EXTENSIONS OF THE GROSS STAR THEOREM

Wilfred Kaplan

1. BACKGROUND. The Gross star theorem ([3]; [5], p. 276) asserts that each
element z(w) of the inverse of a function w = ¢(z), meromorphic for |z|< o, can
be continued to infinity along almost all rays from the center of the element. This
has been generalized [4]: first, by replacement of the rays by very general families
of “parallel curves”; and second, by replacement of the class of inverses of mero-
morphic functions by a considerably broader class. The generalizations depended
on the following theorem concerning schlicht functions (4], p. 4):

THEOREM 1. Let t =h(s) be lower semi-continuous for 0< s <1, where
0<b<h(s)L +oo. Let w= (o) (0=5+it) be schlicht in the domain G:
0<s<1, -b<t<h(s); and let

1) limt_>h(s) Y (s +it)=0, his)<

for each s in a subset E of (0,1). Then E has measure 0.
In the same paper ([4], p. 20) the following theorem was proved:

THEOREM II. Lef E be a closed set of capacity zevo on | z| = 1. Then there
exists a schlicht function w =@(z) in |z|< 1 such that limg s 5, $(z) = o for eackh
'z, in E, while limy, . ,, $(z) is finite for |z, =1 and z, notin E.

2. TWO THEOREMS ON SCHLICHT FUNCTIONS.

THEOREM 1. Let B be a closed countable subsetl of the extended plane. In
Theovem 1let (1) be replaced by the condition

(1) lim, 5 Y(s +ity) € B, h(s)<

for every sequence t, >h(s), whenever lim Y(s + itn) exists or is «o. Then the
conclusion that E has measure zevo vemains valid.

Proof. The limits in (1') are the “cluster values” of ¥ on the segment
s = const., -b <t <h(s), as t approaches the boundary h(s). These cluster
values must form a closed connected set. However, B is totally disconnected.
Hence, for each s in E the limit in (1') exists for all sequences t, > h(s); that is,
lim; 5 1,(5) ¥ (s + it) exists or is o and is an element by of B k=1, 2,---). For
each by, let E, be the subset of E for which the limit equals by. Then E; has
measure zero, by Theorem I, so that E = U E; has measure zero.

Remark 1. It is natural to conjecture that the theorem remains true if B is an
arbitrary totally disconnected closed set. It is certainly false in this generality; for
we can choose E to be closed, of positive measure and totally disconnected, h(s)
to be 1 and Y to be the identity. However, it may remain true if B has linear

measure zero or if B has capacity zero. The following theorem is a result in this
direction.

THEOREM 2. In Theovem 1 let the function =z = (o) satisfy the additional
hypothesis: |P(0)| <1 in G. Let B be a closed subset of | z| = 1 having capacity
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zevo. Let the condition (1) be replaced by the following:

(1m) lim,  W¥(s +it ) e B, h(s)< o
for every sequence t_ >h(s), whenever lim (s + it,)) exists. Then the conclusion
that E has measure zevo remains valid.

Proof. As in the proof of Theorem 1, we conclude that for s in E limg > h(s)
Y(s + it) exists and is an element of B. Now it follows from Theorem II that we can
choose a function ¢ = ¢ (z) which is schlicht for |z|{ < 1 and for which & (z)> 0
as z approaches a point of B. Hence, ¥, (o) = #(¥(0)) is schlicht in G and
Y, (s +it)> 0 as t>h(s) for s in E. Therefore, by Theorem I, E has measure
zero.

3. CONTINUATION OF THE INVERSE OF A MEROMORPHIC FUNCTION
ALONG A FAMILY OF CURVES. Let w =¢(z) be meromorphic in a domain D of
the z-plane or, more generally, of a Riemann surface R. By local inversion of
w = @(z) at each noncritical point Z, we obtain a functional element z(w); at a criti-
cal point z, we obtain an algebraic functional element (that is, a series in (w- wy)*/?
or in (1/w)/™). These are the “internal elements” ([1], p. 100) of the inverse func-
tion. They are all analytic continuations of each other, but do not necessarily form
all such continuations; for #(z) may itself be continuable. For this reason we call
the set of these elements the rvestricted inverse of ¢(z).

Let z(w) be a functional element of the restricted inverse, with center at w,
and with z(w,) noncritical. Let ¥ : w=w(t) (0L t< a) be a continuous path in
the extended plane with w(0) = w,. Then there exists a t, < a and a unique continu-
ation of z(w) by regular elements of the restricted inverse along 7y, for
0< t < t,. This continuation assigns to each t a value z =¥(t) in D such that
¢(Y(t)) = w(t). The function Y(t) is continuous and represents a path 7 , in the
z-plane.

Suppose that continuation is possible for 0L t < t, but no farther, without leav-
ing the restricted inverse. If t, < a, there are then two possibilities: as t>t,,
Y (t) approaches a critical point of ¢(z); or, as t->t,, ¢ (t) approaches the boun-
dary of D—that is, for every compact subset A of D, Y{(t) remains outside A for
t sufficiently close to t,. In the latter case, ¥(t) must approach a unique compon-
ent of the boundary; since ¢ (P(t)) »w(t,) as t>t,, ¥, is an asymptotic path for

o(z).

We now define a family of paths ¥, as follows: As in Theorem I, let t = h(s)
be lower semi-continuous for 0 <s < 1,and let 0 < b< h(s)< +c0;let G be the
domain -b< t< h(s), 0<s <1; andlet w=1(0) (0=s + it) be meromorphic in
G. Then, for each fixed s, w = f(s + it) defines a path ¥ 5, on which t is the para-
meter for 0 <t < h(s). We assume there exists one regular element z(w) of the
restricted inverse of @(z) such that z[f(o)] is defined for 0<s< 1, |[t|<b. We
also assume that z(w) can be continued along each path ‘)’i, for 0<t<h,(s) and
no farther. This continuation defines ¥ (¢) as a meromorphic function for
0<t<h,(8), 0<s <1, and @P(o)) = f(0o); the curve z = Y(s + it) is for each
fixed s apath 5 in D and, if h, (s) < h(s), ¥ 5 either approaches a critical point
as t->h, (s) or is an asymptotic path for ¢(z) relative to some boundary component.

If f(o) is of form ¢ 0+ B and h(s)5+oc>é then we are studying continuation of
the inverse of ¢(z) along the parallel lines 7 ,; if f(o) is an exponential function,
we-are-studying continuation of the inverse along rays radiating from a point, as in

the Gross star theorem.
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4. MEROMORPHIC FUNCTIONS WITH A COUNTABLE NUMBER OF SINGU-
LARITIES.

THEOREM 3. In the notations of Section 3,let D be the extended z-plane minus
a countable closed set B. Then h, (s) = h(s) for almostall s (0< s <1); thatis,
the inverse can be continued indefinilely along almost all curves ¥ f’”

Proof. Where h, (s)< h(s) and the path ?> does not approach a critical point,
it must approach B. Thus Y (o) satisfies a boundary condition as in Theorem 1.
The proof is completed exactly as the proof of Theorem 2 in [4], with the new Theo-
rem 1 replacing Theorem 1 of [4].

Remark 2. In accordance with Remark 1, I conjecture that the theorem remains
true for more general sets B, also, that it remains valid when ¢ is meromorphic
on a Riemann surface R with “null boundary” in an appropriate sense. If R has a
parabolic universal covering surface, this is indeed true, for this case can at once be
reduced to Theorem 2 of [4].

5. FUNCTIONS HAVING AN ISOLATED SINGULARITY. When ¢(z) is mero-
morphic in a region whose boundary is large (for example, in a region whose boun-
dary contains an arc), then one cannot expect to be able to continue the inverse func-
tion in almost all directions, for the cluster values of ¢ on the arc form a barrier
to continuation in a set of directions which in general has positive measure. How-
ever, one can state that continuation is possible almost everywhere except for such
a barrier. The following theorem deals with an example of the sort of case which
can be treated.

THEOREM 4. In the notations of Section 3, let D be the domain 0 <|z|< 1.
Then whevever h, (s) < h(s), either (a) |Y(s + it)] >1 as t>h,(s), or (b) PY(o)
converges to 0 ov to a cvitical point of ¢(z) as t->h,(s). The case (b) arises only

for a set E of values of s of measure zevo.

Proof. Since, for h, (s) < h(s), the path ¥ must approach a critical point or a
unique boundary component, (a) and (b) are the only two possibilities. The proof of
the last assertion is the same as that for Theorem 2 in [4], with “approaches infinity”
replaced by “approaches zero.”

This theorem permits of wide generalization. For example, the domain
0 <]z| <1 can be replaced by an arbitrary domain D obtained from a domain D'
by removing a countable closed set B, if in case (a) approach to |z| =1 is re-
placed by approach to the boundary of D' and in case (b) approach to zero is re-
placed by approach to a point of B.

6. FUNCTIONS MEROMORPHIC IN THE UNIT CIRCLE.

THEOREM 5. In the nolations of Section 3, let D be the domain |z| <1. Let B
- be a closed subset of |z| = 1 having capacily zevo. Let E be a subset of (0, 1)
such that, for each s in E, h,(s) < h(s) and the sequence Y (s + ity,) has all its
limit points in B for every sequence t, convervging to h,(s). Then E has measure
zevo; that is, the set of paths V3, on which unlimited continuation fails because ¥ 5,
approaches B has measure zero.

Proof. Again the proof of Theorem 2 of [4] can be repeated, with Theorem 2
above replacing Theorem 1 of [4].

Discussion. If we assume that ¢(z) is bounded or, more generally, of bounded
type, then lim¢ _>h1(s)(1’(s + it) exists wherever h, (s) < h(s). For if ¥(s + it) does
not converge to a critical point of ¢(z), it must tend to an arc a on |z| = 1. By the
Fatou theorem, @#(z) > i(s + ih, (s)) radially almost everywhere on « ; this is
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impossible by the Riesz-Nevanlinna theorem ([5], p. 197), unless ¢ is constant (cf.
[1], pp. 94-95). Hence, each ¥ has a unique endpoint, wherever h, (s) <h(s). The
same conclusion holds for all s (0< s < 1), if we assume that for each s the
function f(s + it) has a limit, finite or .o, as t approaches h(s). For then the path
Vs, is defined in the closed interval 0< t < h(s), and the corresponding path ¥,
must approach a regular point (possibly a pole) or a critical point of ¢(z), or else
approach the boundary | z| = 1. For example, f(0) could be linear and h(s)= + co.
Theorem 5 asserts that each class B of endpoints of capacity zero is mapped by

¢ onto a set which, as viewed from a point of the Riemann surface of the re-
stricted inverse along the curves va, appears as a set of measure zero. If ¢

is itself schlicht, this has even more concrete meaning. The theorem can be re-
garded as a complement to a theorem of Nevanlinna and Frostman ([5], p. 198; [2],

p. 97).

If no restriction is made on ¢(z), we cannot expect existence of a unique end-
point for each Y3, for Y3 can even spiral towards |[z| =1 ([6]). Let one such
spiral ¥ %, exist; then every ‘}’z which approaches |z] = 1 must also be a spiral.
In this case, if there are two spirals Y51 and 7?32, then the two bound a simply
connected domam D, for which |z| = 1 appears as a prime end. If we map D,
conformally onto the d1sc |1 <1 by z=H({), the prime end becomes a single
point {,. The function ¢, () = @(H({)) is then meromorphic in D,. In the pre-
vious reasoning, we can now replace w = é(z) by w=¢, (). The paths Y3, now
correspond to paths )’ in |¢| <1, and for s, < s <s, those paths Whlch ap-
proach || =1, as t approaches h (s), must approach {,. We can now apply
Theorem 5 to conclude that h, (s) < h(s) only for a set of measure O, for
s, <s <<s8,. Similar remarks can be made if, for s, < s <s,, all 7’ have the
same arc o as set of limit points on |[z| = 1; for such an arc again forms a single
prime end.

In general, there are interesting relations between Theorem 5 and the paper of
Collingwood and Cartwright [1].
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