163

The Intersection of a Linear Subspace
with the Positive Orthant
by

Chandler Davis
1. This note discusses the geometry of those convex
polyhedral cones! in Euclidean n-space ER which are
the intersection of the positive orthant P" with some
linear subspace. Cones of this sort occur in linear
programming problems (cf. e.g. G. B. Dantzig,
AAPA, p. 360). However, the present work was mo-
tivated by its application to a geometrical description
of the frame of an arbitrary convex polyhedral cone,
which description will appear in a subsequent paper.

Terminology and notation used in this paper
will be defined only where they depart from those o
Gerstenhaber (AAPA , Chap. XVIII).

2. In any Euclidean space Em, the (closed) positive

orthant P™ is the set of all vectors a such that
N .

a = 0.

Given any nx k matrix A, that is, any linear
transformation on EX to EB, the image APK of PK
under A is evidently the set of all positive linear
combinations of the columns of A, considered as vec —
tors in E®. The class of all APK, for all k and A,
is therefore by definition exactly the class of all con-
vex polyhedral cones.

1. See Cowles Commission, Activity analysis of pro-
duction and allocation, ed. T. C. Koopmans (cited
hereafter as AAPA), particularly Chaps. SVII (by D.
Gale) and XVIII (by M. Gerstenhaber).
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APK does not in general determine A uniquely.
However, if APK is pointed the condition that A bea
frame of APK (that is, that the columns of A be a
frame of APk) determines A to within the following
changes: any number of interchanges of columns and
any number of multiplications of a column by a posi-
tive scalar.

A prime following the symbol for a matrix
will denote the transpose. Vectors in Euclidean
-space will be thought of as. column vectors, with the
.corresponding row vectors indicated by primes, and
with the usual notation for the inner product.

By the ''geometric polar'" of a cone C will be
meant its positive polar when it is imbedded in D{C}.
For pointed cones, the geometric polar of the geomet-
ric polar is the original cone; and the relation of geo-
metric polarity is the most natural duality relation
between such cones.

The main results can now be stated.

THEOREM 1. If APX = P" N D {APK}, then
A'P® = PN D {a'P"}.

'THEOREM 2. Under the same hypothesis ,
A'P" is affine isomorphic to the geometric polar of
APk,

These two theorems will turn out to be closely
related.

3. Let us begin by proving the first theorem:.

APKc pn implies A'PHCPk, since both are
equivalent to the statement that every matrix element
of A is > 0.

—

But A'P'C D §A'P"} holds by definition, there-
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k
fore A'PnC P ND {A'Pn}. The non-trivial partis to
prove inqlusion in the other direction.

Consider therefore an arbitrary
xEPkf\D {A’Pn}. Is it the image under A' of some
element of P*? Surely x = A'a for some a € ER,
for it is clear that D{A'Pn}‘is exactly the.range
A'E® of A'. Then also x = A'{a + b) for any
b € (}Ur?,k)'L , for (AEk)"L , being the,brti&ogo'n‘al b
complement of the range of A, is the nullspace of A".
The object will be to choose b so a + b&PL,

I point out next that a € (APK)¥, the positive
polar of APk, For, xePK = PKt, that is, for any
yeEPK, 0 <y'x =y'A'a =a'Ay, and Ay takes on all
values in APK.

The proof of the theorem is therefore reduced
to that of the following | '

LEMMA. Let S be a linear subspace of E&
Let ae(SNPR)*, Then a + st intersects P,

The proof is indirect.

Supposing the two sets inquestion do not inter-
sect; it is not hard to see that there must be a pair of
points for which the minimum distance is attained
There is no loss in generality in letting aea + st
and d€ P" be one such pair of points. Let e =d - a;
‘ef, the length of e, is the distance between the two
sets, and is not zero.

e may be decomposed (uniquely) as e =ej+ e,
with elé Pn, e’ZE—Pn, el'ez = 0. (e1 is simply e with
any negative components replaced by zeros.) If
e, #0, then Ieliz = |e]? - Ieziz < |e]%4, and
d-e2€ P%is closer to-a than d is. Therefore
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e2 =0, ee Pn.

I show next that d'e =0. Only the case d #0
needs proof. e may be decomposed (uniquely) as
e=Xd+e;, with d'e; =0. If A#0, A< 1, then
|e3| < |e| and d - Ade P? is closer to a than'd is;
while if A > 1 then still 0€ P" is closer to a thand
is. Therefore A =0, d'e 1 0.

By a still more standard argument, e is or-
thogonal to st \

Since e€ SN P® has now been proved, a'e 2 0.
But a'e =(d-e)'e =0 - |e|2' < 0, a contradiction.. The
proof is complete.

4. It may be 'interesting to state this result in more
algebraic form. Proofs of all statements in this sec-
tion are simple and will be omitted. ’

Consider the following three properties of ma-
trices. |

(1) All elements are non-negative.

(2) Any linear combination of the columns having only
non-negative elements is also a positive linear
combination of the columns.

(3) No column is a positive combination of the others.

- For any n Xk matrix A, properties (1) and (2)
together are equivalent to the hypothesis of Theorem
1, while property (3) is equivalent to saying A isa
frame (of APK).

Denote the duals of the three properties by
(1'), (2'), (3'). Now (1) is evidently self-dual. The o-
rem 1 states that (1) and (2) imply (2').

(3) does not imply (3') (even in the presence of
(1) and (2)). In fact any A may be broken down as
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o A A >

| Ay By
where (A3) has property (3), (A, AZ,) has property
(3'), and A; has both, by a simple rearrangement of
rows and columns. This decomposition, in case both

AP'k and A'PK are pointed, is in fact unique, in the
obvious sense.

5. Proof of Theorem 2: Identify E® mod (AEK)" with
AEK in the usual way. Then the natural mapping of
E® onto E® mod (AEk)‘L is replaced by the projection
B onto AEX. One checks from definitions that
B((APk)+) is exactly the geometric polar of APF,

Now since the null-space of B is the same as
that of A', BA'-! iis an affine isomorphism of A'ED
onto AEk‘= It must be shown to map A'P® onto
B((APX)1); that is, BP™ must be shown to be the same
as B((APK)?).

But this is easy to see. In the first place,
PI’IC_(APk)“‘L gives BPRCB((APX)*). On the other
hand, any a€ (APX)T satisfies the hypothesis of the

Lemma, with S again taken as AEk; hence Ba€ BP!.
The proof is complete.

Since the conclusion of Theorem 2 seems in-
dependent of the hypothesis that APK =pPinD {APk},
it is worthwhile to give counterexamples showing this
is really required.

Example 1. Take

1 -1 0)
A"(o 0 V-

Then A is a frame of a half-space in EZ. Its geo-
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metric polar is a half-line. However A'PZ is a right
angle (with interior, of course) in E3.

The cone AP3 in this example is intrinsically
different from those discussed in Theorem 2, in that
it has a non-zero lineality space. Accordinglyl
give also an example showing that the failure of the
conclusion of the theorem can occur also when intrin-
sic properties are the same.

| Example 2. Start with the matrix

1 1 0 0
1 0 1 0
A = 0 1 0 1
0 0 1 1

This satisties AP = P4ND{AP4}, and in-
deed one verifies the conclusion of Theorem 2. 2 For
A is a frame of a regular tetrahedral angle, and A’
is identical with A.

However, if

1\J1/2 J1/2 0
1 V1/2N1/2 0
0
0

9

B= 10 vz o
0 0 J2Z

Then B'P% is actually congruent to AP4, yet B P4 is
a trihedral angle.

2. The accident that k =n in this example should not
cause any difficulty in interpreting the symbols.



