FH-SPACES AND INTERSECTIONS OF FK-SPACES
Albert Wilansky and Karl Zeller

1. INTRODUCTION

We present a new concept, the FH-space (a specialization of the (F)-space of
Bourbaki or By-space of Mazur), which is general (see Examples in Section 2), but
in which we are able to develop the theory of FK-spaces, and a little of the commu-
tative Banach algebra theory.

In Section 4 we fill in the remaining gap in the theory of intersections in summa-
bility. Here we introduce a new property which is stronger than perfectness but
weaker than the property which has on various occasions been called boundedness,
the PMI-, AK-, and mean-value property. We show that a familiar Norlund matrix
has this property.

2. FH-SPACES

We begin with a fixed Hausdorff space H, not necessarily a linear space. An FH-
space is an F-space (linear, metric, complete, and locally convex) which is a subset
of H, and whose topology is stronger than that of H. (Throughout this article,
“stronger than” means “stronger than or equal to.”)

Convention. If L, and L, are FH-spaces and the symbols L, c L,, L, NL,,
L, UL, occur, we assume only set-theoretical inclusion, intersection, union, and
that the linear operations have the same formal meaning in L, and in L,.

THEOREM 1. Let L, and L, be FH-spaces with L, Cc L,. Then the topology of
L, is stronger than that of L,.

Proof. Let i: L, — L, be the inclusion map ix = x. Then i is closed, since if
x®*—x in L, and x®—y in L,, we have x® — x and x® —y in H, so that x=y.
The closed-graph theorem now yields the continuity of i and concludes the proof.

COROLLARY. The topology of an FH-space is uniquely determined; that is, a
lineay space cannot be given two different FH-lopologies.

Example 1. Let H be the set s of all real sequences x with the usual coordi-
natewise topology (the F-topology determined by the seminorms py(x) = |x,] for
x = {x,}). In this case, the FH-spaces are the well-known FK-spaces, that is, F-
spaces of sequences with continuous coordinates. Here Theorem 1 plays an impor-
tant role in connection with summability (see [5]).

Example 2, Let B be a commutative semisimple complex Banach algebra. Let
H be B, but with the weak topology generated by the multiplicative linear functionals
(scalar homomorphisms); H is a Hausdorff space, since the set of homomorphisms
is separating; and it is weaker than B, since the homomorphisms are continuous on
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B. If now we attempt to put another norm on B to make it a Banach algebra, it is
equivalent to the original norm, by Theorem 1.

Example 3. In connection with Example 2, we make the following observation: If
a linear space allows two complete norms with a common separating family of con-
tinuous linear functionals, then it follows from Theorem 1 that the norms are equiva-
lent; indeed instead of the family of functionals, it is sufficient to have a Hausdorff
topology (not necessarily linear) which is weaker than both.

Example 4. Let a set X be given, and let H be the set of all complex functions
on X. We give H the product, or pointwise topology; that is, H = CX is the product
of a number of copies of C (the space of complex numbers) equal to the cardinality
of X; the topology being the weakest such that for each x € X, f(x) is a continuous
function of f € H. Then any Banach algebra B of complex functions on X is an FH-
space, since for each x € X, f(x) is a multiplicative, linear functional of f € B and
hence must be continuous. Thus the topology of B is stronger than that of H. (We
are supposing, as usual, that the operations in B are the pointwise ones.) Example
1 is a special case in which X is the set of positive integers, and any Banach algebra
of sequences is an FK-space.

Certain facts, known for FK-spaces, can be generalized immediately. For ex-
ample, if an FH-space is a proper subsel of another, it is of first category in it,
since it is the range of the inclusion map. From this it follows that tke union of a
strictly expanding sequence of FH- spaces cannot be an FH- space, since it would
be of first category in ilself.

THEOREM 2. For eachn=1, 2, -, let E® be an FH-space. Let E =[] E®
be given all the seminorms of all the E,. Wilh this topology, E is an FH-space.

Proof. Only completeness is in doubt. ¥ {x®} is a Cauchy sequence in E, it is
also a Cauchy sequence in each of E!, E2, ..., converging to y?, y2, --, respectively.
Since x — yl, xn — y2 ...’ in H, it follows that y! = y> = ... =y, say. Thus y€ E
and x* — y in E.

THEOREM 3. If the sequence E™ in Theovem 2 is decveasing, and f is a con-
tinuous linear functional on E, then there exisis an integer N such that { is contin-
uous on E with the topology of EN,

Proof. In an F-space, every continuous linear functional f is bounded; that is,
there exists a finite number N of the seminorms p,, defining the topology such that
£f< M(p; + p, + *** + py). Since we have assumed that E1 5 E2D5 +-- 5> EN| the re-
sult follows.

REMARK. In Theovem 3, we may replace “functional” by “map into a Banach
space.” Instead of f, we use “f", a continuous seminorm, and essentially the same
proof applies.

THEOREM 4. If, in Theorem 2, E contains a sequence S which is a basis for
each E™ and which has a single biorthogonal set of functionals good for each E™,
then S is a basis for E.

Proof. For x € E, we have x = Z a; s¥ (s¥e S), with the infinite series being
taken in the topology of each and every E™. Hence the series converges to x in E,
by definition of the topology of E.

Example 5. The result holds for FK-spaces, which have {61‘} as basis, where
6% = (0, 0, +-+, 0, 1, 0, 0, «-+) (1 in the kth place); the coordinates are the required
biorthogonal set. ’
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3. THE DOMAIN THEOREM

By (E, p;) we shall denote an FH-space E with seminorms po, p,;, ***.

LEMMA. Let A, B be subsets of a Hausdovff space H which are given topologies
strongev than that of H. If f:A — B is continuous in the H topology, then it is closed
as a function from A to B.

Pyroof. Let x, — x in A, f(x,) —y in B. Then, in H, x, — X, f(x) >y,
f(x,) — f(x). Hence y = f(x).

THEOREM 5 (the domain theorem). Let H be a Hausdovff space, and let (E, pi)
and (F, q;) be FH-spaces. Let f: E — H be continuous, and its vestviction to £~(F)
linear. Then

(i) £"XF) is an FH-space with seminorms p; and qf (i=0, 1, «=);
(ii) #f £ is one-to-one and onto F, use only qf in (i).

This generalizes 4.10 of [5]. Compare the space E in [1, pp. 47-48], where, in-
cidentally, Banach omits the necessary assumption that coordinates are continuous
(see [7]). ‘

Proof. The topology of f~*(F) as given in (i) is stronger than that induced by E
(since it has more seminorms), hence stronger than that of H. Thus only complete-
ness remains to be proved. Let {xn} bea Cauchy sequence in f~1(F). Then it is
also a Cauchy sequence in E, hence it converges in E to x, say. Moreover, {f(xn)}
is a Cauchy sequence in F, hence it converges in F to y, say.

Then y = f(x) by the Lemma. Hence x € f-}(F). Finally, x» — x in f~}(F), since
p{x®-x) — 0 and qf(x" - x) — 0.

To prove (ii), let £-*(F) be given the seminorms q;f (i=0, 1, 2, ***). Then { is
a linear isometry between f~1(F) and F. Hence f-1(F) is complete.

This completes the proof. We shall not go on to announce the general form of the
continuous linear functional on f~*(F); see [5, 4.11].

By the convergence domain cp of a matrix A we mean the set of sequences x

such that Ax € ¢ (where c is the space of convergent sequences). By c% we mean

the same with ¢ replaced by c°, the space of null sequences.

The domain theorem immediately yields the fact that the convergence domain of
a row-finite matvix A is an FK-space with seminorms, supy, l Ekankxk| ’
| %ol, |x11, **. If the mapping x — Ax is one-to-one, we may omit all but the first
seminorm. For in the domain theorem we choose E=H=5s, F=c. If A is one-to-
one, apply (ii) with F = ¢ N As, using the fact that As is closed in s [3, p. 419].

For matrices that are not necessarily row-finite, we shall omit the development
of FH-spaces which yields the following result [5, 5.1]: The convergence domain of
a matvix A is an FK-space with seminorms

m

2a_. x

sup_ n=0, 1, 2, *), lxn‘ (n=0,1,2,-), and sup nk Xkl
k

a'nk xk

k=0

By a triangle, we mean a matrix A with a;; = 0 for k > n and a_, # 0 for each n.

REMARK. Suppose that A can be made into a trviangle by striking out certain of its
rows. Then in the preceding result we can omit the second set of seminorms.
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Proof. Let numbers m, be chosen so that the matrix B = (b,) = (a,, k) is a
n

triangle. Then cp is an FK-space with norm sup,, Zkbnkxkl. Since each lxnl is
thus continuous in this topology, it is @ fortiori continuous in the topology generated
by the larger norm sup, Zkankxk| .

4. FK-SPACES

. In the remainder of this article we deal exclusively with FK-spaces. An FK-
space which has {6X} as basis is said to have the AK-property, while if {6%} is
fundamental, the space is said to have the AD-property. For a matrix A, we say
that A has the AK- or AD-property if c% has the property. These concepts were

introduced in [6]. A regular matrix A is perfect, that is, ¢ is dense in ¢ A if and
only if it has the AD-property. We say that {a,} is a sequence of convergence fac-
tors for a set E of sequences if Z a, x, is convergent for all x € E,

THEOREM 6. Let {E™} be a decreasing sequence of FK-spaces, each of which
has the AK- property; let E = ﬂ E™; and let {an} be a sequence of convergence
factors for E. Then {an} is a set of convergence factors for EN for some N.

Proof. The function f given by f(x) = Za, x). for x€ E is continuous, by the
usual convergence principle of functional analysis. Let N be as in Theorem 3, and
let F be the unique extension of f to EN Note that E is dense in EN. For xe€ EN,
x = 2 x,; 6K, thus

F(x) = 2% F(6%) = 22 x £(6%) =2 xp 8y .

The following result is known; parts of it are proved here for completeness. By
a decreasing sequence of matrices we mean a sequence of matrices whose conver-
gence domains form a decreasing sequence of sets.

THEOREM 7. Let {A™} be a decreasing sequence of regular matrices.

(i) If each A™ has the AK-property, theve exists no matrix A with cp = n cAn.

(ii) If each A™ is perfect, there exists no row-finite matrix A with c, = c
A

ne
However A

(iii) There exists a decreasing sequence { A™} of regular matrices with
n cAn =C = Cy, I being the identity matrix.

For (iii), see[8, p. 5].

To prove (i), assume on the contrary the existence of such a matrix A as a map
of cp into c. By the Remark on Theorem 3, the map is continuous with the topology

of AN, and it is defined on a dense subset of CAN’ hence can be extended to all of
CAN' Apply Theorem 6 to each row, to see that the extension is still given by the ma-
trix A. This contradicts the choice of A.

To prove (ii): as in (i), extend A to, say F, defined on C, N Then F = {F_},
where F,, a functional, is the nth coordinate of F. Let x € c'AN. Then x = lim o,

where each y=» is in ¢, and the limit is in the AN-topology. Then
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F,(x) = limy F(y¥) = limy, A,(75) = An(y),

since A is row-finite. Hence F is given by A, again a contradiction.

A crucial point in the proof of (ii) is the fact that a function of the form Eg‘:o a X,
has the same form when extended. As part of Theorem 8 we show that this is false if
m = «, the extension being the Cesiro or (C, 1)-limZ a, x,,.

We now complete these results by showing that “row-finite” cannot be omitted in
(ii). :

THEOREM 8. There exists a decreasing sequence {An} of regular perfect
matvices and a regular matvix H with cy = n c

Let

AR

1/2 0 0 o ..

1/2 1/2 0 o ...
Z =
0 1/2 1/2 0 .-

0 0 1/2 1/2 ---

ooooo $ees0s0000000s0000000800008 0

If is well known that Z is perfect. Indeed, it is of type M, that is,

Tlta]<w and  Ttyan =0 (k=0,1,2,-)

together imply that t,= 0 for all n; see [2, Theorem 3.2.1 (d)]. But Z does not have
AK. (Easiest proof: Suppose it did. Then for every x € c% ,
0=1lim, z,, x, =1lim 1/2x

by [4, page 263, Section 5]. But Z sums {(-1)7}.)
However Z has a property which lies between perfectness and the AK-property.
LEMMA 1, {bk} is a (C, 1) basis for c%; in othey wovds, for each X € c%, let
vy = ZE=0 xkﬁk; then {y™} is (C, 1) summable to x, that is, for each x € c% we
have

1
z yk. Then
m+1 4 o

x—umz 0’ 1 b.< 2 X -..,__n_l__xrn xrn vso
m+ 1 1 me 172 " m oy 1ome ¥mtls Xm+2s 77 o

We compute: let u™=
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n
2 Zoy(®e - )
k=0

Ix - v = sup,

1
=3 sup, | (x,,_ - ul ) + (x, - ).

(Here and elsewhere, x_, = 0.)

For n = 0, the expression following sup, is 0. For 1 <n<m+ 1, itis

n-1 ,_n I T Yl I
m+ 12l T 1™ | m+ 1%0-1 ¥ %) T3y
Vm 1 .
m+ls?lp|xn-1+%l+mn?ai‘n |x|  if n<v/m,
< as
sup Ixn_1+ xn‘+m1+1 max Ixnl if n>Vm.
n>ym ym<n<m+l

Call the last two expressions a,, and b,,, respectively.

Meanwhile, for n> m + 1, the expression following sup, is

|x, 1 +x,] < sup [x, ;+x|<b.
n>m+l

Hence || x-un “ < max(am, bm), and we complete the proof by showing that
am—0 and b, — 0.

Clearly x, = o(n), since {x,/(n+ 1)} is the (C, 1) transform of
{0 & _, +x)},

and our hypothesis is that the latter is a null sequence. Thus a,,— 0 and b,,, — 0.

LEMMA 2. Given Z Ibnl < «, define the continuous linear functional f on c5 by

f(x) = 2 bn(xn--l + xn) ’

n=0

and let a, =b, + b ;. Then, for all x € c,, £(x) = (C, 1)-limZ a, x,  (the Cesaro
limit).

From the identity

m m-1
27 bn(xn_l + Xn) = E anXn + by Xy,
n=0 n=0

it follows that £(x) = Z a, x,,, at least for convergent x. At this stage, in the proof of

Theorem 7, we were able to say that f had the same form when extended. For

X € coz, x=1lim(@+ 1)1 EE=0 yk (see Lemma 1). Hence

1
n+1

1

f(x) = lim T

k
27 3 X
0 r=0

NME

£(y*) = lim

£t

~
]
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(since y¥e€ ¢). For x € c, we apply this to {x, - t}, where t is the Z-limit of x.
LEMMA 3. Let a regular matrix A be formed by placing a finite number of rows
on top of Z. Then A is perfect.
Since A is regular, it is sufficient to prove that c° is dense in cl.

We shall prove this with just one row adjoined. The extension to any finite num-
ber will then be obvious. Let the adjoined row be a,, a,, a,, ***. By the Remark in
Section 3, cp is an FK-space with seminorms

m
1 1 1
p(X) = SUpP, E Qe X |y qn(x) = max ( I‘ixn_ll, Iixn_l-!—-ixn ) (n =0,1, 2’ ...)’
k=0

)

Clearly q,(x) < |x,_j|/2 + r(x), and therefore the seminorms q, can be omitted,
the coordinate seminorms |xn_ 1| being already disposed of in the Remark. Next, it
is clear that r(x) can be replaced by s(x) = sup,, |x,_; + Xp|/2, without alteration of
the topology of cpa, because s < r <p + s. Hence we consider cp with p and s as
seminorms. Now, insofar as s is concerned, we have already seen that given
X € cg, s(x - u™) — 0, u™ being the (C, 1) sums of the segments of x (see Lemma
1). It remains to show that the same is true for the seminorm p. But in this case
we have even more, namely p(x - y™) — 0 (see Lemma 1 for y™); for

o0
1
r(x) = max( 20 Xl sup, 3¥n_1+ 3%y
k=0

r

px-y™) =sup.| 27 ax|—0 (m—)),
k=m+1

since the series Z aj x;. is convergent.

We are now ready to construct the sequence of Theorem 8. We first construct
three sequences {ar}, {bn}, {cn} of sequences of nonnegative numbers satisfying,
for r =1, 2, --+, the following five conditions:

(1) ?bnr< 1/r,

) ar=br+b,

(3) Zn)ankcnr<°o for k=1,2,3, -, r-1,
(4) lim sup a, ¢ *>1,

(5) cy" 1o as n—ew, and c," - c,7; = 0 as n - .

(For example, for each r = 1, 2, *--, we may choose an increasing sequence N(r)
of integers greater than 2 such that

22 1/logn< e  and > o VEN) <1/,
n€N(r) n€N(r)

and we set ¢, = nl/(rﬂ); by = n- /G 4 e N(r), otherwise b, = 0.)
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Let AT be the matrix Z with r new rows placed on top, these rows being, read-
ing from the top down, a¥, a¥-1, ..., a2 al. The sequence {An} is strictly decreas-

ing, for we have ¢ _C c .. ;, since Al"l is a submatrix of AT, But also

cAr_1 # cAr since, by (3) and (5), { (-1)*cX} is in ¢ r1; but, by (4), not in c

By Lemma 3, each A" is perfect. To complete the proof of Theorem 8, it re-
mains to construct the matrix H mentioned in its statement.

We first note that x € n cAn if and only if

(6) , | x€cy,
and
n

§)) % a, x, converges for each n.
Let

o 0 0 0 - \

aj a a} af -

D = : ,

ooooooooooooooooooooooooooooooo

that is, let D consist of rows of the form a§ alternating with zero rows; let
/2 0 0 0 -
1/2 0 0 0
1/72 1/2 0 o ..

1/2 1/2 0 0 e

----------------------------------

(Z, with each row repeated); and let H=D + E. Then H is regular, since E is regu-
lar, and because of (1) and (2).

If x € ¢y, it clearly satisfies (6) and (7). Conversely, suppose X satisfies (6) and
(7). To show that x € cyy, it will be sufficient to prove that Zrap XKk — 0 as n — oo,

Now, by Lemma 2 (here we do not need the (C, 1)-limit, since the series involved
converges), :
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l%)a;xk bp|=0@/n),

=2 bII:(xk+ xk_l)‘ < sup

Xt xk-ll : ?

by (1) and (6).
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