X. Choose x € B and neighborhoods of x, U, C U, C U, so that

Hz((UjﬂB) C (Uj+1 NB)) =0 G=1,2; r+n-1).

Let U_% = Uj NX; i=1,2; j=1, 2, 3). Since Uj is locally connected and X, NX, = B
is closed (relative to Uj) and separates Uj,

Hg(Uj - B) = Hg(Ujl -B)® Hg(Uj2 - B) (r=1,2,--3=1,2,3).
By Lemma 2.1, U} can be chosen so that
H’g((Ug- B) C (U;%Jr1 -B)=0 (j=1,2 i=1,2; r#n).
Let us therefore consider the commutative diagram

HI(U, - B) —» HL(U;) — HZ(U;NB)

l l |

HI(U, - B) —» HL(U, — H(U,NB)

l |

HX(U, - B) — HL(U3) — H(U;NB).

From the information above and Lemma 6.3, it follows that HE(U; c U3) =0
(r+n,n-1).

If r = n - 1, then the proposition that the first column is mapped onto the second
column would imply that H2-}(U; c Us3) = 0. That this is the actual case will follow
from the discussion of orientability.

For xe€ B = X, NX,, choose a connected neighborhood U such that UNB, U - X;,
and UNX; are connected, and U - Xj, UNB are orientable (i = 1, 2). This is pos-
sible, by Lemma 2.2. Let U* = UN X; (i =1, 2). Consider the exact sequence:

u2-Yune) 4 BYU!- B) @ H(UZ- B) - HU) — 0.
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By Lemma 2.2, d is an injection, and consequently HZ(U)=~ L. Clearly, p™(x; X) =1,
and therefore X is an n-gm with boundary. If A is any proper subset of U, closed
relative to U, then the exact sequence

H*-YanB) & HY(U! - B) nA) @ HY((U? - B)N A) — HY(A) — 0,

together with the fact that each proper closed subset of a 1. 0. n-gm has trivial n-
dimensional cohomology, implies that H2(A) = 0. Because U is a connected n-gm,

HY(U) = L, and HYA) = 0 for all proper closed subsets A of U, it easily follows that
U is an orientable n-gm. This completes the proof.

3. SEPARATION THEOREMS

THEOREM 2. Let X be a connected 1.0. n-gm, and X' a connected 1.0. (n - 1)-gm
imbedded as a closed subset of X. If X - X' is sepavated, then X - X'is the union of
exactly two disjoint connected open sets each of whose frontiers is X', and onto each
of which X' fils as a manifold with boundary.

Proof. Let us first assume that both X and X' are orientable. Consider the exact
sequence

- lxn 4 EYX - X)) — HA®) - o.

Since X - X' is separated and Hg’l(X') ~ He(X) ~ L, exactness implies that

Ho(X - X')= L ® L. Thus, X - X' is the union of two disjoint connected open sets
O, and O,. Let A be any closed proper subset of X'. The fact that Hrc“l(A) =0,
together with exactness, implies that Hrcl(X - A) =~ L. Consequently, X - A is con-
nected. Therefore A cannot be the entire frontier of either of the domains O, and
O,, which implies that X' is the frontier of both O, and O,.

We now show that X' fits onto O, and O, as a manifold with boundary. Let
x € X', and choose connected neighborhoods U,, U,, U, of x (U, c U, C U,), so that
each UjNX' (j =1, 2, 3) is connected and

Hg((anx') C (UJ-+1 NXY) =0 (r#n-1),
Hz(UJCUJ‘Fl):O (r:,f: n; j=1, 2)-
Let
U}:Ujﬂoi' G3=1,2,8;i=1, 2).

Clearly, Ujl UUJ-2 = Uj, Uj1 ﬁUJ2 = Uj NX', and the U} are closed in Uj. Consider the
commutative diagram

HYU) — HXUD ® HXUD - B U,;NnX)

l l

HI(U, — HXU) ® HYUP — HLU,NX")

l l

HE(U;) — HI(U) @ HI(U) — HI(U,nX").
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From the conditions on the Uj, Corollary 6.2 and Lemma 6.3 imply that
1 2 1 2
Hi(U1) ® He(UD) — Ho(U3) @ He(U3)

is trivial. Consequently Hg(Ui1 C U%) =0 {(r#n,n-1).

Since the U} are proper closed subsets of Uj, H’é(U}) = 0. Consequently, the
maps

Az: H2"1(U; nX") — HE(U;)
are onto. Since
H‘g"l(an X') ~ Ho(Uj) ~ L,

Aj is onto, and L is a principal ideal domain, it follows that Aj; is an isomorphism.
Hence, ;{g'l(U j) is mapped onto H2-1(U;) @ H2-1(U%), which implies that
Hg'l(Ui C U%,) = 0. Thus, Of is the union of an orientable n-gm O; with an orient-
able (n - 1)-gm X' such that X' fits onto O; as a manifold with boundary.

Next, we shall localize the argument above to obtain

LEMMA 3.1. Let X', a l.o. (n - 1)-gm, be a closed subset of a 1.0. n-gm X.
Then X' separates X locally, as in the conclusion of the Theorem 2.

Proof. Choose x € X', and choose connected, orientable neighborhoods V and U
(V c U) such that VN X' and UNX' are connected and orientable. If we choose V
so that H2-}(V c U) = 0, then by a simple argument, HYV - X') D L @ L, and, there-
fore V - X' is not connected. Now apply the argument above to V and VN X',

REMARK. Lemma 3.1 also follows from the Proposition 1.2.

We now complete the proof of the theorem. Let x€ X'. By Lemma 3.1, we can
choose a neighborhood U, of x such that U, and U, N X' are conn%cted ang orient-
able and Uy - X' is the union of two connected open disjoint sets U and U/, both of
which have frontier X' N U, fitting on as a manifold with boundary. Let

U = UXGX' UX9

and let X - X' = 0,VU O, be a partition into nonempty disjoint open sets. Suppose that
U - X' were connected. Then U - X' would be either in O, or O,, say in O,. Let

y € X'; then there exists a connected neighborhood Uy of y such that Uy - X' lies
completely in U - X' O,. Thus O, must be closed in X. But this is impossible,
since X is assumed to be connected. Consequently, U - X' cannot be connected.

Let Ux NUyNX'# P, and let z € UxN UYnX'. Then z is a limit point oflboth
components of U, - X', as well as of both components of UY - X', Hence Ug, a com-
ponent of U, - X', must meet a component of U, - X', say U;. Likewise, U}?;, the
other component of U, - X', must meet U%, the other component of Uy - X'. From
these facts and a standard simple chain argument, it follows that U - X' has at most
two components, and that for each Uy the components of Uy, - X' lie in distinct com-
ponents of U - X'. Now standard connectedness arguments show that X - X' is the
union of two components O, and O,, each containing a component of U - X', and this
completes the proof of the theorem.
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COROLLARY 3.2. Let X be a connected 1.0. n-gm with 1.0. boundary B. Then
X - B is connected.

Proof, Let us assume for the moment that B is connected. Consider the double
of X. This is formed by attaching two distinct copies of X along B. Clearly, this
union is a connected l.o. n-gm without boundary, by Theorem 1. The double of X
is separated into two disjoint open sets by B, and therefore, by Theorem 2, into
exactly two disjoint components having B as common boundary. By the uniqueness
of components, X - B is one of these. Now, if B is not connected, let Bi denote a
component of B, and Uj a connected open set of X containing B; and such that its
closure does not meet B - B;j. By an argument similar to that used above, Uj; - B;
is connected. That X - B is connected now follows from a standard type of simple
chain argument.

COROLLARY 3.3. If X is a l.0. n-gm with 1.0. boundary B, and X - B is
orientable, then B is ovientable.

Pyroof. Consider a component B; of B, and a connected open set U of X
(U > B;) such that U NB = B;. The double of U is a connected 1.0. n-gm which
can be separated by B; into exactly two components. Each component, homeomor-
phic to U - B4, is an orientable n-gm. Consideration of the exact sequence

H2-YB,) — HXU - B) ® HXU - By — H2(U) — 0

shows that B; must be orientable.

THEOREM 3. Let X', a closed subset of a connected 1.0. n-gm X with l1.o0.
boundary B, be a connected 1l.o. (n - 1)-gm with 1l.o0. boundary B'. Suppose that
(X'-B'Yc (X - B) and that X - X' is sepavated. Then X is the union of exactly
two connected 1.0. n-gm’s Dj with 1.0. boundarvies (DiNBYUX' (i=1, 2) such that
D,ND, is X'and constitutes the frontier of both D, and D,.

Proof. Let x € B', and suppose that x € X - B. Choose U, a connected and
orientable neighborhood of x, so that UN X' is connected. By doubling UNX' and
using the remarks following Definition 2, one can show that H‘é‘l(U N X" = 0. Thus
U - X' cannot be disconnected. Now, since X' - B' must separate X locally (Lemma

3.1), a standard simple chain argument shows that X' could not have separated X.
Thus BNX' = B'.

Let Y=X-B and Y'=X'- B'. Obviously, Y - Y' is separated, for if not, then
in any partition X - X' = C, U C, into disjoint open sets, Y - Y' would have to be in
one of them, say C,. Hence C, C B has interior points in X, which contradicts
Lemma 2.1. Since Y and Y' are connected, by Corollary 3.2, Y - Y' = O,UO,,
where the O; are disjoint open connected sets. The set Y' is the frontier (in Y) of
each of the sets O, and O,, and forms with each of them a manifold with boundary.

Consider the double, DX, of X. Now DX is separated by DX', and DC, and DC,
are the two disjoint components whose union is DX - DX'. From the fact that the Oj;
are connected and disjoint, it follows that the C; are connected and disjoint. Further-
more, both C, and C, contain points of the boundary B, for otherwise DC, and DC,
could not be connected. Consequently B' disconnects the boundary B, and therefore
B' fits locally onto B - B' as a manifold with boundary.

The proof will be complete if it is shown that B' is the frontier of both C, NB
and C, NB, and that at points x € B', p*(x; D;) = 0 for all r, where D; = C{ (i=1, 2).

Let B! be a component of B'. Let U be a connected neighborhood of Bj such
that UNX' and UNB are connected and UNB' = BJ-'. It is easily seen that UN X'



GENERALIZED MANIF‘OLD'S WITH BOUNDARY 15

separates U. Let U - X'= G,;U G, be a partition by open sets. By Corollary 3.2,
Y'NU and U - B are connected. Therefore, (U - B) - (Y' N U) can be written as
(0,NU) U (0O, NU), where O, NU and O, NU are disjoint, open nonempty connected
sets. Since

(0,NU) U(0, NU) C G,UG,,

and since G, and G, contain interior points of X, the sets G; and G, must be con-
nected. Moreover, since DU is separated by D(X'NU) into two disjoint parts DG,
and DG,, both G, = C,NU and G, = C,N U contain points of B. Thus, BNU is sepa-
rated by B' NU into exactly two parts such that B' NU fits onto each part as a mani-
fold with boundary. Obviously, BN G, and BN G, are the two components of

(BNU) - (B'NU). The set (BNG) U(X'NU) is the union of two l.o. (n - 1)-gm’s
with common 1.o0. (n - 2)-boundary (B' N U), and hence it is a l.o. (n - 1)-gm. The
set B' is the common frontier of C,N B and C,N B, and it fits onto each disjoint
part as a manifold with boundary.

We have seen, so far, that D, D, is X', and that it coincides with the frontier in
X of both D, and D,. Moreover, D; contains a closed subset (C; N B) U X' which is
a l.o. (n - 1)-gm fitting onto D; as a manifold with boundary at all points except per-
haps at B'. We must therefore prove that pZ(x; D;) = O for all r and all x € Bj
(i =1, 2). Choose neighborhoods Vi (k=1, 2, 3) of x, sufficiently small so that

H{(V,c V3)=H((V;nX") c (V, NX")) =0
for all r. Consider the commutative diagram

HI(V,ND;)® HL(V, ND,) — H_(V; nX")

l !

HL(V,) — HL(V, ND;) ® H (V, ND;) — H (VN X')

l l

HE(V3) — HI(V3ND;))® HI(V;ND,).
Applying Corollary 6.2 and Lemma 6.3, we obtain
r — —
HC((V1 N Dl) C (V3ﬂD1)) = Hz((VlnDZ) c (V, NnD,)) =0,

and this completes the proof.

Theorem 2 is a converse of Theorem 1. To establish a converse of Theorem 3,
we generalize Theorem 1 as follows:

THEOREM 4. Let X, and X, be l.0. n-gm’s with 1. 0. boundaries B, and B,.
Let X, NX, =B c (B,NB,) beal.o. (n-1)-gm with 1.0. boundarvy B', and let X,
and X, be closed subsets of X;UX,. Then X,UX, is a 1l.0. n-gm with l.o.
boundary ((B,UB,) - B)UB'".

The following lemma will be useful in the proof of this theorem. The lemma fol-
lows from Theorem 2.

LEMMA 3.4. Let D, a closed subset of a 1.0. n-gm X, be a 1.0. n-gm with 1.o.
boundary D'. Then D' is the common frontier of X - D and the intevior of D, and
D' fits onto X - D as a manifold with boundary.
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This lemma, together with Theorem 1, enables one to construct a proof. The
only difficulty will be to show that p¥(x; X) = 0 for all x€ B' and all r. This is
overcome by considering a diagram similar to that employed in the proof of Theorem
2. The vertical map of the second and third columns can always be chosen to be tri-
vial. (A slight argument is needed for the cases r = n - 1, n.) Thus, the composition
of the maps of the first column is trivial, and this is precisely what we need to prove.

4. A PROBLEM

Attempts to weaken the local orientability assumptions of Theorem 2 seem to lead
to quite difficult problems. In this section, after restricting ourselves to the case
where L is a field or the integers, we shall show that the following two assertions are
equivalent. -

ASSERTION A. If X', a closed subset of a 1.0. n-gm X, is an (n - 1)-gm, then
X' is locally orientable.

ASSERTION B. If X', a connected (n - 1)-gm, is a closed subset of a connected
l.o. n-gm X which is separated by X', then X - X' is the union of two connected sets
both of which have X' as frontievr.

For the case where X is compact and L is a field, a proposed proof of Assertion
B has been published [9; Theorem 2]. But an essential omission occurs in the argu-
ment, and consequently the validity of Assertion B without the assumption that X' is
locally orientable remains uncertain.

If we assume the validity of the Assertion A, then the separation theorem (Theo-
rem 2) implies the validity of Assertion B.

Conversely, let us assume the truth of Assertion B, and let X' and X be as in
the hypothesis of Assertion A. Let x€ X' andlet U be a connected orientable
neighborhood of x such that UN X' is connected Since p n-lix- X020 (xe€ X", we
can choose U so that U - X' is not connected, (see Propos1t10n 1.2). Thus, by As-
sertion B, U - X' is the union of exactly two connected sets both having Un X' as
their frontiers in U.

Let A be a subset of UN X!, closed in U. Consider the commutative diagram

H2 M(UNXY) - A)
i d .
H_ (unxny — HC(U— X" = HJ(U) - 0
It R
n-1 dz2 n J2 . n
H"""(A) — HY(U-A) — H(U) — 0
Cc (o4 C
The horizontal rows are exact, and the first two vertical columns are exact. Let us
restrict our selves momentarily to the case where L is a field.

Since UNX!' is the common frontier of the two components of U - X', U - A
must be connected. Hence

jor HY(U - A) = HYU) = L

is an isomorphism, and HY(U - X') = L ® L. The image d;HZ- Lun X" is the
kernel of j, and is isomorphic to L. Thus Hn l(Uﬁ X'") may be written as
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G @ kernel d,, where G is isomorphic to L. Since d, is trivial, id; G = 0. There-
fore there exists a K C Hfg”l((Un X") - A) such that j(K) D G. Consequently, i' maps
G trivially into H’c"l(A), for every closed proper subset A of UNX!'. It can easily
be seen that the following lemma holds:

LEMMA 4.1. Let L be a field, Then a connected n-gm X is ovientable if and
only if theve exists a nontvivial subgroup of HUX) whose image is always trivial
under the homomovrphism i: HYX) — H(A), for each closed proper subset A C X.

(If L is not assumed to be a field, then one must assume that the nontrivial subgroup
of HZ(X) has no elements of finite order.)

The lemma implies that U NX' is an orientable (n - 1)-gm over the field.
Therefore, if L is Z, the group of integers, then U and UNX' are orientable over
every field, because U is orientable over every field and U' 1 X can be shown to be
an (n - 1)-gm over every field. Furthermore, since UNX'is an (n - 1)-gm over
Z, dimyz (UNX') <o and UNX' is clc over Z. This implies that UNX"' is orient-
able over Z (see for example [6]). Hence Assertions A and B are equivalent.

The equivalence of Assertion A and Assertion B enables us to connect the union
theorem (Theorem 1) with what Wilder has called the Converse of the Jordan-Brou-
wer Separation Theorem. The assumption that an open set of a 1. 0. n-gm has r-
uniform local connectedness (r-ulc) (see [10] for the definition) is equivalent to the
assumption that the (n - r)-local co-Betti numbers modulo the complement of the
given open set vanish. This is readily seen by employing Poincaré duality to the
definition of r-ulc. Thus, [10; Chap. 10, Theorem 3.3] of Wilder and [9; Corollary
6.11] of White may be extended:

THEOREM 5. If X' is a closed subset of a connected 1.0. n-gm X (over a field),
and if X - X' is the union of two disjoint connected open r-ulc sets (r = 0,1,---, n - 2)
of which X' is the common frontiev, then X'is a l.0. (n - 1)-gm which fits onto both
domains as a manifold with boundary.

5. AN APPLICATION

THEOREM 6. Lef C bz a 1l.0. n-gm with 1l.0. boundary C' over a field or over
the integers. Let C = AXB. Thenrn A is a l.0. ro-gm with possible 1.0. boundary
A', and B is a l.0. so-gm with possible 1.0. boundary B'; moreover, ro+ S, = n.

Proof. Let us consider the case where L is a field. Let (azXb,) € (C - C") = C°.
Then pl'(aox by; C) = GII;, where 6} is the Kronecker delta. From the Kiinneth theorem
for cohomology with compact supports, it follows that

pT(ag; A) = 5£0 and pT(by; B) = 5;‘0 (rg + o = 1).

Let B© be the set of points of B such that pn(agXb; C) = 1. Let p®(a'xb'; C) = 1
for some (a'Xb') € C° Then

p¥a’; A) = 6;1 and p*(b; B) = 6% (ry + 8, =n).
1
If r, =rg, then b'e B® If r,> r, then

+
1750 (a'xXbg; C)# 0,
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and if r, < r,, then

p ryts; (aoxb'; C) #0.

Since this is impossible, r, = rq and s, = s,. Thus, C° = A°XB°, where A° is de-
fined similarly to B°, Clearly, A° is an r,-gm and B©° is an s,-gm. Since C° is a
1. 0. n-gm, every point (a;Xb,) in C© has an orientable connected product neighbor-
hood UyXV, with Ugc A® and Vgc B° From the Kiinneth theorem and the facts
that HZ(UyXV,) =~ L and that the cohomology dimensions of U, and V, are r, and
Sg, respectively, it easily follows that U, and V, are orientable neighborhoods for
a, and b, respectively.

Let A'= A - A°and B' =B - B°, Then
C' = (A°xB') U (A'XB°) U(A'XBY),

where all three sets are disjoint. Since A° and B° are open in A and B, respec-
tively, A'XB® and A°XB' are open in C'. Therefore A' and B' are an l.o.

(ro - 1)-gm and an l.o0. (s, - 1)-gm, respectively, if they exist. Locally, A'X B!
separates C' into two parts such that A'XB' is the common frontier. Therefore
A'xB' fits onto A’XB° and A°XB' as a manifold with boundary. Thus A'XB is a
l.o. (n - 1)-gm with 1.0. boundary A'XB'. It is now easily seen that pT(b; B) = 0
for all r and all b in B'. Similarly, using AXB', we conclude that p¥(a; A) = 0, for
all r, and for all a in A'.

We have seen that for a given field, A and B are locally orientable generalized
manifolds with locally orientable boundaries. Let us assume now that L is Z, the
group of integers. Then C is also a l.0. n-gm with l.0. boundary C' over every
field. Therefore, by the argument above, A and B are locally orientable generalized
manifolds with locally orientable boundaries over every field.

Let (aXb) € AXB, and let O be any neighborhood of axXb. Since AXB is clc over
Z, we may choose compact connected neighborhoods U' and U of a (UD> U') and V'
and V of b (VDO V') suchthat UXV ¢ O and i*: H¥(UXV) — H*(U'XV") is trivial ex-
cept in dimension 0. The Kiinneth theorem implies that the diagram

0 — H'(U) @ HY(V) — HF(UXV)

l [+
0 — HY(U') ® HO(V') — HF(U'XV")
is commutative and that its rows are exact. Because i* is trivial, the map

i*: H*(U) — H*(U') is obviously trivial. Therefore A is clc over Z. Similarly, we
can show that A', B, and B' are clc over Z.

We shall show that
dim, A = dimg A, dimy A' = dimp A', dim, B = dimp B, dim, B' = dimg B',

where F is any field. Clearly, it suffices to show this equality for F equal to Q, the
field of rational numbers, and for F equal to Zp, the field of integers modulo a prime
p (for all primes p). Suppose that

dimy A°=mg  and dimZP A®=mp+* mg,



GENERALIZED MANIFOLDS WITH BOUNDARY 19

for some prime p. Then there exist integers n, = dimQ B° and ng, = dimZP B©° such

P
that mg + np > n, if mp > mp, and my + ng > n, if mg < mp. Let us assume that

mg > mg. Choose connected open sets U', U, V', V ((U)-cUc A°, (V)" c Vc B9
such that (U')- and (V')~ are compact and UXV is contained within an orientable
part of A°XB°. Since A° and B° are clc over Z, H¥(U' c U) and H%((V'C V) are

finitely generated. The universal coefficient theorem implies that HrcnO(U' cU)=gG,
where G is isomorphic to the direct sum of Z and a finite torsion group. The com-
mutative diagram

H (U;2)® H "(V;Z) - GQ H_(V;Z) — 0

!
H, O(U'; Z) @ H_P(V; Z)

implies that H, °(U; Z) ® H.P(V; Z)# 0 if H P(V; Z)+ 0. From the Kiinneth theo-

rem we have the exact sequence

myg

ma+n
(o4 Cc

0 —H

(U) @ H.P(V) — H PUXV).

If Hrclp(V) # 0, then this would lead to a contradiction, since mg + n.iJ > n. Therefore,
m,, < mP. That m, cannot be less than mP is the result of a similar argument ap-

plied to the inequality my, + ng > n. It only remains to show that HEP(V) # 0. Since
H:P(V; ZP) # 0, the universal coefficient theorem implies that either HrclP(V; Z)+ 0

+1
or HEPH(V; Z)+ 0. In case HrclP(V; Z) = 0, we could have used HEP (V; Z) in the
diagram above. Thus dim., A° = dimg A°, for every field F. Similarly, one can
show that

dim,, Al = dim A', dimz B° = dimF B°, dimZ B' = dimF B'.

Since C and C' are locally orientable over Z, we may choose sufficiently small
open sets in AS B°, A', and B' that are orientable over every field. This, together
with the fact that A9 A', BC and B' are clc over Z suffices to show that they are
locally orientable generalized manifolds over Z (see for example [6]). The univer-
sal coefficient theorem now easily yields that p*(a; A) = p¥(b; B) = 0 for a € A',
be B', and all r, and with integer coefficients. This completes the proof.

Of course, the converse of the theorem is also true, and the proof is easier.
Theorem 6 was first stated by the author in an abstract submitted to the American
Mathematical Society (NOTICES, 5 (1958), pp. 298-299), for coefficients in a field and
without boundary. The present form of Theorem 6 (but without boundary) was cited
in [6], but a proof was not given at that time. The converse, with L a field and with-
out boundary, was first proved by T. R. Brahana.
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6. APPENDIX

LEMMA 6.1. Let X,, X,, and F be closed subsets of a compact space X, such
that X = X, UX, and X, NX, D F. Then the modified Mayer-Vietoris cohomology
sequence

B} A A
- HPIX,n X, F) 5 P, F) & HP(X,, F) ® HP(X,, F) ¥, BPX1n X, F) &

is exact.

COROLLARY 6.2. Let X, and X, be closed subsets of a locally compact space
X such that X,UX, = X. Then the sequence

- A P A
HPl(x,nx) 5 HAX) & HEX) ® HI(X)) ¥ wix,;nx,) &
is a modified Mayer-Vietoris sequence and is exact.

Note that the sequence in Lemma 6.1 differs from the relative Mayer-Vietoris
sequence [5; 15.6¢, p. 44], which yields a Mayer-Vietoris sequence for cohomology
with compact supports exactly as that in Corollary 6.2, except that X, and X, are
assumed to be open subsets of X instead of closed subsets (see [2]).

LEMMA 6.3. Counsider the comwutative diagram of Abelian groups

B, —» C,

v ]
A, - B, —» C,
I s
A, — B,.

Suppose that the vertical maps of the fivst and thivd columns ave trivial and the
second horizontal row is exact. Then the vertical map i,°1i,: B, — B, is trivial,
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