LUSIN’S THEOREM ON AREAS OF CONFORMAL MAPS
G. Piranian and W. Rudin

1. INTRODUCTION

If the function f(z) is of class H,, then there exists a convex domain D whose
boundary is tangent from the interior to the unit circle C at z = 1 and which has
the following property: the area A(f, D, ) of the Riemann surface onto which the
function w = f(eifz) maps the domain D is an integrable function of §. We shall
refer to this proposition as Lusin’s theorem. Lusin actually claimed a little less;
he did not assert that A(f, D, 8) is an integrable function, merely that it is finite for
almost all §; but his proof [2, pp. 139-149] clearly establishes the stronger proposi-
tion,

In Section 2 we give a brief proof of Lusin’s theorem. Conceptually, our proof is
identical with that of Lusin; technically it is somewhat simpler, because of a profit-
able reversal of order in an iterated integral. In addition, our slight modification
yields a converse of Lusin’s theorem.

In a second proof of the theorem, we construct the domain D in terms of the
Taylor coefficients of the function f. We also show that even the weak form oi Lu-
sin’s theorem becomes false if the hypothesis of bounded mean square modulus is
replaced by the hypothesis of slow growth of the maximum modulus; also that the
domain D in Lusin’s theorem can not be chosen independently of the function f.

Lusin [2, p. 151] conjectured that the property of the function f in his theorem
is essentially a local rather than a global property. This is indeed the case: Let £
be meromorphic in |z| < 1; then, for almost all points eif at which the cluster set
of f for nontangential approach is not identical with the entire plane, there exists a
convex domain D(8), touching C at eif, such that the image of D(8) under f has
finite area.

In Section 3, we consider the exceptional set relative to Lusin’s theorem, that
is, the set of points eif for which A(f, D, #) =« for every convex domain D in
|z| < 1 which touches C at z = 1. Lusin stated [2, p. 142] that even if f is con-
tinuous in ]zl < 1, the exceptional set need not be empty; we illustrate this state-
ment with a simple example.

On the other hand, if the Taylor series of f converges absolutely on C, then the
exceptional set is empty; in fact, here the quantity A(f, D, 6) is a continuous func-
tion of 8, for some convex domain D touching the unit circle. This result heightens
the remarkable character of the theorems which assert that certain Taylor series
converging absolutely on C map C onto a Peano curve (see Salem and Zygmund [4]
and Schaeffer [5]).

In Section 4, we waive the requirement that D be convex and that its boundary
have a tangent; of the function f we require only that it be holomorphic in |z| < 1.
From the fact that, for f(z) = Za, z™ and 0 <r<l,
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|£ei®)] < 5 nlag|ra-l - G <o,

it follows that if f is holomorphic in |zi < 1, there exists a domain D with a
boundary point at z = 1 such that A(f, D, §) < 1 for all 9. On the other hand, we
show that no matter with how narrow a tongue the domain D approaches the unit
circle, there exists a function f, holomorphic in |z| < 1, such that A(f, D, ) = =
for every 6.

Definitions. A simply connected domain D is a boundary domain if it is con-
tained in ]zl < 1 and has the point z = 1 as its only boundary point on ]z] = 1.
A convex boundary domain is a fangential domain if the line x = 1 is the only straight
line through z = 1 which does not intersect it. If D is a boundary domain, Dg de-
notes the set of points z = telf (¢ e D).

Preliminary computations. It follows at once from the definitions that, for any
function f meromorphic in |z| < 1 and any boundary domain D,

A, D, 9) Ef f |t'[2do .
Dy

Now let the boundary domain D be given‘by the relations
(1) z=rei¢, ro <r <1, xr)<¢<al),
and let

Ar) =x,(r) - A, (r)

(we shall assume, throughout this paper, that A(r) < 27). Then

i 2T 1 2 .
f A(f, D, 0)d6 = J J |f'(re1(9 + 9 Prdedrds.
o YT YA

0

Since the integrand is nonnegative, the order of integration can be changed, and it
follows that if £(z) =z a,z?, then

27

f A, D, 9)d9=5

1 pAz 2T .
j j |1 (rel @ +9)|2r g dgar
A

To "M Yo

(2)

t 2n-1

= 27 Z‘,nzlanlzj A(M)r dr .
To
In particular, let the boundary domain D be a triangle. For our purposes, there

will be no loss of generality in supposing that no circle |z| = r meets any of the
sides of D more than once. Then D can be represented in the form (1), and the
relation

1-r)C,<Alr)<(1-1r)C,

holds for all r sufficiently near to 1 (the positive constants C, and C, depend on
D). It follows that, in the case of a triangular boundary domain,
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1
Cy/n2< j Ar)r®-dr < C,/n2,
To

that is,

27
@3) C, 3 |anf < j A€, D, 0) d0<C, T |an.

0

2. LUSIN’S THEOREM

THEOREM 1. Let f be holomorphic in |z| < 1. Then the relation

277
J A{f, D, 8)de < =

0o

holds for every triangular boundary domain D if f is of class H,, and for no such
domain if £ is not of class H,.

This theorem follows immediately from the estimate (3).

THEOREM 2. If f € H,, there exists a tangential domain D such that

2T
J A(f, D, 0)dd < .

0

This result can be deduced from Theorem 1 by a standard method (see [1, p.
149]). We give an independent, more constructive proof.

Let f(z) =Za,z® since Z|a,|? < =, there exists a sequence {w,} (w, > 1,
W, > «) such that

(4) >lanlfw, <.
For 1 <t < « we can define a function «(t) such that a(t)/t <7 and
(5) a(l)=1, ah)<w,,

and such that a(t) #~ and a(t)/t X0 as t > «,. Now let
1
p) = a(775) ©O<r<1).

Then
(6) Ylr) 7 o (@ >1)
and

(7) 1-1)Y(r) X0 (r>1).
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By (6), the set D composed of all points z = rei? with
0<r<1, |¢|<@-r)yr)
contains a tangential domain D*. It will therefore be sufficient to prove that

27
j A(f, D, 6)do < w.
1]

Now

2

m 2T .
Io A(, D, 6)do = U(fo £ (rei(6 + ¢)|2d9) do

o0
=27 ffz nzlan|2rzn—2do
D 1

=47 X n2| an|2(Jl-n_1+ fl ) r22-lg r)y(r)dr.
l1-n-1

0

By (6),
1-n"1 1
f r2n-1 (1 - r)y(r)dr < Y(1 - n-1) J. (r2n-1_ p2nyqy
0 0
= a(n)[1/2n - 1/@2n + 1)]
< a(n)/n%;
and by (7),
1 , 1
f rZn-l (1 - ) Yr)dr <n-ly@ - n-Y dr
1-n"1 j-n-1
= a(n)/n?.
27

Therefore [ A(f, D, 6)do < 872 |an|2 a(n), and the result follows from (4) and (5).
-0
THEOREM 3. If u(r)> 0 and p(r) >« as r > 1, theve exists a function f{,
holomorphic in |z < 1, such that

|[f(rei®)| < u@) (@©<r<1, 0<o<2m

and A(f, D, 0) = for all 0 and all triangular boundary domains D,

To prove the theorem, we construct a function of the form

f(z) = }:'znk (e, > 2m) .
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It is clear that if the exponents ny tend to infinity fast enough as k > «, then
|f(rei¢)l < u(r), for all ¢ and all r in 0 <r < 1. Also, if the n, grow fast enough
as k » «, then

|f' (rei®)| > ny /2e

in the annulus 1 - 1/n, <r <1 - 1/2n). Since the area of the intersection of this
annulus and an arbitrary but fixed triangular boundary domain is of the order of
magnitude 1/n%, the theorem is proved.

The following theorem generalizes a result of Lohwater and Piranian [1, Theo-
rem 1],

THEOREM 4. If D is a ltangential domain, there exists a function
f(z) = Ta,z® (Z|a,| < «) such that A(f, D, ) == for all 9.

If D is a tangential domain, it contains a region of the form (1), with A(r) de-
creasing for r > r,, and such that A(r)/(1 -r) >« as r> 1. Let {a, ]} bea
sequence of positive constants, with Za) < «, and let £(z) = Za; z"X, where {n;}
is an increasing sequence of positive integers (n, > (1 - ry)™'). If nyp > fast
enough, then

|£'(rei®)| > nya,/2e

throughout the annulus 1 - 1/n . <r <1 - 1/2n}. It follows that

2,2 J,l-l/an j}t(r)

o M
A, D, 0> % 4 rd¢dr
k=1 1-1/n) 0
0  pl a2
B2y 1
>3 A(l - )/3nk
—roy le 2ny

2 1 2
= a, n )L(l-——)12e .
Z ktk znk /

If n > « rapidly enough, the last series diverges; this completes the proof.

THEOREM 5. If the function £ is meromovphic in |z| < 1, then theve exists a
set E on the unit civcle, of measure 2w, such that for each point eif in E one of
the following two statements holds:

i) if A is an angle in |z| < 1 with its veriex at eie, the sel of cluster values of
f at ei9 (for approach in A) constitutes the entive plane;

__ii) theve exists a convex domain D(0) whose boundary is tangent to Iz] =1 at
el and whose image undev f is a Riemann suvface of finite arvea.

Before proving this theorem, we point out that if f is of bounded characteristic
in |z| < 1, then condition (ii) is satisfied for almost all eif, The present result
therefore goes considerably beyond Lusin’s theorem. We also call attention to an
unsolved problem. Let w=P(t) (0 <t<w) be a curve which is everywhere
dense in the finite plane and whose arcs 0 <t < T < = are all rectifiable, and let
R be a ribbon of finite area which contains the curve w = P(t). If f maps the unit
disc conformally onto the Riemann surface R, there exists a point eif at which
both (i) and (ii) hold. It is easy to modify the construction so that the set of those
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points at which both (i) and (ii) hold has the power of the continuum on every arc of
C. The question remains whether there exists an analytic function f such that the
set where both (i) and (ii) hold has positive measure.

To prove the theorem, we use a result of Plessner [3, Theorem 1]: if f is mero-
morphic in |z| < 1 then, at almost all points for which (i) does not hold, the non-
tangential limit of f exists and has a finite value f(eif). We denote by E* the set of
points where this second condition is satisfied; generally, we use the symbol |E| to
represent the Lebesgue measure of a set E.

For n= 1,2, ..., let E,(n) denote the subset of E* where |f(eif)| < n. Then
lim |E,(n)| = |E*|. Let T be a triangular boundary domain, and for 0 <r < 1 let
E(n, r) denote the subset of points eif in E,(n) for which If(z)l < n throughout the
intersection of Ty with the annulus r < |z| < 1. Since

lim [E(, 1)] = |[E@)],

there exist constants r, (n=1, 2, +-+) such that

lim |E(n, ry)| = |E*|.

n->»eco

Moreover, there exist closed subsets E,(n) (n=1, 2, --*) of E(n, r,) such that

(8) lim |E, ()] = |E*].
n-yo0

Now let R, denote the intersection of
the annulus r, < |z| < 1 with the union
of all the sets Ty (9 € E,(n)). Then R,
it the union of finitely many simply con-
nected domains R, (k= 1, 2, -+, ky)
in which |f(z)| <n and which are
bounded by rectifiable Jordan curves

C ,x (see Figure 1). Let w, = w = g(z)
map the fixed component R, con-
formally onto the disc |w| <1, and let
F(w) = f(g"*(w)) (|w| < 1). Since

| F(w)| < n there exists, by Theorem

2, a tangential domain D in |w|< 1
such that A(F, D, ¢) < « for almost

all ¢. Since Cp) is rectifiable, the
function z = g-'(w) maps sets of meas-
ure zero on |w|= 1 into sets of meas-
ure zero on C_,. It follows that, for
almost all points p on C,,, the function
f(z) maps the domain g-1(D ) onto a Fig. 1.

Riemann surface of finite area. More-

over, the curve C ), has a tangent almost everywhere; and (see Schlesinger [6], §47,
especially page 161) if C ; has a tangent at p, then the boundary of g'l(Dg(D)) has
a tangent at p. Therefore, for almost all points p of E,(n) N Chx, the domain
g'l(Dg(p)) meets the requirement stated in (ii). The theorem now follows from (8).
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3. THE EXCEPTIONAL SET

THEOREM 6. There exists a function £, holomovphic in Iz| < 1 and continuous
in |z| <1, such that A(f, D, 0) = = for every triangular boundary domain D.

Let
f(z) = [log (z - 1)]"¥2exp{ilog(z - 1)} ;
then

iy exp{ilog(z - 1)} . 1
t'(z) = @-1logz - )]z \' "2 1og(z - ﬂ}'

In |z| < 1, the real part of i log(z - 1) is bounded, and therefore there exists a
positive constant C, such that

CL
lz - 1|2 llog(z - 1)|

|£' )z >

A slight computation now gives the desired result.

THEOREM 7. If £(z) = Za,z™ and |ay| <, there exists a tangential domain
D such that the quantity A(f, D, ) is a continuous function of .

We will construct a tangential domain D of the form (1). By Minkowski’s in-
equality,

[A@, D, o)L/ ={ ” | > nanzn—1|zd0}1/z
Dy

<X { J-f |nanzn‘1|2do}l/2
D

0

= X n|ay| ( fl }\(r)rzn—1 dr) 1/ .

Since Z|a,| < o there exists a sequence {w,} (w, > 1, w, 7 ) such that
Z|ap|w, < « Also, the function A(r) can be chosen (analogously to the function
(1 - r) Y(r) in the proof of Theorem 2) so that A(r)/(1 -r) > as r > 1 and so
that

n ( jlh(r)rz‘n‘l dr

To

< w, .

)1/2

For such a function A(r), the quantity A(f, D, ) is a bounded function of #.

To establish continuity of the function A, we introduce the notation
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AR, D, 0) = ff lf'fde  O<R<1).
z€Dg

|z| <R

For each R, the quantity Ay (f, D, ) is a continuous function of 6, and it will suf-
fice to show that Ay (f, D, 6) > A(f, D, 6) uniformly. Repeating the computation in
the preceding paragraph, we obtain the inequality .

1
{A¢#, D, 0) - ARg(f, D, 6)}1/2 < X nla,| ( f Ar)rén-1gr )1/2 .
R

s

Since the right member is independent of 8 and tends to zero as R > 1, the theorem
is proved.

COROLLARY. If £(z) = Za,z™ (£ l anl < ) and P is a polygonal region in
|z| < 1, then f maps P onto a Riemann surface of finite area.

4. GENERAL BOUNDARY DOMAINS
THEOREM 8. If D is a boundavy domain, theve exisis a function £, holomorphic
in |z| < 1, such that A(f, D, 0) =~ for every 6.

Let D be of the form (1); or, if D is not of this form, let A(r) denote the angle
subtended, at the origin, by the.intersection of the circle |z| =r with D, Without
loss of generality we suppose that A(r) is a decreasing function of r, for r > r,.
We choose a sequence {x,} = {x(n)} such that x, » 1 and

(9) Axy) >1/n (m>ny).

By means of the sequence {x,} we construct a sequence {ny} which, together with
the definitions aj = [x(my)] "'k and

fz)= T akznk,
will lead to a proof of the theorem.

Let n; be any integer greater than ng Once n, ny, -+, ni_; have been chosen,
let n; be an integer large enough so that

(10) l‘lk > 4(a1n1 + v+ ak_lnk_l) N
(11) may[xm)]"k <k? (=1,2, -, k-1),
(12) Yie = xm)(1 - 1/2ny) > x(ny_q),

and let R, denote the annulus yy < |z| < x(ny). For z in Ry,

k-1 o0
|2£'(2)] > may|z[™F - = na; - T ngaylxm)] ™.
1 k+1
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By (10), the first sum on the right is less than ni/4, and by (11) the second sum is
less than 1/k. By (12),

ey E= (1-1/2m) K > e-12> 172,

and therefore |zf'|> n /4 throughout Ry, for k sufficiently large. It follows that

x(ng) A7)
f I |£' |2 do > J J |rf' Pdodr > x(m) @2ny) ' A[x(ny)]n?/16 .
DgNRy Yk J

By (9), the last expression is greater than x(n,)/32, and the theorem follows.
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