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On Gaussian Periods That Are Rational Integers

F. Thaine

1. Preliminaries

Letp ≥ 3 be a prime number,ζp apth primitive root of 1, and1 the Galois group
of Q(ζp)/Q. Let q 6= p be a prime number,ζq aqth primitive root of 1, andn the
order ofq modulop. Assume thatq 6≡ 1 modp. Hencen ≥ 2, p(q −1) | qn−1,
andn | p − 1. Setf = (qn − 1)/p ande = (p − 1)/n. LetQ be a prime ideal of
Z[ζp] aboveq and letF = Z[ζp]/Q. ThusF ' Fqn , the finite field withqn ele-
ments. Letα ∈ Z[ζp] be a generator ofF× such thatαf ≡ ζp modQ, and letT
be the trace fromF toFq . In this paper we study the Gaussian periodsηi (0 ≤ i ≤
p −1) defined by

ηi =
f−1∑
j=0

ζT(α
i+pj )

q , (1)

as well as the Gauss sum

G =
qn−2∑
i=0

ζ ipζ
T(αi )
q =

p−1∑
i=0

ηiζ
i
p. (2)

Some basic definitions and results are given in this section. A short review of
the cyclotomic numbers of ordere corresponding top is given in Section 2. Those
numbers will play an important role in Section 4. In Section 3 we show applica-
tions of the periodsηi to the study of indices of cyclotomic units inZ[ζp] (with
respect toQ andα) and of the orders of certain components of the ideal class
group ofQ(ζp). More precisely, letA be thep-part of the ideal class group of
Q(ζp), Zp the ring ofp-adic integers, andω : 1→ Z×p the Teichmüller charac-
ter; in Section 3 we study theωp−ln-components ofA for n andl odd, 1≤ l ≤
e − 1 (see the definitions in Section 3). In Section 4 we show an efficient method
to calculate the periodsηi, based on the Gross–Koblitz formula and on properties
of the cyclotomic numbers of ordere corresponding top; in Section 5 we give a
MAPLE program to perform such calculations. I am grateful to Hershy Kisilevsky
and John McKay for some valuable comments.

We start with a simple proof of the known result (see [6, Thm. 4]) that, under
the stated hypothesis, theηi are rational integers and soG∈Z[ζp]. In fact,G be-
longs to the only subfield of degreee of Q(ζp) and is divisible by a (sometimes
large) power ofq.
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For 0≤ i ≤ p − 1 andk ∈ Z, defineηi+kp = ηi. Let s ∈ Z be a primitive root
moduloq such thats ≡ α(qn−1)/(q−1) modQ, and letτ be the automorphism of
Q(ζq)/Q such thatτ(ζq) = ζ sq. For anyi, we have

τ(ηi) =
f−1∑
j=0

ζ sT(α
i+pj )

q =
f−1∑
j=0

ζT(sα
i+pj )

q =
f−1∑
j=0

ζT(α
p(qn−1)/(p(q−1))+i+pj )

q = ηi.

Sinceτ generates Gal(Q(ζq)/Q), this proves thatηi ∈ Z. Note also thatηqi =∑f−1
j=0 ζ

T(αqi+pj )
q =∑f−1

j=0 ζ
T(αqi+pqj )
q . So, fori ∈Z, we have

ηqi = ηi. (3)

SetG(x) =∑qn−2
i=0 xiζT(α

i )
q , wherex is an indeterminate. Hence

G(x) ≡
p−1∑
i=0

ηi x
i mod(xp −1). (4)

We have thatG = G(ζp), and it is easy to see that

G(1) =
p−1∑
i=0

ηi = −1. (5)

For 1≤ i ≤ p −1, we have

G(ζ ip)G(ζ
−i
p ) = qn (6)

(see [5, GS 2, p. 4] or [14, Lemma 6.1]).
If n is even thenG = qn/2. In fact, in this case we have by (3) thatη−i =

ηqn/2i = ηi. ThereforeG(ζ ip) = G(ζ−ip ) and, by (6),G = ±qn/2. The result now
follows from (5) (work moduloζp −1). We assume from now on thatn is odd.

Let g be a primitive root modulop and letσ ∈ 1 be the automorphism such
thatσ(ζp) = ζ gp . Thusσ is a generator of1. Note thate = (p − 1)/n is even.
Define the numbers (also Gaussian periods)θi, 0 ≤ i ≤ e −1, by

θi =
n−1∑
l=0

ζ g
i+el

p . (7)

We have that{θ0, θ1, . . . , θe−1} is a normal integral basis overQ ofQ(θ0), the sub-
field ofQ(ζp) of degreee. Clearly

∑e−1
i=0 θi = −1. For 0≤ i, j ≤ e − 1, define

the integersci,j by

θ0θi =
e−1∑
j=0

ci,j θj ; (8)

for i, j as before andk, l ∈Z, defineθi+ke = θi andci+ke,j+le = ci,j .
Sincen is the order ofq modulop we have thatge ≡ qt modp for some integer

t relatively prime ton. Hence, by (3),

ηgi+e = ηgi (9)
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for i ≥ 0. We therefore have that

G(ζp) = η0 +
p−2∑
i=0

ηgiζ
gi

p = η0 +
e−1∑
i=0

ηgi

n−1∑
j=0

ζ g
i+ej

p .

That is,

G(ζp) = η0 +
e−1∑
i=0

ηgi θi . (10)

In particular, we have

G(ζg
e

p ) = σ e(G(ζp)) = G(ζp). (11)

Given an integera, denote by|a|p the smallest nonnegative residue ofa modulo
p. The prime ideal factorization of(G(ζ−1

p )) in Z[ζp] is

(G(ζ−1
p )) =

p−2∏
k=0

σ−k(Q)|g
k |p/p =

e−1∏
k=0

σ−k(Q)(1/p)
∑n−1

l=0 |gk+el |p (12)

(see [5, FAC 1, p. 12). Note thatσ e generates the decomposition group ofQ over
Q; in particular,σ e(Q) = Q. The numbers1

p

∑n−1
l=0|gk+el|p (0 ≤ k ≤ e − 1) are

positive integers, as is easy to check. Letqν be the largest power ofq dividing
G(ζp). It follows from (12) that

ν = min
0≤k≤e−1

1

p

n−1∑
l=0

|gk+el|p. (13)

Clearlyν ≥ 1.
By (10),G(ζp) = ∑e−1

i=0(ηgi − η0)θi . Sinceqν | G(ζp), it follows that qν |
(ηgi − η0). Define

H = G(ζp)

qν
and di = ηgi − η0

qν
(0 ≤ i ≤ e −1). (14)

Note that thedi are integers. For 0≤ i ≤ e−1 andk ∈Z, definedi+ke = di. We
have

H =
e−1∑
i=0

diθi and HH̄ = qn−2ν (15)

(by (6)), where the bar denotes complex conjugation. From (5) and (14) we obtain

η0 = − 1

p

(
1+ nqν

e−1∑
j=0

dj

)
, ηgi = qνdi + η0 for 0 ≤ i ≤ e −1. (16)

In Section 4 we describe an efficient algorithm to calculate the integersdi and
therefore the periodsηi. The formula in the following proposition can be used
to calculate theηi for small values ofp andq. We use the following version of
Kronecker’s delta:

δi,j =
{

1 if i ≡ j modq,

0 if i 6≡ j modq.
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Proposition 1. For 0 ≤ i ≤ p−1, let bi be the number of elements of trace0 in
the set

{
αi+pl : 0 ≤ l ≤ qn−1

p(q−1) − 1
} ⊆ F×; thenηi = − qn−1

p(q−1) + qbi. Therefore,
G = q∑p−1

i=0 biζ
i
p.

Proof. Letw = qn−1
p(q−1) . From (1) we have

ηi =
w−1∑
l=0

q−2∑
j=0

ζT(α
i+p(l+jw))

q =
w−1∑
l=0

q−2∑
j=0

ζT(s
jαi+pl )

q =
w−1∑
l=0

q−2∑
j=0

ζ s
jT (αi+pl )
q

=
w−1∑
l=0

q−2∑
j=0

τ j(ζT(α
i+pl )

q ) =
w−1∑
l=0

TQ(ζq )/Q(ζ
T(αi+pl )
q ) =

w−1∑
l=0

(−1+ qδT(αi+pl ),0)

= −w + q
w−1∑
l=0

δT(αi+pl ),0 = −w + qbi.

Note that, by the additive form of Hilbert Theorem 90,

bi =
{
l : 0 ≤ l ≤ qn−1

p(q−1) −1 andαi+pl = αm − αqm for somem∈Z}.
Corollary. Suppose thatq dividesp − 1. Letw = qn−1

p(q−1) . Then, for0 ≤ i ≤
p − 1, ηi ≡ −w − q∑w−1

l=0

∑p−1
k=1 k

((p−1)/q)T (αi+pl ) modp.

Proof. By Proposition1we haveηi = −w+q∑w−1
l=0 δT(αi+pl ),0. On the other hand,

we have
∑p−1

k=1 k
((p−1)/q)T (αi+pl ) ≡ −δT(αi+pl ),0 modp. The corollary follows.

Observation. In order to actually calculate the periodsηi using Proposition 1,
one needs to find traces (fromF to Fq) of powers ofα. To calculate such traces,
one can proceed as follows. Find an irreducible factorf(x) of the cyclotomic
polynomial8qn−1(x) moduloq. Regardf(x) as the irreducible polynomial ofα
overFq . The trace ofαk is the remainder, moduloq, of the division of

∑n−1
j=0 x

kqj

by f(x).

By taking conjugates in (8), we obtain

θiθj =
e−1∑
k=0

cj−i,k−iθk. (17)

By (15) and (17) we have

qn−2ν = HH̄ =
e−1∑
i=0

diθi

e−1∑
j=0

dj θj+e/2 =
e−1∑
i=0

e−1∑
j=0

didj+e/2θiθj

=
e−1∑
i=0

e−1∑
j=0

didj+e/2

e−1∑
k=0

cj−i,k−iθk =
e−1∑
k=0

( e−1∑
i=0

e−1∑
j=0

cj−i,k−ididj+e/2

)
θk.



On Gaussian Periods That Are Rational Integers 317

Hence, for 0≤ k ≤ e −1,

qn−2ν = −
e−1∑
i=0

e−1∑
j=0

cj+e/2−i,k−ididj . (18)

By (4) we have that, fora ∈ Z,∑p−1
k=0 ζ

ak
p G(ζ

−k
p ) = ∑p−1

i=0 ηi
∑p−1

k=0 ζ
(a−i)k
p =

pηa. Thus

ηa = 1

p

p−1∑
k=0

ζ akp G(ζ
−k
p ). (19)

By (6), (19), and the triangle inequality, ifp - a then we have

|ηa − η0| ≤ 1

p

p−1∑
k=1

|ζ akp −1||G(ζ−kp )| = qn/2

p

p−1∑
k=1

|ζ kp −1|

= qn/22
√

2

p

(p−1)/2∑
k=1

√
1− cos(2kπ/p)

< qn/2

(
2

p
+ 2
√

2
∫ 1/2

0

√
1− cos(2πx) dx

)
= qn/2

(
2

p
+ 4

π

)
.

We conclude that, for example,

|ηa − η0| < 1.32qn/2(
true forp > 50 by the preceding formula and true forp < 50 by direct calcula-

tion of 1
p

∑(p−1)/2
k=1

√
1− cos(2kπ/p)

)
. Consequently, for 0≤ i ≤ e −1,

|di | = |ηgi − η0|
qν

< 1.32qn/2−ν

<

{ 1
2q

(n+1)/2+1−ν if q = 2 or q = 3 or q = 5,

1
2q

(n+1)/2−ν if q ≥ 7.
(20)

Observation. It is a simple calculus exercise to prove that, in fact,

1

p

(p−1)/2∑
k=1

√
1− cos(2kπ/p) <

√
2

π
,

but we do not need this result.

Clearly, by (19) we also have that, fora ∈Z,

|ηa| ≤ 1

p
(1+ (p −1)qn/2) < qn/2.



318 F. Thaine

By (5), (11), and (19) we have

ηa = 1

p

(
−1+

p−2∑
j=0

ζ ag
j

p G(ζ−g
j

p )

)

= 1

p

(
−1+

e−1∑
j=0

n−1∑
k=0

ζ ag
j+ek

p G(ζ−g
j

p )

)
.

As a result,

η0 = 1

p

(
−1+

e−1∑
j=0

nG(ζ−g
j

p )

)
and, fori ≥ 0,

ηgi = 1

p

(
−1+

e−1∑
j=0

n−1∑
k=0

ζ g
i+j+ek

p G(ζ−g
j

p )

)
= 1

p

(
−1+

e−1∑
j=0

θi+jG(ζ−g
j

p )

)
.

Hence, for 0≤ i ≤ e −1,

di = ηgi − η0

qν
= 1

p

e−1∑
k=0

(θi+k − n)G(ζ
−gk
p )

qν
= 1

p

e−1∑
k=0

(θi+k − n)σ k(H̄ ). (21)

Finally, by (16) we have

e−1∑
i=0

di = −1+ pη0

nqν
≡ eqn−ν modp. (22)

2. Cyclotomic Numbers of Ordere Corresponding top

In this sectionp is an odd prime number,n is an odd divisor ofp − 1 (here we
allow n = 1), e = (p − 1)/n, g is a primitive root modulop, andθi andci,j are
as in (7) and (8). We shall study the cyclotomic numbers(i, j) of ordere corre-
sponding top and their relation with the numbersci,j . (A similar study for the
cyclotomic numbers corresponding to the casen even can be found in [13, Sec. 2],
though the notation in that article is different: we call thereq, n, f, s, andηi what
we call herep, e, n, g, andθi, respectively. Note that in this article, where we are
working with more objects, the symbolsq, n, f, s, andηi already have a mean-
ing.) Let

C = [ci,j ] 0≤i,j≤e−1. (23)

We will give a simple characterization ofC that is, in fact, a variation of [11,
Thm. 1], and we will show how to calculateC in an efficient way. This comple-
ments results in [13, Sec. 2].

For 0 ≤ i, j ≤ e − 1 we denote by(i, j) the cyclotomic number of ordere,
which is defined as the number of ordered pairs of integers〈k, l〉 (0 ≤ k, l ≤ n−1)
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such that 1+ gke+i ≡ gle+j modp. (See e.g. [1, Chap. 2, Sec. 2], [2], or [8].) De-
fine θi+ke = θi, ci+ke,j+le = ci,j, and(i + ke, j + le) = (i, j) for 0 ≤ i, j ≤
e − 1 andk, l ∈Z. We have(i, j) = (j + e/2, i + e/2) and(i, j) = (−i, j − i)
(see [2, formula (15)]).

In this section we use the following version of Kronecker’s delta:

δi,j =
{

1 if i ≡ j mode,

0 if i 6≡ j mode.

By (8) and [2, formula (6)] we have, fori, j ∈Z,
ci,j = (i, j)− nδe/2,i . (24)

Since θiθj = θj θi, it follows from (17) that θiθj = ∑e−1
k=0 cj−i,k−iθk =∑e−1

k=0 ci−j,k−j θk. This proves thatci,j = c−i,j−i . Also from (17) we have

C


θj
θj+1
...

θj+e−1

 = θj


θj
θj+1
...

θj+e−1

. (25)

Therefore the Gaussian periodsθ0, . . . , θe−1 are exactly the eigenvalues ofC, and
det(xI −C) is the minimal polynomial of the periods (see also [2, formula (9)]).
We have a field isomorphism

Q(θ0) ' Q(C), θ0 7→ C.

Let

R =


θ0 θe−1 . . . θ1

θ1 θ0 . . . θ2
...

...
. . .

...

θe−1 θe−2 . . . θ0

 (26)

(a circulant matrix), and letK be thee × e matrix [δi+1,j ] i,j ; that is,

K =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0

. (27)

It follows from (25) that

R−1CR = diag[θ0, θe−1, θe−2, . . . , θ1]. (28)

(We have thatR−1= (1/p)(Rt−nE)Ke/2,whereE is thee×ematrix with all en-
tries equal to 1.) Since circulant matrices commute with one another, we can con-
clude from (28) thatR−1(K−iCKi)R = diag[θi, θi−1, . . . , θi−(e−1)]. Therefore,
the matricesK−iCKi (0 ≤ i ≤ e − 1) are simultaneously diagonalizable, and if
we identifyθ0 with C as before then we must identifyθi withK−iCKi. In partic-
ular, for all integersi we have
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(K−iCKi)C = C(K−iCKi). (29)

Observe that the entryi, j of K−lCKl is ci−l,j−l .
In [11, Thm. 1] we give a list of properties that characterize the matrixC, which

are equivalent to the following (see the observation at the end of [11]). LetK be
as in (27). Denote by [B] i the ith row of a matrixB (starting fromi = 0). Then
C is a matrix with entries inZ such that:

(a) the sum of the elements of theith row ofC is n− pδe/2,i;
(b) the sum of the elements of thej th column ofC is−δ0,j ;
(c) [K−kCKk] l = [K−lCKl ] k for 0 ≤ k, l ≤ e −1;
(d) [CK−kCKk] l = [CK−lCKl ] k for 0 ≤ k, l ≤ e −1; and
(e) det(xI − C) is irreducible overQ.
These properties characterizeC (up to some relabeling of the periods in formula
(7), due to the choice ofg), and property (c) together with formula (29) imply
property (d) (since (c) implies that [(K−kCKk)C] l = [(K−lCKl)C] k). Also, (c)
is equivalent to the equalitiesci,j = c−i,j−i . We therefore have the following
result.

Proposition 2. LetK be as in(27). The matrixC = [ci,j ] 0≤i,j≤e−1 is charac-
terized(up to some relabeling of the periods in formula(7), due to the choice of
g) by the following properties: it is a matrix with entries inZ such that, for all
0 ≤ i, j ≤ e − 1,

(i) the sum of the elements of itsith row isn− pδe/2,i ,

(ii) the sum of the elements of itsj th column is−δ0,j,

(iii) ci,j = c−i,j−i (indices moduloe),
(iv) C(K−iCKi) = (K−iCKi)C, and
(v) the polynomialdet(xI − C) is irreducible overQ.

The following proposition shows a congruence modulop for the cyclotomic num-
bers(i, j)—which is a variation of a congruence first found by Lebesgue—and
an inequality that together allow the efficient calculation of those numbers. The
proof uses standard properties of Jacobi sums and a formula relating them to cy-
clotomic numbers, and it is similar to the proof of the corollary of Proposition 3
in [13, Sec. 2] (which corresponds to the casen even).

Proposition 3. For 0 ≤ i, j ≤ e − 1,

(i, j) ≡ − 1

e2

e∑
k=0

e−1∑
m=0

(
nk

nm

)
gn(mi−kj) modp.

Also,
|(i, j)− (p − 1)/e2| < √p

and so
0 ≤ (i, j) < √p + (p − 1)/e2 < p.

Proof. Let ζe be a primitive root moduloe. LetP be the prime inZ[ζe] abovep
such thatgn ≡ ζe modP. Fora, b ∈Z, define the Jacobi sumJ(a, b) by
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J(a, b) = −
p−1∑
k=2

ζ
a indg(k)+b indg(1−k)
e ,

where indg(k) is the least nonnegative integer such thatg indg(k) ≡ k modp. We
haveJ(a, b) = (−1)nbJ−a−b,b = (−1)bJ−a−b,b for a, b ∈Z (to prove this, use the
change of variablek 7→ k̄,wherek̄ is the inverse ofkmodulop in {1,2, . . . , p−1}).
Also, J(a, b) = J(b, a) for a, b ∈ Z; J(a, b) = 1 if e | a ande - b; J(a, b) =
(−1)a if e | (a + b) ande - a; andJ(0,0) = −(p − 2).

By [1, Thm. 2.5.1], sincen is odd we have

(i, j) = − 1

e2

e−1∑
a=0

e−1∑
b=0

(−1)aζ ia+jbe J(a, b),

where the bar denotes complex conjugation. By [13, formula (27)] (which holds
regardless of the parity ofn), if a + b 6≡ 0 mode then

J(a, b) ≡
(
n|a + b|e
na

)
modP,

where|k|e denotes the least nonnegative residue of an integerk moduloe. Hence,
for 0 ≤ i, j ≤ e −1,

(i, j) ≡ −
(

1

e2

) ∑
0≤a,b≤e−1
a+b 6≡0 mode

(−1)agn(ia+jb)
(
n|a + b|e
na

)

−
(

1

e2

)(
−(p − 2)+

e−1∑
a=1

ζ (i−j)ae

)

≡ −
(

1

e2

)(
eδi,j +

e−1∑
a=0

e−1∑
b=0

(−1)agn(ia+jb)
(
n|a + b|e
na

))
modP.

By [2, formula (15)], we thus have

(i, j) = (j + e/2, i + e/2) = (−j − e/2, i − j) = (i + e/2− j,−j)

≡ −
(

1

e2

)(
eδe/2,i +

n−1∑
a=0

n−1∑
b=0

(−1)agn((i+e/2−j)a−jb)
(
n|a + b|e
na

))

≡ −
(

1

e2

)(
eδe/2,i +

e−1∑
a=0

e−1∑
b=0

gn(ia−jb)
(
nb

na

))

≡ −
(

1

e2

) e∑
b=0

e−1∑
a=0

gn(ia−jb)
(
nb

na

)
modp.

(Note that
(
p−1
na

) ≡ (−1)na = (−1)a modp.)
The inequality|(i, j) − (p − 1)/e2| < √p follows from the triangle inequal-

ity and the preceding expression for(i, j) in terms of Jacobi sums, since|Ja,b| =√
p if 1 ≤ a, b ≤ n−1 anda + b 6= 0. This ends the proof of Proposition 3.
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The numbers
(
nk

nm

)
are studied in [12, Lemma 1] and its subsequent example. Prop-

osition 3 will be an important tool in Sections 3 and 4.

3. Indices of Cyclotomic Units and Orders of the
ωp−ln-Components of thep-Part of the
Ideal Class Group ofQ(ζp) Modulo p

LetA be thep-Sylow subgroup of the ideal class group ofQ(ζp), Zp the ring of
p-adic integers,ω : 1 ' (Z/pZ)× → Z×p the Teichmüller character defined by
ω(k) ≡ k modp, ander (0 ≤ r ≤ p − 2) the idempotents1

p−1

∑
λ∈1 ωr(λ)λ−1∈

Zp[1]. We have thatA =⊕p−2
r=1 er(A). In this section we give a formula (mod-

ulop) for the indices of the cyclotomic units ofZ[ζp], with respect toQ andα,
in terms of the periodsηi; we use that formula to study the componentsep−ln(A)
of A for l odd, 1≤ l ≤ e −1.

For i ∈ Z such thati 6≡ 0 modqn − 1, define8(i) as the least positive integer
such that

1− αi = α8(i) (30)

in F. Sinceαf ≡ ζp modQ, this implies that, for 1≤ i ≤ p −1,

1− ζ ip ≡ α8(fi) modQ. (31)

Hence the numbers8(fi) are important in the calculation of indices of cyclo-
tomic units modulo prime ideals inQ(ζp). The following proposition, which can
be regarded as one of Kummer’s complementary reciprocity laws (see [4]), gives
us the numbers8(fi) modulop in terms of the Gaussian periodsηi (cf. [12, for-
mulas (14) and (24)]). Note that this gives a formula, modulop, for the indices of
the cyclotomic units ofZ[ζp] (i.e., the units generated by±ζp and 1− ζ ip for 1≤
i ≤ p −1), sinceζ kp

∏p−1
i=1(1− ζ ip)ri ≡ αfk+

∑p−1
i=1 ri8(fi) modQ.

Proposition 4. For 1≤ i ≤ p − 1,

8(fi) ≡
p−1∑
j=1

jηjηj+i modp.

Proof. We have that

ζp
G′(ζp)
G(ζp)

≡ −
qn−2∑
k=1

kζT(α
k)

q +
f−1∑
l=1

8(lp)+
p−1∑
i=1

8(−if )ζ ip modp

(see [9, formula (1)]). On the other hand, by taking logarithmic derivatives of both
members of (4) and using (6), we obtain

ζp
G′(ζp)
G(ζp)

≡
p−1∑
i=0

( p−1∑
j=1

jηjηj−i
)
ζ ip modp.

This shows that, for some integerc, we have8(fi) ≡ c +∑p−1
j=1 jηjηj+i modp

for 1≤ i ≤ p −1. Therefore, by (5),
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c ≡ −(p −1)c ≡ −
p−1∑
i=1

8(fi)+
p−1∑
j=1

jηj

p−1∑
i=1

ηj+i

= −
p−1∑
i=1

8(fi)+
p−1∑
j=1

jηj(−ηj −1)

= −
p−1∑
i=1

8(fi)−
p−1∑
j=1

jη2
j −

p−1∑
j=1

jηj modp.

But
p−1∑
i=1

8(fi) ≡ 0 modp,

sinceα
∑p−1

i=18(fi) ≡ ∏p−1
i=1(1− ζ ip) = p mod Q and sincep (in fact, any ra-

tional integer) is apth power moduloQ (recall thatp(q − 1) | (qn − 1)).
Also, if u 6≡ 0 modn and v ∈ Z then, by (9),

∑p−1
i=1 i

uηvi ≡
∑p−2

j=0 g
juηvgj =∑e−1

j=0

(∑n−1
k=0g

eku
)
gjuηvgj ≡ 0 modp. In particular,

∑p−1
j=1 jηj ≡ 0 modp and∑p−1

j=1 jη
2
j ≡ 0 modp. Thereforec ≡ 0 modp. This ends the proof of Propo-

sition 4.

For r even, 2≤ r ≤ p − 3, let

βr =
p−1∏
i=1

(1− ζ ip)i
p−1−r

(32)

and letir (Q) be the least nonnegative integer such that

βr ≡ αir (Q) modQ. (33)

It is a well-known fact thater(A) is trivial if and only ifβr is not thepth power of an
element ofZ[ζp] (see e.g. [14, Thm.15.7 and the discussion preceding Thm. 8.14]).
In particular, we have the following.

Proposition 5. For r even,2 ≤ r ≤ p − 3, if ir (Q) 6≡ 0 modp thener(A) is
trivial.

The following numbers will prove useful in our study of the indicesir (Q) mod-
ulo p. Fork ∈Z, we define

ak = nqν
e−1∑
i=0

gnkidi . (34)

Note thatak+e ≡ ak modp. Also, by (22),a0 ≡ −1 modp and, by (9), for 1≤
k ≤ e − 1 we haveak = n∑e−1

i=0 g
nki(ηgi − η0) ≡ ∑p−2

i=0 g
nkiηgi ≡

∑p−1
i=1 i

nkηi
modp.
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Proposition 6. Let r be an even integer,2 ≤ r ≤ p − 3. Then

ir (Q) ≡
p−1∑
i=1

p−1∑
j=1

ip−1−rjηjηj+i modp.

If n - r − 1, thenir (Q) ≡ 0 modp. If n | r − 1, then

ir (Q) ≡ −
(p−r)/n∑
l=1

(−1)l
(
p − 1− r
ln− 1

)
a(p−r)/n−lal modp.

In particular,
ip−n(Q) ≡ −a1= −nqν

e−1∑
j=0

gnjdj modp.

Proof. The first congruence follows directly from (31)–(33) and Proposition 4.
Hence

ir (Q)

≡
p−1∑
i=0

p−1∑
j=1

(i − j)p−1−rjηiηj

= η0

p−1∑
j=1

jp−rηj +
p−1∑
i=1

p−1∑
j=1

p−1−r∑
l=0

(−1)l
(
p −1− r

l

)
ip−1−r−lj l+1ηiηj

= η0

p−1∑
j=1

jp−rηj +
p−1−r∑
l=0

(−1)l
(
p −1− r

l

) p−1∑
i=1

ip−1−r−lηi
p−1∑
j=1

j l+1ηj

≡ η0

p−2∑
j=0

gj(p−r)ηgj

+
p−1−r∑
l=0

(−1)l
(
p −1− r

l

)p−2∑
i=0

gi(p−1−r−l )ηgi
p−2∑
j=0

gj(l+1)ηgj

= η0

p−2∑
j=0

gj(p−r)(qνdj + η0)

+
p−1−r∑
l=0

(−1)l
(
p −1− r

l

)p−2∑
i=0

gi(p−1−r−l )(qνdi + η0)

p−2∑
j=0

gj(l+1)(qνdj + η0)

≡ qνη0

p−2∑
j=0

gj(p−r)dj

+ q2ν
p−1−r∑
l=0

(−1)l
(
p −1− r

l

)p−2∑
i=0

gi(p−1−r−l )di
p−2∑
j=0

gj(l+1)dj

− qνη0

p−2∑
j=0

gj(p−r)dj
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= q2ν
p−1−r∑
l=0

(−1)l
(
p −1− r

l

)p−2∑
i=0

gi(p−1−r−l )di
p−2∑
j=0

gj(l+1)dj

= q2ν
p−1−r∑
l=0

(−1)l
(
p −1− r

l

) e−1∑
i=0

n−1∑
u=0

g(i+eu)(p−1−r−l )di
e−1∑
j=0

n−1∑
v=0

g(j+ev)(l+1)dj

= q2ν
p−1−r∑
l=0

(−1)l
(
p −1− r

l

)

×
e−1∑
i=0

gi(p−1−r−l )di
n−1∑
u=0

geu(p−1−r−l )
e−1∑
j=0

gj(l+1)dj

n−1∑
v=0

gev(l+1) modp.

If n - r −1 then eithern - p−1− r − l or n - l +1; so, by the preceding congru-
ence,ir (Q) ≡ 0 modp. If n | r −1 we obtain

ir (Q) ≡ −n2q2ν
(p−r)/n∑
l=1

(−1)l
(
p −1− r
ln−1

) e−1∑
i=0

gi(p−r−ln)di
e−1∑
j=0

gjlndj

= −
(p−r)/n∑
l=1

(−1)l
(
p −1− r
ln−1

)
a(p−r)/n−lal modp.

This proves the second congruence of the proposition. The last congruence fol-
lows from the second one and from the fact thata0 ≡ −1 modp.

In the following theorem we summarize some properties of the numbersdi and
ai that are useful in the study of certain components of the ideal class group of
Q(ζp). We believe that the theorem can be used to show that, withl odd(1≤ l ≤
e−1), some of the componentsep−ln(A) of A are trivial. The idea is to show that
if ep−ln(A) is nontrivial thenall prime numbersq of ordernmodulop must have
a certain form; we hope this will contradict some version of Dirichlet’s theorem
on primes in arithmetic progressions.

Theorem 1. (i) We have

e2qn−2ν =
( e−1∑
i=0

di

)2

+ p
(
e

e−1∑
i=0

d2
i −

( e−1∑
i=0

di

)2)
and ( e−1∑

i=0

di

)2

=
(

1+ pη0

nqν

)2

< e2qn−2ν .

Also, for0 ≤ k ≤ e − 1,

qn−2ν = −
e−1∑
i=0

e−1∑
j=0

cj+e/2−i,k−ididj,

where the integersci,j = (i, j)− nδe/2,i are as in(8) and (24).
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(ii) The numbersak = nqν
∑e−1

i=0 g
nkidi satisfy the following congruences:

a0 ≡ −1 modp and, for1≤ l ≤ e − 1,

l∑
m=0

(−1)m
(
ln

mn

)
al−mam ≡ 0 modp.

Also,
e−1∑
m=0

ae−mam ≡ −nq2ν
e−1∑
i=0

d2
i modp

and, for l odd(1≤ l ≤ e − 1),

l∑
m=1

(−1)mm

(
ln

mn

)
al−mam ≡ −lip−ln(Q) modp.

(iii) If, for l odd (1≤ l ≤ e − 1), the componentep−ln(A) of thep-part of the
ideal class group ofQ(ζp) is nontrivial, then

l∑
m=1

(−1)mm

(
ln

mn

)
al−mam ≡ 0 modp.

Proof. (i) Equation (18) and Proposition2(i) yield

eqn−2ν = −
e−1∑
i=0

e−1∑
j=0

( e−1∑
k=0

cj+e/2−i,k−i
)
didj

= −
e−1∑
i=0

e−1∑
j=0

(n− pδi,j )didj

= −n
( e−1∑
i=0

di

)2

+ p
e−1∑
i=0

d2
i .

Therefore,e2qn−2ν = (∑e−1
i=0 di

)
2 + p(e∑e−1

i=0 d
2
i −

(∑e−1
i=0 di

)
2
)
. By (22) we

have that
(∑e−1

i=0 di
)

2 = (1+pη0
nqν

)
2, and from (21) we obtain

e−1∑
i=0

di = 1

pqν

e−1∑
k=0

(−1− en)G(ζ−gkp ) = − 1

qν

e−1∑
k=0

G(ζ−g
k

p ).

So, by (6) and the triangle inequality,
∣∣∑e−1

i=0 di
∣∣ ≤ 1

qν

∑e−1
k=0 q

n/2 = eqn/2−ν .
Sincen is odd, this implies that

(∑e−1
i=0 di

)
2 < e2qn−2ν . The last equality is just

formula (18).
(ii) The congruencea0 ≡ −1 modp follows from (22). By (18), (24), and

Proposition 3 we have, for 0≤ k ≤ e −1,
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1≡ qn = −q2ν
e−1∑
i=0

e−1∑
j=0

((j + e/2− i, k − i)− nδi,j )didj

= −q2ν
e−1∑
i=0

e−1∑
j=0

(j + e/2− i, k − i)didj + nq2ν
e−1∑
i=0

d2
i

≡ q2ν
e−1∑
i=0

e−1∑
j=0

1

e2

e∑
l=0

e−1∑
m=0

(
nl

nm

)
gn(m(j+e/2−i)−l(k−i))didj + nq2ν

e−1∑
i=0

d2
i

≡ n2q2ν
e−1∑
l=0

e−1∑
m=0

e−1∑
i=0

e−1∑
j=0

(−1)m
(
nl

nm

)
gn(m(j−i)−l(k−i))didj ;

this follows because

n2q2ν
e−1∑
m=0

e−1∑
i=0

e−1∑
j=0

(−1)m
(
p −1

nm

)
gnm(j−i)didj ≡ n2q2ν

e−1∑
i=0

e−1∑
j=0

eδi,j didj

≡ −nq2ν
e−1∑
i=0

d2
i modp.

As a result, 1≡∑e−1
l=0 g

−nkl∑e−1
m=0(−1)m

(
nl

nm

)
al−mam modp and hence, for 0≤

t ≤ e −1,

eδ0,t ≡
e−1∑
k=0

gnkt ≡
e−1∑
l=0

e−1∑
k=0

gnk(t−l )
e−1∑
m=0

(−1)m
(
nl

nm

)
al−mam

≡ e
t∑

m=0

(−1)m
(
nt

nm

)
at−mam modp.

That is,a2
0 ≡ 1 modp, which we already know, and

∑ l
m=0(−1)m

(
nl

nm

)
al−mam ≡

0 modp for 1 ≤ l ≤ e − 1. The congruence
∑e−1

m=0 ae−mam ≡ −nq2ν∑e−1
i=0 d

2
i

modp can easily be obtained from (34), and the congruences

l∑
m=1

(−1)mm

(
ln

mn

)
al−mam ≡ −lip−ln(Q) modp

for l odd(1≤ l ≤ e −1) follow immediately from Proposition 6.
(iii) Follows from (ii) and Proposition 5. This ends the proof of the theorem.

The following examples show how to use Theorem 1 to gain information about the
componentsep−ln(A) of the ideal class group ofQ(ζp) whene is small.

If e = 2, thenn = (p − 1)/2. Since we wantn odd, we must havep ≡ 3 mod
4. Supposeip−n(Q) = i(p+1)/2(Q) ≡ 0 modp. Then, by Theorem 1(ii), we have
thata1≡ 0 modp and sod1≡ d0 modp. On the other hand, by Theorem 1(i),
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4q(p−1)/2−2ν = (d0 + d1)
2 + p(2(d2

0 + d2
1 )− (d0 + d1)

2)

= (d0 + d1)
2 + p(d0 − d1)

2.

Therefore, 4q(p−1)/2−2ν ≡ (d0 + d1)
2 modp2.

Observation. It is well known that, whenp ≡ 3 mod 4, the component
ep−(p−1)/2(A) = e(p+1)/2(A) is trivial. This follows from the reflexion theorem
(see [14, Thm. 10.9]) and from the class number formula for the imaginary qua-
dratic fieldQ

(√−p ): If e(p+1)/2(A) is nontrivial thene(p−1)/2(A) is nontrivial and
sop | n − 2ν; but n − 2ν < p, a contradiction. The preceding result, together
with Proposition 5, could lead to an alternative proof of this fact. Ife(p+1)/2(A)

were nontrivial then, for each primeq of order(p − 1)/2 modp, if a andb are
the integers such that 4q(p−1)/2−2ν = a2 + pb2 then we would have thatp | b.
If e = 4, thenn = (p − 1)/4. Since we wantn odd, we must havep ≡ 5 mod 8.
By Theorem 1(ii) we havea2 ≡ − 1

2

(2n
n

)
a2

1 modp, and 16q−2ν(1+2a1a3+a2
2) ≡

4(d2
0 + d2

1 + d2
2 + d2

3) modp. By Theorem 1(i),

16q(p−1)/4−2ν = (d0 + d1+ d2 + d3)
2

+ p(4(d2
0 + d2

1 + d2
2 + d2

3)− (d0 + d1+ d2 + d3)
2).

In particular,(d0+d1+d2+d3)
2 ≡ 16q−2ν modp. Suppose first thatep−n(A) =

e(3p+1)/4(A) is nontrivial. Then, by Theorem 1(iii),a1 ≡ 0 modp, and so also
a2 ≡ 0 modp. Hence 16q(p−1)/4−2ν ≡ (d0 + d1+ d2 + d3)

2 modp2. Suppose
now thatep−3n(A) = e(p+3)/4(A) is nontrivial. Then, by Theorem 1(iii),a3 ≡
− 1

3

(3n
n

)
a1a2 modp. Sincea2 ≡ − 1

2

(2n
n

)
a2

1 modp,we havea3 ≡ 1
6

(2n
n

)(3n
n

)
a3

1 =
1
6
(3n)!
(n!)3

a3
1 modp. Therefore,

16q(p−1)/4−2ν = (d0 + d1+ d2 + d3)
2

+ p(4(d2
0 + d2

1 + d2
2 + d2

3)− (d0 + d1+ d2 + d3)
2)

≡ (d0 + d1+ d2 + d3)
2 + p(16q−2ν(1+ 2a1a3+ a2

2)−16q−2ν)

≡ (d0 + d1+ d2 + d3)
2 +16pq−2ν

(
1

3

(3n)!

(n!)3
+ 1

4

((2n)!)2

(n!)4

)
a4

1

≡ (d0 + d1+ d2 + d3)
2 + 4

3
p

((
p −1

4

)
!

)−4

q−2νa4
1 modp2.

If e = 6, thenn = (p−1)/6. Since we wantn odd, we must havep ≡ 7 mod12.
By Theorem1(ii) we havea2 ≡ − 1

2

(2n
n

)
a2

1 modp anda4 ≡ −
(4n
n

)
a1a3+ 1

2

(4n
2n

)
a2

2

modp, soa4 ≡ −
(4n
n

)
a1a3+ 1

8
(4n)!
(n!)4

a4
1 modp. Also 1+ 2a1a5+ 2a2a4+ a2

3 ≡
−nq2ν∑5

i=0 d
2
i modp and

(∑5
i=0 di

)
2 ≡ 36q−2ν modp. Therefore,

6
5∑
i=0

d2
i −

( 5∑
i=0

di

)2

≡ 36q−2ν(2a1a5+ 2a2a4 + a2
3) modp.
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By Theorem 1(i), 36q(p−1)/6−2ν = (∑5
i=0 di

)
2 + p(6∑5

i=0 d
2
i −

(∑5
i=0 di

)
2
)
.

Suppose thatep−n(A) = e(5p+1)/6(A) is nontrivial. Then, by Theorem 1(iii),a1≡
0 modp and so alsoa2 ≡ 0 modp anda4 ≡ 0 modp. Hence, 36q(p−1)/6−2ν ≡(∑5

i=0 di
)

2 + 36pq−2νa2
3 modp2.

4. Calculation of the Gaussian Periodsηi

We preserve the notation of Sections 1 and 2. As in Section 1, we assume thatn,

the order ofq modulop, is an odd integer≥ 3. We have thatq ≡ get modp
for some integert relatively prime ton. If a ∈ Z, we denote by|a|p the small-
est nonnegative residue ofa modulop. We denote bygk the number|gk|p. Our
calculation of the Gaussian periodsηi is based on the Gross–Koblitz formula, in-
equality (20), and Proposition 3, which gives us an easy way to find the cyclotomic
numbers(i, j) of ordere corresponding top. Note that, by (9) and (16), in order
to find the numbersηi it is enough to calculate the numbersdi.

By formulas (20) and (21) we have, for 0≤ i ≤ e −1,

di = 1

p

e−1∑
j=0

(θi+j − n)G(ζ
−gj
p )

qν
;

|di | <
{ 1

2q
(n+1)/2+1−ν if q = 2 or 3 or 5,

1
2q

(n+1)/2−ν if q ≥ 7.

(35)

Set

m = m(q) =


max

{
3, n+1

2 +1− ν} if q = 2,

n+1
2 +1− ν if q = 3 or q = 5,

n+1
2 − ν if q ≥ 7.

(36)

LetR = Z[θ0, . . . , θe−1] be the ring of integers ofQ(θ0) and letQ′ = Q∩R be
the prime ideal ofR belowQ. Note thatQ(θ0) is the decomposition field ofq.We
can identifyR/Q′ with Z/qZ and more generallyR/Q′l with Z/q lZ for l ≥ 1. In
particular, the periodsθi are congruent to rational integers moduloQ′l . In order
to find the numbersdi it is enough, by (35), to find their congruence classes mod-
ulo qm, and for that it is enough to find the congruence classes moduloqm of the
numbersG(ζ−g

j

p )/qν and the congruence classes moduloQ′m of the periodsθi .
Recall the Gross–Koblitz formula (see [3], [5, Chap. 15, Thm. 4.3], or [1,

(11.2.12)], where one finds other references including one for Coleman’s proof,
which is valid also forq = 2). In our particular situation, and with our notation,
it reads as follows. For 1≤ k ≤ p − 1, write fk =∑n−1

i=0 uk,iq
i, whereuk,i ∈ Z

and 0≤ uk,i ≤ q − 1. Sincef ≡ 0 modq − 1, we have that
∑n−1

i=0 uk,i ≡ 0 mod
q −1. Definev(k) = 1

q−1

∑n−1
i=0 uk,i . LetZq be the ring ofq-adic integers, let0q

be theq-adic Gamma function (see [5, Chap. 14]), and forx ∈ Q let 〈x〉 be the
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fractional part ofx (i.e.,〈x〉 = x− [x], where [x] is the integral part ofx). Then,
in Zq we have that, for 1≤ a ≤ p −1,

G(ζ ap ) = qn(−q)−v(a)
n−1∏
i=0

0q

(
1−

〈
q ifa

qn −1

〉)
. (37)

By [5, Chap. 1, Sec. 2, Lemma 1] it follows that

v(gk) =
n−1∑
i=0

〈
q ifgk

qn −1

〉
=

n−1∑
i=0

〈
q igk

p

〉
= 1

p

n−1∑
i=0

|gkgeti|p = 1

p

n−1∑
i=0

gk+ei .

For 0≤ k ≤ p − 2, define

w(k) = 1

p

n−1∑
i=0

gk+ei . (38)

Note thatν = min0≤k≤e−1w(k) (see (13)). By (6), (37), and (38), for 0≤ k ≤
e −1 we have

G(ζ
−gk
p )

qν
= (−1)w(k)qw(k)−ν

n−1∏
i=0

0q

(
1−

〈
q igk

p

〉) .
But

〈 q igk
p

〉 = 1
p
|q igk|p ≡ −f |getigk|p = −fgk+eti modqn. Also, if q l 6= 4 and if

ρ1≡ ρ2 modq l in Zq, then0q(ρ1) ≡ 0q(ρ2) modq l. Thus, for 0≤ k ≤ e −1,

G(ζ
−gk
p )

qν
≡ (−1)w(k)qw(k)−ν

n−1∏
i=0

0q(1+ fgk+ei)
modqn. (39)

We have0q(0) = 1 and0q(1) = −1; and ifa ∈Z anda ≥ 2 then

0q(a) = (−1)a
a−1∏
j=1

(j,q)=1

j. (40)

Since we only need an expression moduloqm for G(ζ−g
k

p )/qν and sincem is
often much smaller thann,we can improve congruence (39) as follows. Fora ∈Z
let |a|qm be the smallest nonnegative residue ofa moduloqm. For 1≤ a ≤ p−1,
0 ≤ i ≤ n−1, andj ∈Z, defineua,i+nj = ua,i . We have

〈
qn−ia
p

〉
=
〈
qn−ifa
qn −1

〉
=
qn−ifa − (qn −1)

[
qn−ifa
qn −1

]
qn −1

.

The numerator of this expression is less thanqn − 1 and congruent toqn−ifa ≡∑n−1
l=0 ua,l+iq l modqn −1. Hence
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〈
qn−ia
p

〉
=

n−1∑
l=0

ua,l+iq l

qn −1
≡ −

n−1∑
l=0

ua,l+iq l modqn.

Therefore, sincefgk−eti ≡ −〈qn−igk/p〉 modqn, we have

|fgk−eti |qm =
m−1∑
l=0

ugk,l+iq
l

and
n−1∑
i=0

|fgk+ei |qm =
n−1∑
i=0

m−1∑
l=0

ugk,l+iq
l =

n−1∑
i=0

ugk,i

m−1∑
l=0

q l = v(gk)(qm −1).

In particular,
∑n−1

i=0|fgk+ei |qm ≡ (q −1)ω(k)mod 2. Thus, by (39) and (40), for
0 ≤ k ≤ e −1 we have

G(ζ
−gk
p )

qν
≡ (−1)qw(k)−1qw(k)−ν

n−1∏
i=0

|fgk+ei |qm∏
j=1

(j,q)=1

j

modqm. (41)

As before (see (23) and (24)), let

C = [ci,j ] 0≤i,j≤e−1= [(i, j)− nδe/2,i ] 0≤i,j≤e−1.

We can calculateC using Proposition 3. LetF(x) be the characteristic polyno-
mial of C. We showed in Section 2 thatF(x) is the minimal polynomial of the
periodsθi, so inR[x] it follows that

F(x) = det(xI − C) =
e−1∏
i=0

(x − θi). (42)

Let C0 = [ci,j ]1≤i,j≤e−1 andF0(x) = det(xI − C0) and letI0 be the identity
matrix of ordere −1. By (25) with j = 0, we have

(c1,1− θ0)θ1 + c1,2θ2 + · · · + c1,e−1θe−1 = −c1,0θ0

c2,1θ1 + (c2,2 − θ0)θ2 + · · · + c2,e−1θe−1 = −c2,0θ0
...

...
. . .

...
...

ce−1,1θ1 + ce−1,2θ2 + · · · + (ce−1,e−1− θ0)θe−1 = −ce−1,0θ0.

Regard this as a system ofe − 1 equations with unknownsθ1, θ2, . . . , θe−1. The
matrix of coefficients of this system isM = C0 − θ0I0. We have that det(M) 6=
0; otherwise, the degree ofθ0 would be smaller thane. Therefore

θ1

θ2
...

θe−1

 = −θ0M
−1


c1,0

c2,0

...

ce−1,0

. (43)
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In order to use (35) and (41) to calculate the numbersdi, we must find integers
t0, t1, . . . , te−1, moduloqm, such thatti ≡ θi modQ′m. Using the identification
R/Q′ ' Z/qZ,we see thatF(x) splits in linear factors inZ/qZ. Moreover, every
periodθi can be identified with aq-adic integer. Recall what theq-adic expansion∑∞

j=0 ajq
j of θi is: a0 is the integer 0≤ a0 ≤ q − 1 such thatθi ≡ a0 modQ′.

Sinceq is unramified inQ(θ0), we have that(θi − a0)/q ∈RQ′ , the localization
ofR inQ′. Thena1 is the integer 0≤ a1 ≤ q −1 such that(θi − a0)/q ≡ a1 mod
Q′. We have thatθi ≡ a0 + a1q modQ′2, so(θi − a0 − a1q)/q

2 ∈RQ′ , and so
forth. This shows in particular thatF(x) hase roots inZq . Of course these roots
are distinct, but it can happen that two roots are congruent modulo a large power
of q. It can also happen that some roots modulo a certain power ofq do not lift to
a q-adic root. Furthermore, even if we find the set of allti (as the set of roots of
F(x) moduloqm that can be lifted toq-adic roots), there remains the problem of
labeling its elements to maketi correspond toθi . This shows that we must be care-
ful in our search for theti . LetD be the discriminant ofF(x), D0 the discriminant
of F0(x), R the resultant ofF(x) andF0(x), andqδ, qδ0, qρ the largest powers
of q that divideD,D0, R (respectively). Note thatR 6= 0 becauseF(x), which is
irreducible overQ of degreee, andF0(x), which is of degreee − 1, cannot have
a common root.

One way to proceed is as follows. Letµ′ = max{δ, δ0} +m. By [7, Thm. 2.24
and Thm. A.5], every root ofF(x)moduloqµ

′
(actually every root ofF(x)mod-

uloqk with k ≥ δ) lifts to a unique root ofF(x) inZq . SoF(x) hase distinct roots
moduloqµ

′
. Among these roots there is (at least) one, which we callt0, such that

F0(t0) 6≡ 0 modqmax{δ,δ0}+1; otherwise (again by [7, Thm. 2.24 and Thm. A.5]),
F0(x) would havee distinct roots inZq, which is absurd since it is a polynomial
of degreee −1. LetM0 = C0 − t0I0 and define the integerst1, t2, . . . , te−1 by

t1

t2
...

te−1

 = −t0M−1
0


c1,0

c2,0

...

ce−1,0

 (44)

(we are only interested in the classes moduloqm of these numbers). For 0≤ i ≤
e−1 andj ∈Z defineti+ej = ti . Since det(M0) = −F0(t0) 6≡ 0 modqmax{δ,δ0}+1

it follows, by (43), thatti ≡ θi modQ′m for i ∈Z if we chooseQ = (t0 − θ0, q)

as the prime ideal ofZ[ζp] overq in the definition of theηi (formula (1)).
Another way to find the integersti is the following. Letµ = max{δ, ρ} + m

and lett0 be any root ofF(x)moduloqµ. By [7, Thm. 2.24 and Thm. A.5],t0 can
be lifted in a unique way to a root ofF(x) in Zq . We have thatF0(t0) 6≡ 0 mod
qmax{δ,ρ}+1; otherwise, sinceR = 8(x)F(x) + 9(x)F0(x) for some8(x) and
9(x)∈Z[x], we would haveR = 8(t0)F(t0)+9(t0)F0(t0) ≡ 0 modqρ+1, an
absurdity. LetM0 = C0 − t0I0, define the integerst1, t2, . . . , te−1 as in (44), and
defineti+ej = ti for 0 ≤ i ≤ e−1 andj ∈Z. Since det(M0) = −F0(t0) 6≡ 0 mod
qmax{δ,ρ}+1, we have by (43) thatti ≡ θi modQ′m for i ∈ Z if Q = (t0 − θ0, q).
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This is the method we shall use in the program described in Section 5. But consider
also using the first method whenµ happens to be too large—and larger thanµ′.

Note that

ti ≡ θi =
n−1∑
j=0

ζ g
i+ej

p ≡
n−1∑
j=0

αfg
i+ej ≡

n−1∑
j=0

αfg
iqj ≡ T(αfgi ) modQ.

Hence
ti ≡ T(αfgi ) modq.

Observation. The exponentδ is seldom the smallest possiblel that guarantees
a unique lifting of a root moduloq l of F(x) to aq-adic root. It can be improved,
by [7, Thm. 2.24], if we are able to choose a suitable roott0.

We can now write our formula to calculate the coefficientsdi. In order to derive
the Gaussian periodsηi from the numbersdi, we use (16) and (9). By (35) and
(41), we have

di ≡ 1

p

e−1∑
k=0

(ti+k − n)(−1)qw(k)−1qw(k)−ν

n−1∏
l=0

|fgk+le |qm∏
j=1

(j,q)=1

j

modqm and |di | < 1

2
qm, (45)

wherem andw(k) are as in (36) and (38).

5. A MAPLE Program to Calculate the Periodsηi

The following program calculates first the numbersdi andH =∑e−1
i=0 diθi, using

(45), and then the Gaussian periodsηi using (16) and (9). Notation is close to that
used in the previous formula. Enter the numbersp an odd prime,q a prime dis-
tinct fromp, andg a primitive root modulop (the commandg:=primroot(p);
will assign tog the smallest positive primitive root modulop). Check if the value
of n (the order ofq modulop), calculated at the beginning, is odd and greater
than 1.

There are a few pairs of primes(p, q), in a given range, for which the value
of µ is too large (of course, the meaning of “too large” varies with time). This
complicates the calculation and the labeling of the integersti , the roots ofF(x)
moduloqµ, using (44). In order to shorten such calculations one can try assign-
ing smaller values toµ (takeµ ≥ m). This is likely to work, because our estimate
for a convenient value for this number (based on the largest powers ofp dividing
the discriminantD and the resultantR), though theoretically correct, is far from
optimal. Recall that all we want to find aree roots moduloqm of F(x) which can
be lifted to distinctq-adic roots and which are correctly labeled. Whether or not
a value assigned toµ is good for calculations may depend on the choice of the
root ofF(x) moduloqµ, which we callt0. We can change MAPLE’s choice of
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such a root by giving another value to the variablea (change, in the first line of
the program, the commanda:=1: to a:=k: wherek is a number between 1 and
e). Choosing a different root modulopµ of F(x) as a value fort0 corresponds to
changingH for one of its conjugates inQ(θ0), which corresponds to making a
cyclic permutation of the values of the coefficientsdi.

Forp, q < 100,most of the calculations (using a 400-MHz PC with 384 MB of
RAM) take a few seconds; but for some values ofp andq, they take much longer.
This is the case, for example, whenp = 61 andq = 13, where we haven = 3,
g = 2, e = 20, ν = 1, m = 1, δ = 26, ρ := 32, µ = 33 and

t0 = 3+ 913+ 7132 +11133+ 2134 +11135+11136+ 8137+12138+12

139+111310+1311+ 41313+ 31314+ 81315+101317+ 21318+ 6

1319+ 21320+1321+ 51322+111323+ 31324+111325+ 91326+ 8

1327+1328+ 41329+ 31330+ 51331;
we obtain

H = −2θ0 − 2θ1− 2θ2 − 2θ3− 2θ4 − 2θ5− 2θ6− 2θ7− θ8− 2θ9− θ10

− 2θ11− 2θ12− θ13− 2θ14− 2θ15− 2θ16− θ17− 2θ18− 2θ19.

Other hard cases are(p, q) = (71,5) and(p, q) = (97,61). They all can be cal-
culated by using smaller values ofµ and by changing the values ofa, as indicated
in the previous paragraph.

Recall that, to see a given value that has been calculated by MAPLE, one ends
the command with a semicolon; otherwise, one ends the command with a colon.
For example, to see the matrixC, change the command

C:=evalm(C):

to

C:=evalm(C);

To see the (often large) values of the periodsηi, replace the command

eta[gexp[i16]]:=q∧nu∗d[i16]+eta[0]; od:

with

eta[gexp[i16]]:=q∧nu∗d[i16]+eta[0]; od;

The last part of the program is used to check thatG(1) = ∑e−1
i=0 ηi = −1 and

thatHH̄ = qn−2ν .

I am grateful to Javier Thaine for an idea that improved the program by saving
much computer memory.

with(numtheory): with(linalg): with(padic):
p:=89; q:=67; n:=order(q,p); g:=primroot(p); a:=1:
e:=(p-1)/n; f:=(q∧n-1)/p:
for i1 from 0 to p-2 do
gexp[i1]:=modp(g&∧i1,p); od:
for i2 from 0 to e-1 do
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w[i2]:=(1/p)∗sum(gexp[i2+e∗j2],j2=0..n-1); od:
L1:=[seq(w[i3-1],i3=1..e)]:
L2:=sort(L1):
nu:=L2[1];
r:=floor(5/q):
m:=(n+1)/2+r-nu;
stored:=1: qm:=q∧m:
indexes:=[seq(modp(f∗i4,qm),i4=0..p-1)]:
for i5 from 0 to qm do
if modp(i5,q)<>0 then stored:=modp(stored∗i5,qm); fi;
if member(i5,indexes) then Q[i5]:=stored; fi; od:
for i6 from 0 to p-2 do;
fgexp[i6]:=modp(f∗gexp[i6],q∧m); od:
for i7 from 0 to e-1 do
for j7 from 0 to n-1 do
Qf[i7,j7]:=Q[fgexp[i7+e∗j7]]; od: od:
for i8 from 0 to e-1 do;
Hmod[i8]:=modp((-1)∧(q∗w[i8]-1)∗q∧(w[i8]-nu)/

product(Qf[i8,j8],j8=0..n-1),q∧m); od:
h:=gexp[n]:
Z:=(i9,j9)−>modp((-1/(e∧2))∗sum(sum(binomial (n∗k9,n∗l9)
∗h∧(l9∗i9-k9∗j9),l9=0..e-1),k9=0..e),p):

Id:=array(identity,1..e,1..e):
C:=array(1..e,1..e,[]):
for i10 from 1 to e do
for j10 from 1 to e do
C[i10,j10]:=Z(i10-1,j10-1)-n∗Id[e/2+1,i10]: od: od:
C:=evalm(C):
F:=x−>charpoly(C,x):
Dis:=discrim(F(x),x):
delta:=ordp(Dis,q);
C00:=delrows(C,1..1):
C0:=delcols(C00,1..1):
F0:=x−>charpoly(C0,x):
R:=resultant(F(x),F0(x),x):
rho:=ordp(R,q);
mu:=max(delta,rho)+m;
L3:=rootp(F(x),q,mu):
l00:=L3[a]:
q adic t0:=l00;
l0:=ratvaluep(l00,mu):
E0:=delcols(C00,2..e):
Id0:=array(identity,1..e-1,1..e-1):
M0:=C0-l0∗Id0:
T0:=evalm(-l0∗M0∧(-1)&∗E0):
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T1:=array(1..1,1..e):
T1[1,1]:=l0 mod q∧m:
for i11 from 2 to e do
T1[1,i11]:=modp(T0[i11-1,1],q∧m); od:
T:=evalm(concat(T1,T1)):
for i12 from 0 to e-1 do;
d[i12]:=mods((1/p)∗sum((T[1,i12+j12+1]-n)∗ Hmod[j12],

j12=0..e-1),q∧m); od;
H:=sum(d[i13]∗theta[i13],i13=0..e-1);
for i14 from 0 to e-1 do
for j14 from 0 to n-1 do
d[i14+e∗j14]:=d[i14]; od: od:
eta[0]:=-(1/p)∗(1+n∗q∧nu∗sum(d[i15],i15=0..e-1));
for i16 from 0 to p-2 do
eta[gexp[i16]]:=q∧nu∗d[i16]+eta[0]; od:
# check:
sum of eta i:=sum(eta[i17],i17=0..p-1);
S:=normal((x∧p-1)/(x-1)):
H0:=x−>sum(d[i18]∗sum(x∧gexp[i18+e∗j18],j18=0..n-1),

i18=0..e-1):
H1:=sort(H0(x)):
H2:=y−>sum(coeff(H1,x,i19)∗y∧i19,i19=0..p-1):
Hconj:=normal(x∧p∗H2(x∧(-1))):
# check:
H times Hconj:=ifactor(rem((H2(x)∗Hconj,S,x)));
ifactor(q∧(n-2∗nu));
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