ORBITS OF UNIFORM DIMENSION
P. E. Conner

The purpose of this note is a study of topological transformation groups for
which all the orbits have the same dimension. The investigation was suggested by a
theorem of Montgomery and Samelson [7] to the effect that if a compact connected
Lie group acts differentiably on the sphere, and if there is one stationary point, then
the remaining orbits cannot all be of the same dimension. Some of our basic ap-
proach was suggested by Borel’s note [1]. We have already made a preliminary study
of this problem [3], and we shall amplify our methods here.

A transformation group (I", X; m) is a triple consisting of a locally compact, arc-
wise connected, locally connected, finite-dimensional separable metric space X; a
compact connected Lie group I'; and a mapping m: I' X X — X satisfying

(1) m(e, x) = X,
(ii) ‘m(g, m(h, x)) = m(gh, x).

As usual, we write m(g, xX) = gx, and we suppress m, when we designate the trans-
formation group. We introduce an equivalence relation into X: x ~ y if and only if
there is a g € T' such that gy = x. The equivalence class of x, denoted by O(x), is
called the o7bit of x; the decomposition space of X with respect to this equivalence
relation is called the orbit space, and it will be denoted by X/I'. We let

n: X—X/T

be the natural projection onto the orbit space. For more details about these defini-
tions, we refer to[9]. We shall make use of the fundamental notions of fibre bundles
as found in {11]. Also, we shall refer to [2] for the definitions and techniques rele-
vant to the use of spectral sequences. Throughout our note, {(L; X) will denote a
transformation group with all orbits of the same dimension. When we wish to denote
a more general type of transformation group, we use the letter I to denote the group
acting. First, we shall collect some useful lemmas, and then make some applications
of these at the end of our note.

For a transformation group (L, X), we denote by Gy, Hy and N, respectively,
the isotropy group at x (the subgroup of L which leaves x fixed), the identity com-
ponent of Gx, and the normalizer of Hyx in L. Obviously, Hy C G, € N,. We con-
sider a transformation group (L, X) in which all the orbits have the same dimension.
Since all the orbits have the same dimension, dim H, = dim H,, but if x and y are
sufficiently close, then there is an element g €L such that ngg“l C Hy [9]. Since
Hy and Hy have the same dimension, gHXg = Hy. The space X is connected and
we conclude that the {H,}. are all conjugate. ‘

We denote by Fyx C X the set of all points in X which are stationary under Hy.
If F, n F, is not empty, then H, = H,; for otherwise the points in the intersection
would be stationary under the closed subgroup generated by H, and H,; but this
group contains H, U I—Iy in its identity component. There ex1sts an element geL

Received January 9, 1958.
25



26 P. E. CONNER

-1

such that ngg'l U gHyg"1 = Hy, which means that ngg'l = Hy = gHyg ™ "; therefore

H, = H,.
If g € L is an element such that gFyx = Fx, then g € Ny; for gFy is the set of
stationary points of gH,g"~ 1, Let Fx denote the component of Fy containing x, and
let B, be the subgroup of elements mapping F onto itself; then H, € G, C B, C N,.
We shall study the group Bx in detail. In parhcular we shall find condltmns under
which Bx must be connected. We observe that the sets {ng} decompose X into
disjoint closed sets; and we shall show that F actually fibres X. Let B = B,/Hx.

LEMMA 1. The zsotropy subgroups of the transformation group (Bx, FQ are all
finite, and the ovbit space F,/ B is topologically X/L.

The natural map 7: X —X/L induces a map #: Fy/B, —X/L which is one-to-one
onto, since O(y) N ¥, = B,(gy), where g € L is such that gHyg-! = Hy. We omit the
proof that 7”1 is continuous.

Now we shall use FX to fibre X over L/B,. We define a map
(1) ‘ 7: X—L/By,
by sending the points in gf‘x into the left coset gBy, for all g € L. Let v: L—L/B,

be the natural map, and p: L X Fy, — L the projection; then we may factor 7 in the
commutative diagram

LxF,5x
pl 17
14
L — L/B,.

Since L is compact, the map m is closed and onto, which implies that 7 is con-
tinuous. Since v: L —L/By is a principal fibration, there exists a closed cell J C L
which is a cross section of v at the identity. The cell J has the property that if

g, hedJ and g~ lhe By, then g = h. Let us consider

m:J X F, —-X.

The image is closed, since m is a closed mapping; and if gy = hz, then g™*hz =y,
which implies that g'lh € By, so that g=h and y = 2. Therefore m is a homeomor-
phism which defines the local product structure in X. The translates {v(gd)} form

a coordinate cover on L/By, for v: L—L/B, and for 7: X—L/Bx. The coordinate
transformations for (L, L/By, By, V) determine those of (X, L/B,, Fx, 7) from the
~action of Bx on Fy.

LEMMA 2. For the iransformation group (L, X), the map (1) defines a fibre
bundle (X, L/By, F,, T) with structure group

We can use Lemma 2 to determine a simple condition which guarantees that By
is connected.

LEMMA 3. If for the tvansformation group (L, X) the space X is simply con-
-nected, then Bx is connected and equals the identity -component of Ny. Also,
m(L/By) = 0. .

The homotopy sequence of (X, L/By, Fy, 7) immediately shows that ;(L/B,) = 0.
Since ‘
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gllhllhgy Y1, SO that g1 hl hg € B,, in other words, hy h e B, ; and this implies
that h = hy and gilg € G,. For any orbit of the form th(y) (h € J, y € Kx), we have
a factoring :

TB, Ky B, (%),

[ A

hB (y)
where 1'*: H(B (x); Q) ~ H(hB (y); (Q). Clearly, the homomorphism
i*: W(IBK,; Q) — Hi(hB,(y); Q)

is onto,

We must show that the kernel of i* is independent of h and y. We define
t(h,y): By~ I X B, XK,

by t(y, h)(gH,) = (h, gHy, y). By homotopy, t*(h, y)m*: HIJBK,; Q —~H(B; Q) is
independent of h and y. We consider the commutative diagram

B, m_t(E’_S;)JgXKX,
1\ /i

hﬁx(Y)

and observe that 1* is an isomorphism, so that the kernel of i* is simply the kernel
of t*(h, y)m*, which is indepent of h and of y. The map y is regular, and L/B, X X/
is simply connected, so that the Leray sheaf determined by HJ(y"1(x); Q) is constant.

We point out the following useful fact.

COROLLARY 1. If for the transformation group (L X) the subgvoup Hyx has
maximal vank and m,(X) = 0, then By = Hy, and X is topologically the Cartesian
product L/Bx x X /L.

Since Hy is of maximal rank, the identity component of Ny is Hy, but by Lemma
2, By = Hy, and By = {e}. This means that the map (3) y: X— L/B, X X/L used in
Theorem 1 is a homeomorphism.

Corollary 1 is useful in demonstrating that certain spaces do not support the ac-
tion of a Lie group with all orbits of the same dimension. In particular, an open,
simply connected manifold whose one-point compactification is again a manifold does
not admit such a group of transformations [3].

We shall use Theorem 1 to prove a generalization of a theorem announced by
Borel in [1]. For this, we shall use a corollary of the principal algebraic theorem
of [ 2].

Let P denote a finite-dimensional vector space over the rationals which is
graded by odd degrees; by AP we denote the exterior algebra generated by P. By
A we denote a graded anticommutative algebra over Q, and we shall assume that
A® = 0 when s is large.
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THEOREM (Borel). If { ES:t} is a canonical spectral sequence with
ES't= AS Q@ (AP)Y,

and if EL = 0 for all i (0 <i+ n), while ES = Q, then
(a) AP has a single odd-dimensional generatoy;
(b) A S is a truncated polynomial ving on one genevatov.

The generator of A S is the image by transgression of the generator of AP. The
truncation occurs in dimension n - r, where r is the dimension of the generator of
AP. With this, we can immediately derive

THEOREM 2. If the space X is simply connected and is a rational cohomology
n-spheve, then each transformation grvoup (L, X) satisfies one of the two conditions

(i) X/L is acyclic over the vationals;

(ii) L is either a civcle group ov a vational cohomology 3-spheve acting with
finite isolvopy groups.

Since X is simply connected, we may use the spectral sequence (3) in Theorem
1. From the theorem of Borel, it follows that By is a rational cohomology r-sphere
(r=1 or r = 3) and that H*(L/By; Q) ® H¥*(X/L; Q) is a truncated polynomial ring;
hence either X/L or L/By is acyclic. The space L/By is orientable, since By is
connected, so that if L./B, is acyclic, then L = B, and Hy is normal in L. Since L
is effective, H, = {e} and L = B,.

In discussing local forms of these methods, we shall use the technique of [4]. Let
x € X, and define

H(x, X) ~ dir lim H(V - x; Q),

where the direct limit is taken over all closed neighborhoods of x. This is a kind of
local cohomology group. We shall say that X is Lc! at x if for each closed con-
nected neighborhood V, there exists a U C V such that 7,(U - x)— 7,(V - x) is triv-
ial. If x, € X is a stationary point under I', then we identify x, with its image in

X/r.

LEMMA 4. If ﬁ(o € X is a stationary point of (T, X) which satisfies the thrvee
conditions

(i) there is a closed connected invariant neighbovhood of X, in which the ve-
maining orbits are all of the same dimension;

(i1) P(x,, X) = BI(S™; Q) for some n;
(iii) X és Le! at x,;

and if T' is effective, then one of the following two alternatives holds:
@) B(xp X/T)=0  (j> 0);

(b) T is a circle group or a rational cohomology 3- sphere, opevating with finite
z'sotropy groups. ‘

We lose no generality by assuming that all orbits in X, other than x,, have the
same dimension. Let {U i} be a decreasing sequence of connected invariant
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neighborhoods of x, such that nUl = x0. Let V;=Uj - xg, and assume that
71(Viy1 - x0) = 71(Vi - x0) is trivial. Choose an F.C X - xg whose closure in X
contains X;, and let F; C V; N Fy bea decreasing sequence of closed connected sets
with void intersection. Let Bj C T" be the subgroup ¢f I" which maps F; onto itself.
A slight modification of Lemma 3 shows that Bj is connected, and certainly

B;D Bj;i. For i large, Bj = Bj+1, and we shall take this to be the case. The space
X/T" is Lct at x, by [10]. This construction leads to natural diagrams

1
[ [
Yi+1: Vil = T/Byy) X Vi /T
and it determines a direct limit system of spectral sequences, with

E5'Y(V,) = H°(I/B; x Vi/T; Q) ® H'(B;; Q),

whose E.-terms are associated with H*(V;; Q). Passing to the direct limit as in
[4], we have a spectral sequence, with

I;,t ~ +Z; (HP(L/B]_; Q) R Iq(Xo, X/F)) ® Ht(ﬁ]_; Q),
ptq=s

whose Ey-term is associated with I*(x, X). The remainder of the argument follows
the proof of Theorem 2.

It is known that when a group acts on a manifold, the orbits of highest dimension
fill a dense open set [8]. We shall investigate the actions in which orbits of lower
dimension are isolated. If (I, X) denotes a group action on a manifold, we let v be
the dimension of the highest-dimensional orbit, and we let S ¢ X/T" be the image
under the natural map of the orbits O(x) with dim O(x) < v.

THEOREM 3. Let (', X) denote the operation of T' on an orientable manifold,
and assume that S consists of isolated points; then one of the following two alterna-
tives holds:

(i) v=n-1;
(ii) At each lower-dimensional orbit O(x,), theve is a slice Ky onwhich Hy

acts effectively either as a civcle group ov as a vational cohomology 3-
Spheve.

Again, there is no loss of generality in assuming that there is only one orbit of
lower dimension. We choose a slice Kxo; it has dimension n - dim O(x,). Under

the natural map, Kxo is mapped onto a neighborhood of x, in X/I'. The group on
acts on KX and H, C H for x € Kxo; thus the orbits of on acting on Kxo - X, are
all of the same dJmensmn. As pointed out in [8], K is Lc! at x,; furthermore,
B(x,, K x) = B)(s™*"!; Q). We now apply Lemma 4. ‘1P (xo, X/T) = 0 for j > 0,

then, since X/T - X, is a generalized orientable (n - v)-manifold over the rationals,
n-v=1, sothat v=n - 1. In the other case, H, acts trivially on KXO for x # x,.

In particular, H_ is normal in on for x € Kxo
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THEOREM 4. Let (', X) denote the opevation of a group on a manifold X in
such a way that all of the lower-dimensional orbits are isolated; then the identity
component of the isotvopy group of the highest-dimensional orbits cannot be maxi-
mal unless v=n- 1.

If the lower-dimensional orbits are removed from X, the resulting space is still
connected, so that the identity components of the isotropy groups of orbits of dimen-
sion v are all conjugate. It is clear from Thecrem 3 that if v <n - 1, these isotropy
subgroups at the v-dimensional orbits cannot be maximal.

It should be pointed out that the case of a group acting on an n-manifold with an
(n - 1)-dimensional orbit has been completely studied in [10].

COROLLARY 1. If (', X) denotes the action of a group on a closed manifold
with a finite number of lowev-dimensional orbits, and if v+ n - 1, then the Euler
characteristic of X is the sum of the Eulev characteristics of the lowey-dimensional
orbits.

COROLLARY 2. If (T', X) denotes the action of a group on a closed manifold with
negative Eulev charvactevristic, and if v # n - 1, then there cannot be a finite number of
lower-dimensional ovrbits.

It is well known that the Euler characteristic of a homogeneous space is non-
negative [6].

COROLLARY 3. If (T', E?™YY denotes a group acting on an odd-dimensional
Euclidean space, and if v < 2n, there cannot be a finite number of lower-dimensional
orbits.

For the proof, we merely insert the point at infinity and apply Corollary 1.

COROLLARY 4. If (', X) denotes a group acting on a closed manifold with
x(X) # 0, and if therve ave a finite number of lower-dimensional orbzts then theve
cannot be movre than X(X) lower-dimensional orbits.

The case v = n - 1, is disposed of in [10]. If v < n - 1, then the isotropy group
of some lower-dimensional orbit is maximal,; thus, by Theorem 3, the isotropy group
of every lower-dimensional orbit must be maximal, and therefore every lower-
dimensional orbit has Euler characteristic at least 1.

For completeness, we include a result which proves the theorem of Borel that
was announced in [1] and mentioned earlier in our note.

THEOREM 5. If (S3, X) denotes the effective action of the group of unit qua-
tevnions on a simply connected rational cohomology n-spheve (n # 3), and if all iso-
tropy groups ave conjugate, then the isotvopy gvoup is the identity.

Let us assume that the isotropy group Gx is nontrivial. The orbits O(x) = s® /Gy
fibre X, and since X is simply connected, 7r1(S3/GX) ~ G, is abelian. The only abe-
lian subgroups of S3 are cyclic. The group Gy C S3 cannot be normal, for the action
is effective; thus the normalizer of Gx in S3, denoted here by N, is the orthogonal
group O(2). Let Fx c X Dbe the component of the fixed point set of Gx which con-
tains x, and let B, C N, be the subgroup of N, which maps F onto itself; then B,
is the rotation group R(2). As in Theorem 1, we can define a map

(3" y: x—83/B, x x/83.

This determines a fibre bundle with fibre ﬁx = By/Gy, which is again a circle group.
There exists a spectral sequence
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E3'" =~ B%(s® x X/5%; Q) ® H'(s'; Q)

whose E,- term is associated with H*(X; Q). Since X is a cohomology n-sphere,
and n # 3, this is a contradiction.

Note Added in Proof. In the last section, devoted to the localization of the earlier
part, we add to the transformation group (I", x) the hypothesis that if Kx is a slice
at an exceptional point x, then there is a second slice K} C K, such that the natural
homomorphism ﬂl(K;{\ X) — ’ITl(KX\X) is trivial.
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