ON THE EMBEDDING OF A GENERALIZED REGULAR RING
IN A RING WITH IDENTITY

Carl W. Kohls

1. It is well known that every ring may be embedded in a ring with identity, by a
process (to be described below) which was apparently first discussed by Dorroh (see
[1]). In the earlier of Stone’s famous papers on Boolean rings it is shown that, by
use of a suitable special case of this process, each Boolean ring may be embedded in
a Boolean ring with identity which is minimal in the class of Boolean rings with iden-
tity containing the given ring [5, Theorem 1]. Brown and McCoy extended this result
to p-rings [1, Corollary 1 to Theorem 5]. (In fact, they showed that the correspond-
ing extension is minimal in the class of rings of characteristic p.)

We consider here the embedding problem for commutative regular rings and their
generalizations. In particular, we find under what conditions a commutative $emi-
simple ring which is regular, m-regular or wm-regular may be embedded in a com-
mutative ring with identity of the same type. (In the case of a regular ring, the as-
sumption of semi-simplicity is, of course, superfluous.) The minimality question
will not be taken up, however.

2. We shall confine our attention entirely to commutative rings, merely remark-
ing that some of the material which follows could be presented without the require-
ment of commutativity.

A commutative ring A is said to be: (1) regular if, for each a € A, there is an
x € A satisfying a?x = a; (2) m-vegular if there is a fixed positive integer m such
that, for each a € A, there is an x € A satisfying a2mx = a™ (in particular, a regu-
lar ring may be described as 1-regular); (3) w-7egular if, for each a € A, there is
an x € A and a positive integer n, depending on a, satisfying a2"x = a®, Regular
rings were introduced by von Neumann [4]; m-regular and #-regular rings were first
discussed by McCoy [2]. Both of these authors restricted their definitions to rings
with identity, but this requirement was subsequently dropped. For some basic prop-
erties of regular rings, and for the proof that every regular ring is semi-simple,
see [3, pp. 147-149]. (Semi-simplicity is always used in the sense of Jacobson, that
is, in the sense that the intersection of the prime maximal ideals is zero.)

If S is a commutative ring with identity such that A admits S as a ring of opera-
tors, then A may be embedded in the ring (A; S) with identity defined as follows (see
[3, pp. 87-88]): Let (A; S) = {(a, s):a € A, s € S}, and define operations in (A; S) by

(@,s)+ (b,t)=(@a+b,s+1t), (a,s) (b,t)=(ab+ sb+ ta, st).

The identity of (A; S) is the element (0, 1). The subset A, = {(a, s): s = 0} is easily
seen to be an ideal of (A; S) which is isomorphic to the given ring A.
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The symbol n will be reserved for the characteristic of A. We may always
choose S to be I, the ring of integers modulo (n). (The method used by Stone was
the one just described, with S = I,.) In general, there may be no other ring available
as a candidate for S. Thus, we shall be concerned with conditions on n which ensure
that I, satisfies the requirements found for S to yield the desired kind of ring with
identity. (The first three lemmas are used in that part of the investigation.) How-
ever, in cases where I is not suitable, another choice is often possible. As a some-
what special example, suppose that A is an algebra over a field F. Then, as will be
seen, we may set S= F, N

3. Lemmas 1 and 2 are quite simple, but they do not seem to occur in any
familiar reference.

LEMMA 1. If A is a commutative ving with no non-zero nilpotent elemenis,
then either n = 0 or n is square-free.

Proof. Let n # 0, and suppose n = p?q, where p is prime. Let a be an element
of order n. Then (pga)® = p?q®a® = n(qa?) = 0, but pga # 0.

That the converse is false can be seen immediately by considering zero-rings.
LEMMA 2. 1. is a regular ring if and only if e is square-free.

Proof. Suppose e is square-free, say e = p, **-pk, where each p; is prime.
Then I. is isomorphic to the direct sum of the fields IP1’ ka, and hence it is

regular.

Conversely, if I. is regular, it contains no non-zero nilpotent elenmients. By
Lemma 1, either e = 0 or e is square-free. But it is clear that the ring of integers
is not regular.

LEMMA 3. 1. is an m-vegular ring for some m if and only if € + 0.
Proof. The necessity of the condition is obvious; we turn to the sufficiency.

First, it will be shown that the direct sum of a finite number of commutative m;-
regular rings is m-regular for some m. Let A,, -, Ax be m,-, -, mg-regular,
respectively; let A denote the direct sum of A,, - Ak, and let m = m, **» my. Given

2m; .
a€A, a=(a,, , ax), there exist x; € Aj such that aimlxi= aznl (i=1, -, k).
Hence

2m m/mi 2m; m/my m; m/m; .
a; X =(a; Xy Y= (a3 ) T=ay, (=1, k).
m/m /
Let x=(x, X k) Then x € A, and a?™x = am,

Next, a finite ring B in which every non-nilpotent element has an inverse is m-
regular for some m. If b € B is non-nilpotent, then b?*(b~!) = b. If b € B is nilpo-
tent with index h, then for any y € B we have b2Py = bh, Let h,, +*+, hy be the in-
dices of the nilpotent elements of B, Then it follows from equations like thegse in the
preceding paragraph that B is m-regular, with m = h, +++ hy.

If e=gq,°-qx, Where q,, ***, qx are powers of distinct primes, then I, is the
direct sum of I ETEN qu Now, a trivial modification of th‘e proof that I, isa field
1

when p is a prime shows that Iq is a ring in which every non—mlpotent element has

an inverse. From the results Just established, we conclude that I, is an m-regular
ring, for some m.
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The next lemma is essentially known, but is included for convenience of refer-
ence.

LEMMA 4. If A is a commutative m-vegular (n-vegular) ving, and B is any
ideal of A, then B is an m-regular (n-vegular) ving.

Proof. If a € B, there isan x € A (and an integer m) such that a®™Mx = 2™, Set
y = a™x“. Then y € B, and azmy = a™,

The final lemma is the main result needed to establish the theorems which follow.
LEMMA 5. Let A be a commutative, semi-simple, n-vegular ving. The validity

of the relations a°™1ly = a™l in A and s*™2t = s™ in S implies that, for some
X € A, the rvelation
(a, S x, £ = (a, ) 172

holds in (A; S).
2

Proof. It must be shown that there is an x € A such that gx + tmlﬁ + 8% = a,
where m = mym,,

m-1 2m-~1
a= 2 (?:) skam-k gnd g= X (2:1) gkgZm-k,
k=0 k=0

we write this in the form
(1) Bx + s2Mx = ¢ - t™g,

Since A is semi-simple, it suffices to solve the corresponding congruence
modulo M, for every prime maximal ideal M. Define c = a + sa™y™2. Because
a™ymz ig idempotent, we have

cM = gaMyMz 4 gMgMymy clm — Bamymz 4 SZmamyrnz ;
and using the equation s2Mmt™1 = g™ we obtain

(2) cm .ty c2M = (g - tMig)aMyM2

By 7 -regularity, there isa z € A and an integer p satisfying c2Pz = cP. Let k
be an integer such that pk > 2m. Since cPz is idempotent,

(3) c2m(cpk-2mgk) o opkzk = (cPz)k = Pz,
We set x = cPK-2mpK(Eem _ 4 2My  mpep x = a™y™2x; for if a € M, then

c € M, whence x € M; while if a ¢ M, then a™ ¢ M, and a™y™:2 is the identity
modulo M. Hence,

2 m 2 2m
BX + s“™Mx = pa™y™Mzx + s“MaMy™ex = c“™Mx,
and g) becomes c2™x = @ - t™1g, that is, from (2), c?Pxa™y™z = ¢™ - tT1c?™,
m

or c2™Mx = ¢™ - t™M1¢2™, Thus, in view of (3), to show that x is the required solu-
tion we need only verify that



168 CARL W. KOHLS
cPz(c™ - {Myc2m) = cm _ {1y c2m

But if ¢ € M, this is trivial; while if ¢ {z M (whence cP § M), then cPz is the iden-
tity modulo M.

THEOREM 1. Let A be a commutative ring. The ring (A; S) is vegular if and
only if A and S ave vegular. In particular, (A; 1) is vegular if and only if A is
vegular and n + 0.

Proof. If (A; S) is regular, then for any (a, s) € (A; S), there is an (x, t) € (A; S)
such that (a, s)®(x, t) = (a, s), and thus s?t = s. Hence, S is regular. Since A is iso-
morphic to the ideal A, of (A; S), Lemma 4 (with m = 1) shows that A is regular.

For the converse, apply Lemma 5 with m, = m, = 1.
Now suppose that (A; I,,) is regular. Then I, is regular, so n # 0.

Conversely, let A be regular and n # 0, Since A has no non-zero nilpotent ele-
ments, it follows from Lemmas 1 and 2 that I,, is regular. Hence (A; I,,) is regular.

THEOREM 2. If A is a commulative, semi-simple, m,-regular ring, and S is
m,-vegular (in particular, if S =1, with n+ 0), then (A; S) is m,m,-regular. If
(A; 8) is mg-vegular, then A and S are my-vegulav. (In particular, if (A; L) is
mg-regular, then n + 0.)

Proof. The first statement follows from Lemma 5, with m, and m, fixed, while
the verification of the second statement is analogous to the first paragraph of the
proof of Theorem 1. The parenthetical remarks may be obtained by the use of
Lemma 3.

THEOREM 3. If A is a commulative, semi-simple, n-vegular ring, and S is
7 -vegular (in particulav, if S =1, with n # 0), then (A; S) is w-regular. If (A; S)
is n- rvegular, then A and S are w-vegulav. (In parvticular, if (A; 1,) is w-vegular,
then n # 0.)

The proof is similar to that of Theorem 2.
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