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On Gaussian Periods That Are Rational Integers

F. THAINE

1. Preliminaries

Let p > 3 be a prime numbet,, a pth primitive root of 1, andA the Galois group
of Q(¢,)/Q. Letg # p be a prime numbet,, aqth primitive root of 1, and: the
order ofg modulop. Assume thayy # 1 modp. Hencen > 2, p(¢ —1) | ¢" — 1,
andn | p — 1 Setf = (¢" —1)/p ande = (p — 1 /n. Let Q be a prime ideal of
Z[¢,] aboveg and letF = Z[¢,]/Q. ThusF ~ F,., the finite field withg" ele-
ments. Let € Z[¢,] be a generator of * such thatx/ = ¢, mod Q, and letT
be the trace fronff to I, . In this paper we study the Gaussian perigd® < i <
p — 1) defined by

f-1
i+pj
=y g, @
j=0

as well as the Gauss sum
q"-2 ' p—1
G= 5 =3 ng, (2)
i=0 i=0

Some basic definitions and results are given in this section. A short review of
the cyclotomic numbers of ordeicorresponding t@ is given in Section 2. Those
numbers will play an important role in Section 4. In Section 3 we show applica-
tions of the periods); to the study of indices of cyclotomic units &¢,] (with
respect toQ andw«) and of the orders of certain components of the ideal class
group ofQ(¢,). More precisely, letA be thep-part of the ideal class group of
Q(¢p), Z, the ring of p-adic integers, and: A — Z’ the Teichmiiller charac-
ter; in Section 3 we study the”~""-components ofA for » and/ odd, 1< [ <
e — 1 (see the definitions in Section 3). In Section 4 we show an efficient method
to calculate the periodg, based on the Gross—Koblitz formula and on properties
of the cyclotomic numbers of ordercorresponding tg; in Section 5 we give a
MAPLE program to perform such calculations. | am grateful to Hershy Kisilevsky
and John McKay for some valuable comments.

We start with a simple proof of the known result (see [6, Thm. 4]) that, under
the stated hypothesis, theare rational integers and gbe Z[¢,]. In fact, G be-
longs to the only subfield of degreeof Q(¢,) and is divisible by a (sometimes
large) power of;.
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314 F. THAINE

ForO<i < p —landk € Z, definen; 1, = n;. Lets € Z be a primitive root
modulog such thats = «@"~Y/@~D mod Q, and letr be the automorphism of
Q(¢g,)/Q such that (¢,) = ¢,. For anyi, we have

f-1 f-1 f-1
T(aitPri T(saitpri T(aP@"=D/(p(g=D)+i+pj
T(np) =D g1 =Y e = N T )=,
j=0 j=0 j=0

Sincer generates G&al(¢,)/Q), this proves that, € Z. Note also that,; =
L@ ) L6 o fori € 7, we have
Ngi = Ni- 3)
SetG(x) = Zflgzxigg(“i), wherex is an indeterminate. Hence

p—1
G(x)=) nix' mod(x” —1). (4)

i=0
We have thaG = G(¢,), and itis easy to see that

p—1
Gh=) m=-1 (5)
i=0
Forl<i < p—1 we have
GG, ) =4q" (6)

(see[5, GS 2, p. 4] or [14, Lemma 6.1]).

If n is even thenG = ¢"/2. In fact, in this case we have by (3) that, =
ngn2i = n;. ThereforeG(¢)) = G(¢, ") and, by (6),G = +¢"/?. The result now
follows from (5) (work modula;, — 1). We assume from now on thatis odd.

Let g be a primitive root modulg and leto € A be the automorphism such
thato(¢,) = ¢5. Thuso is a generator ofA. Note thate = (p — 1)/n is even.
Define the numbers (also Gaussian perigidspP <i < e —1, by

n—1
i+el
ZEDN A (7)
=0

We have thatfo, 01, ..., 6,_1} is a normal integral basis ov€rof Q(0y), the sub-
field of Q(¢,) of degreee. CIearIny;é 0; = -1 For0<i,j <e—1 define

the integers; ; by
e—1

ot = Zci,j9j§ (8)

j=0

for i, j as before and, I € Z, defined; . = 6; andc; e, j4ie = ¢i,j-
Sincen is the order off modulop we have thap¢ = ¢’ modp for some integer
t relatively prime ton. Hence, by (3),

Ngite = Ngi 9)
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fori > 0. We therefore have that

p=2 ) e—1 n-1
G =mo+ Y maty =mo+ Y me D &5
i=0 i=0 j=0
That s,
e—1
G(p) = U0+ani9i. (10)
i=0
In particular, we have

Given an integeu, denote byla|, the smallest nonnegative residuenafnodulo
p. The prime ideal factorization c(t}(gp‘l)) inZ[¢,]is

p—2

e—1
@@ = [To @ =[] @@ =ie"™ "k (12)
k=0 k=0

(see [5, FAC 1, p. 12). Note that generates the decomposition groupbver
Q; in particular,c¢(Q) = Q. The numbers;— Solgktd], O <k <e—1)are
positive integers, as is easy to check. gétbe the largest power af dividing
G(¢p). It follows from (12) that

n—1

o1 ktel
= min — “l,. 1
v Ofkyflp;m Iy (13)

Clearlyv > 1
By (10), G(5,) = Y. ¢Z5(ngi — no)éi. Sinceq” | G(Z,), it follows thatg” |
(ngi — no). Define
H:% and d; = Tg' — N0
q’ q"
Note that thei; are integers. For & i < e —1andk € Z, defined; . = d;. We
have

O<i<e-1. (14)

e—1
H=>"d#; and HH=q"™® (15)
i=0
(by (6)), where the bar denotes complex conjugation. From (5) and (14) we obtain

1 e—1
no = —;<1+nq”2dj>, Ne =¢q"di +no for0<i<e—-1 (16)
j=0

In Section 4 we describe an efficient algorithm to calculate the intefjeasd
therefore the periods;. The formula in the following proposition can be used
to calculate they; for small values ofp andg. We use the following version of
Kronecker’s delta: o
1 if i=j modg,
J {O if i # jmodg.
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ProposiTioN 1. For 0 < i < p—1 leth; bethe number of elements of traim
the set{a/#' : 0 <1 < = —1} C F*; theny; = + gb;. Therefore,

» - p( D p(q l)
G=q)} obC
Proof. Letw =
—1¢g-2 w—1qg—2 w—1qg—2
T(qitpU+jw) T /l+pl o T (qitP!
DB IACKEES 95 DILCRUISD 3 I
=0 j=0 1=0 j=0 1=0 j=0
w—1¢g—2 w—1 w—1
T i+pl T i+pl
Y il ))—ZT@(4q>/@(C @) =3 " (—1+ g8ri+n,0)
=0 j=0 =0
w—1
=—-w+gq ZST(O,;+,,1)70 = —w +gb;. O

=0

Note that, by the additive form of Hilbert Theorem 90,

bi={l:0<1I< pq(q 5 —1 anda 7! = a™ — ™ for somem € Z}.

Then, for0 <i <

COROLLARY. Suppose thaj dividesp — 1. Letw = ( 1)
— L (r=D/T@* ) mod .
p—Llni=—w—q Y k(D modp.

Proof. By Proposition1we havg = —w+gq Zfz‘olam,‘ﬂ,z)yo. Onthe other hand,
we havey ¢ _1k(r=D/aT@™") = 5. .., o modp. The corollary follows. [J

OBSERVATION. In order to actually calculate the periogisusing Proposition 1,
one needs to find traces (frofto F,) of powers ofa. To calculate such traces,
one can proceed as follows. Find an irreducible fagtor) of the cyclotomic
polynomial®,._;(x) modulog. Regardf(x) as the irreducible polynomial of

overF,. The trace of¢* is the remainder, modulg, of the division ofy_"—g x*¢’

by f (x)

By taking conjugates in (8), we obtain

e—1
0:0; = ch—i,k—iek- a7
By (15) and (17) we have
e—1 e—1
¢"% =HH = Zd 0; Zd Ojer2 =Y Y didjyes20:0;
i=0 j=0
e—1 e—1 e—1

e—1 e-1
d; j+€/ZZCJ ik—ith = Z(chji,kididj+e/2>9k
i=0 j

i=0 j=0 k=0 =0
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Hence, forO<k <e—1,

e—1 e—1

. —Z chJre/Zfi,kfididj' (18)

i=0 j=0

By (4) we have that, fon € Z, Y 7 _, ! ;“kG(g ky =07 0;7, Zi;é ;“,ﬁ“‘”k =
pna. Thus
p—1

Z;“"G@‘h (19)

By (6), (19), and the triangle inequality, if{ a then we have

11217:L

122
=3 ek~ 016t = T Zm -1
pk:l

n/22 (p—=D/2
= q"%2y/2 Z V1= cos2kn/p)

p

2 12 2 4
q”/z(— + 2&/ v 1—cog2nrx) dx) = q”/2<— + —).
p 0

P /4

IA

[na — 1ol

We conclude that, for example,
l1a — 10| < 1.32¢"/2

(true for p > 50 by the preceding formula and true fer< 50 by direct calcula-

tion of P Y% /1= cos2kn/p)). Consequently, for B i < e — 1,

[ngi — N0l

|di| = ——— < 1.32¢"/%™"
ql)
%q(”ﬂ)/z*l’“ if g=2o0org=3o0rq=>5,
- _ (20)
%q(nJrl)/ZfU if q > 7

OBSERVATION. It is a simple calculus exercise to prove that, in fact,

(p—b/2

1 Z V11— cox2kn/p <—,

but we do not need this result.

Clearly, by (19) we also have that, ferc Z,

1
1a] < ;(1+ (p —Dg"? < ¢"?
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By (5), (11), and (19) we have

1 2o -
Na = ;(—1+ > ég’g’G(;“;g’)>

j=0
1 e—1 n-1 .
oibe .
= ;<—1+ Y > g6, g’)).
j=0 k=0
As a result,
1 e—1 )
o = ;<—1+ ZnG(g“pgj)>
j=0
and, fori > 0,
1 e—1 n-1 . 1 e—1
i+ j+e . ol
Ngi = ;(—H D286, g’)) = ;(—1+ > 04,6, g’)).
j=0

j=0 k=0

Hence, forO0<i <e—1,

e—1 —gk e—1

Mg —no 1 Z Gt 1 Z 7

di = g—v = — (‘9i+k — l’l)é‘+ = - (9i+k - n)ak(H) (21)
q p k=0 q p k=0

Finally, by (16) we have

1
1
Zd,- — TP =eq"”" modp. (22)
i=0 nq"

2. Cyclotomic Numbers of Ordere Corresponding to p

In this sectionp is an odd prime number, is an odd divisor ofp — 1 (here we
allown =1), e = (p — 1/n, g is a primitive root modulg, andé; andc; ; are
as in (7) and (8). We shall study the cyclotomic numb@rg) of ordere corre-
sponding top and their relation with the numbets ;. (A similar study for the
cyclotomic numbers corresponding to the cagwen can be found in [13, Sec. 2],
though the notation in that article is different: we call thegre, f, s, andn; what
we call herep, ¢, n, g, andd;, respectively. Note that in this article, where we are
working with more objects, the symbajs n, f, s, andn; already have a mean-
ing.) Let

C = [ci,jlo<i, j<e-1. (23)

We will give a simple characterization @f that is, in fact, a variation of [11,
Thm. 1], and we will show how to calculate in an efficient way. This comple-
ments results in [13, Sec. 2].

For 0 < i,j < e — 1 we denote by, j) the cyclotomic nhumber of orde,
which is defined as the number of ordered pairs of intejers (0 < k,l <n-1)
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such that I+ g+ = g’“+/ modp. (See e.qg. [1, Chap. 2, Sec. 2], [2], or [8].) De-
fine Oi1ke = 0i, Cite, j+1e = Ci,j, and (i + ke, j +1le) = (i, j)for0 < i, j <
e —1andk,l €Z. We have(i, j) = (j +e/2,i +e/2) and(i, j) = (—i, j — i)
(see [2, formula (15)]).
In this section we use the following version of Kronecker’s delta:
{1 if i =jmode,

bJ 0 if i # j mode.

By (8) and [2, formula (6)] we have, far j € Z,

Ci,j = (i, ]) — n(Se/z’,‘. (24)
Since 6,6, = 6;6;, it follows from (17) that6;6, = Y ‘b ir ibi =
,ij) Ci—jk—jOk. This proves that; ; = c_; ;_;. Also from (17) we have
0 0
0j+1 Oj+1
=0; . . (25)
Ojte-1 Ote1

Therefore the Gaussian peridgls ..., 6._; are exactly the eigenvalues 6f and
det(xI — C) is the minimal polynomial of the periods (see also [2, formula (9)]).
We have a field isomorphism

Q(60) = Q(C), 60— C.

Let
6o 6,01 ... 01
01 6o ... 062
=| . S (26)
Oe—1 Bo_2 ... 6O
(a circulant matrix), and leX be thee x e matrix [8; 11 ;] ;; that s,
010 .. 0
001 ..0
K=|: : : "~ ] (27)
0 0O 1
1 00 0

It follows from (25) that
R7ICR = diagPo, 6,1, 0., ..., 01]. (28)

(We have thaR —* = (1/p)(R' —nE)K /2, whereE is thee x e matrix with all en-

tries equal to 1.) Since circulant matrices commute with one another, we can con-
clude from (28) thatR (K “CK')R = diagP;, 6;_1, ..., 0i_—1]. Therefore,

the matricesk 'CK’ (0 < i < e — 1) are simultaneously diagonalizable, and if
we identify6, with C as before then we must identify with K ~'CK’. In partic-

ular, for all integers we have
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(K~'CK")C = C(K~'CKY). (29)

Observe that the entty j of K 'CK" is¢;_; ;_;.

In[11, Thm. 1] we give a list of properties that characterize the matriwhich
are equivalent to the following (see the observation at the end of [11])K Lis¢
as in (27). Denote byH]; theith row of a matrixB (starting fromi = 0). Then
C is a matrix with entries ifZ such that:

(a) the sum of the elements of thid row of C isn — pé.;2;;

(b) the sum of the elements of thigh column ofC is —4q ;;

(c) [K*CK"]; = [K~'CK']; forO<k,l <e—1

(d) [CK~*CK*], = [CK~!CK]; forO<k,l <e —1; and

(e) detxI — C) isirreducible over.

These properties characterigg(up to some relabeling of the periods in formula
(7), due to the choice of), and property (c) together with formula (29) imply
property (d) (since (c) implies thatk ~*CK*)C], = [(K~'CK")C];). Also, (c)

is equivalent to the equalities ; = c_; ;—;. We therefore have the following
result.

ProPOSITION 2. LetK be as in(27). The matrixC = [c¢;, j]o<i, j<e—1 IS Charac-
terized(up to some relabeling of the periods in form{®, due to the choice of
g) by the following propertiesit is a matrix with entries irnz such that, for all
O<ijj<e—-1

(i) the sum of the elements of ith row isn — pd,/2,;,

(ii) the sum of the elements of jth column is—§o ;,
(iii) ¢;,; = c—i j—i (indices modul@),

(iv) C(K~'CK') = (K~'CK")C, and

(v) the polynomiadet(x! — C) is irreducible overQ.

The following proposition shows a congruence modufor the cyclotomic num-
bers(i, j)—which is a variation of a congruence first found by Lebesgue—and
an inequality that together allow the efficient calculation of those numbers. The
proof uses standard properties of Jacobi sums and a formula relating them to cy-
clotomic numbers, and it is similar to the proof of the corollary of Proposition 3

in [13, Sec. 2] (which corresponds to the caseven).

ProrosiTION 3. For0<i,j <e—1,

e e—1
1 nk L
)= —— n(mi=kj) ‘modp.
iD= Z(m)g p
Also,
G, j) — (p —D)/e?| < /p
and so

0<(,j) <P+ (p—1/e? < p.

Proof. Let ¢, be a primitive root module. Let P be the prime irZ[¢,] abovep
such that” = ¢, modP. Fora, b € Z, define the Jacobi suth(a, b) by
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aindg(k)+bindg(1—k)
J(a,b) = Z e :

where ind (k) is the least nonnegative integer such t8#:®) = k mod p. We
haveJ(a, b) = (=1)"™J_,_p 1 = (=1)?J_,_;, for a, b € Z (to prove this, use the
change of variable — k, wherek isthe inverse of modulopin {1 2, ..., p—1}).
Also, J(a,b) = J(b,a) fora,b € Z; J(a,b) = 1ife | aande t b; J(a,b) =
(=D*if e | (a+b)ande ta; andJ(0,0) = —(p — 2).
By [1, Thm. 2.5.1], since is odd we have
. 1
(lv J) = __2

HMH

-1
Z (=D I (a, b),
b=0

where the bar denotes complex conjugation. By [13, formula (27)] (which holds
regardless of the parity af), if a + b % 0 mode then

J(a,b) = <n|a + b|e> modP,

na

where|k|, denotes the least nonnegative residue of an infegesduloe. Hence,
forO<i,j<e—1,

. 1 o ntias iy [ P1a + Dle
(u)z—(;) > (—1)g<+f">< y )

0<a,b<e—1
a+b#0mode

()2 T »a)

e—1 e—1
() EE s (4

a=0 b=0
By [2, formula (15)], we thus have

(.)=0+e/2i+e/)=(—j—e€/2,i—))=(+e/2—j —]))

n—1 n-1
1 nla + b|
_ 83 ; 1a n((i+e/2—j)a— jb) €
(e )(6 J2i + E E =D na

a=0 b=0

<1><e89/2, +:2§:Z:g"(’” ]b><nb>>
= ( )ZZg”(’“ J’”( ) modp.

b=0 a=0

(Note that(”" ") = (-1)" = (~1)“ modp.)

The inequality|(i, j) — (p — 1)/e?| < /p follows from the triangle inequal-
ity and the preceding expression 1@r j) in terms of Jacobi sums, sin¢é, ,| =
JPifl <a,b <n—21anda + b # 0. This ends the proof of Proposition 30
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The numberf,’;ﬁ) are studied in [12, Lemma 1] and its subsequent example. Prop-
osition 3 will be an important tool in Sections 3 and 4.

3. Indices of Cyclotomic Units and Orders of the
w?~"-Components of thep-Part of the
Ideal Class Group ofQ(¢,) Modulo p

Let A be thep-Sylow subgroup of the ideal class group®fz,), Z, the ring of
p-adic integersp: A ~ (Z/pZ)* — Z; the Teichmuller character defined by
w(k) =k modp, ande, (0 <r < p—2 the |dempotent% DA @ A te
Zp,[A]. We have thatd = B"_; e,(A) In this section we give a formula (mod-
qu p) for the indices of the cyclotomic units @][¢,], with respect toQ anda,
in terms of the periods;; we use that formula to study the componemnts;,(A)
of Afor/odd, 1<l <e—1

Fori € Z such that # 0 modq” — 1, define® (i) as the least positive integer
such that

1-a' =a®? (30)
in F. Sincea/ = ¢, mod Q, this implies that, for k< i < p — 1,
1-¢) =a®" modQ. (31)

Hence the number$( fi) are important in the calculation of indices of cyclo-
tomic units modulo prime ideals i@ (¢,). The following proposition, which can

be regarded as one of Kummer’s complementary reciprocity laws (see [4]), gives
us the number® ( fi) modulo p in terms of the Gaussian periogis(cf. [12, for-
mulas (14) and (24)]). Note that this gives a formula, moguléor the indices of

the cyclotomic units oZ[¢,] (i.e., the units generated bz, and 1— ;’ forl<

i <p—1,sincest [T0- a- ¢y = oL UD mod Q.

ProposiTioN 4. Forl<i<p-—1

p—1
Q(fi) = Zj'?j'lHi modp.
j=1
Proof. We have that
G'@) _ '~ =
[yt = Zkg”“)JchD(ZpHZq:( if)¢, modp

G, - -

(see [9, formula (1)]). On the other hand, by takmg logarithmic derivatives of both
members of (4) and using (6), we obtain

G, Lt |
Sp G(g:) = Z(;J’bm—i);}, modp.

i=0

This shows that, for some integerwe haved (fi) = ¢ + Z‘;;ijnjnﬁ,» mod p
forl<i < p — 1 Therefore, by (5), '
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p—1 p—1 p—1
=—(p—De==D_ @)+ > ju Y nj+i
i=1 j=1 i=1

p—1
==Y ®(fi)+ Zm]( nj — 1)
i=1 j=1
p—1 p—1 p—1
==Y ®(fi)—Y_jn?—Y_ jn; modp.
i=1 j=1 j=1
But
p—1
Zd)(fi) =0 modp,
i=1
sinceaXia®UD = oia— ¢h)=p mod Q and sincep (in fact, any ra-
tional integer) is apth power moduloQ (recall thatp(q -1 | (g" = D).
Also, if u # 0 modnr andv € Z then, by (9), ZP 11 77, = Zg/“r]g, =

Zj—})( 1Zog)g/“nY; = 0 modp. In particular, >’ "1 jn; = 0 mod p and
Z, 1jnj 0 modp. Thereforec = 0 modp. This ends the proof of Propo-
sition 4. =

Forreven,2<r < p—3 let

p—1
pr=[la-¢H"" (32)
i=1

and leti, (Q) be the least nonnegative integer such that
B, = a9 modQ. (33)

Itis awell-known fact tha¢, (A) is trivial if and only if 8, is not thepth power of an
elementofZ[¢,] (see e.g. [14, Thm. 15.7 and the discussion preceding Thm. 8.14]).
In particular, we have the following.

ProprosITION 5. Forreven2 <r < p — 3, if i,(Q) # 0 modp thene,(A) is
trivial.

The following numbers will prove useful in our study of the indi¢eg2?) mod-
ulo p. Fork € Z, we define

ay = nq’ Z g"kid;. (34)

Note thata; . = a; modp. Also, by (22),ap = —1 modp and, by (9), for 1<

k <e—1wehavey =nY "5 g™ (g —no) = Y05 g™ing = Y0 litn,
modp.
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ProposITION 6. Letr be an even integef, <r < p — 3. Then
p—1p-1

i(Q) =Y " jn;n;i modp.

i=1 j=1
If n{r—1, theni,(Q) =0modp. If n | r — 1, then

(p—r)/n
o)== 1 ( _1r>a<p_,>/,,_,a, modp.

In particular, e—1
ip—n(Q) = —a1 = —nq" Zg’”dj modp.
Jj=0

Proof. The first congruence follows directly from (31)—(33) and Proposition 4.
Hence

i (Q)
p—1 p-1
=D =N
i=0 j—l
p—1 p—1 p—1-r 1,
- noZJ” L2030 3D M (b s

i=1 j=1 [=0

p—1 p—1-r p— 1— p—1
—TIOZJP 0+ Z( 1)z< l )Z jp=lr=ly, Zjl+1nj
= nozg.i(p—r)ngj

p—1-r -2
p— 1- i r— j
+ Z( 1)( )Zgw Lr-hyp Zg]<z+1>,7gj
j=0
p—2
=n0Y_ &""(g"d; + no)
j=0
p—1-r D 1— 7 p—2 p—2
+ Y (—1>’< l )Zg“"‘l—"”@”di +10) Y """ (q"d; + no)
1=0 i=0 j=0
p—2
=4"no Zgj(p—r)dj
j=0
p—1-r p— 1—, p—2 p—2
+ 2v (_1)1( ) i(p—l—r—l)di j(H'l)dA

p—2
_ qvnozgj(pfr)dj
j=0
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p—1-r »— 1—r p—2 p—2
1=0 =0

i =0

p—1-r N e—1 n-1 —1n

_ q2v Z (_1)l<p l ) Zg(i+eL¢)(p—1—r l) Z Z 1+ev)(l+1)dj
= i=0 u=0 j=0 v=0
p—1-r p—1—
21) Z( 1)1( } )
e—1 n—1
x th(p 1-r— l)d ng(p 1-r—1) Zgj(lJrl)d dev(lJrl) mOdp
i=0 u=0 j=0 v=0

If ntr —1theneithen{p —1—r —1orntl+1 so, by the preceding congru-
ence;,.(Q) = 0 modp. If n | r — 1 we obtain

(p r)/n p—1— = =
Q) = —ng* Z( 1)1( n-1 )Zg“"""“d,-Zg-””dj
i=0 j=0

(p—n)/n

1-
_Z (- )1<P 1 >Cl(p_r)/n_1a1 mOdp.

This proves the second congruence of the proposition. The last congruence fol-
lows from the second one and from the fact h@at= —1 modp. O

In the following theorem we summarize some properties of the numbeasd

a; that are useful in the study of certain components of the ideal class group of
Q(¢p). We believe that the theorem can be used to show that,/veitldl (1 < / <

e —1), some of the components_;,(A) of A are trivial. The idea is to show that

if e,_1,(A) is nontrivial therall prime numberg of ordern modulop must have

a certain form; we hope this will contradict some version of Dirichlet’s theorem
on primes in arithmetic progressions.

THEOREM 1. (i) We have

oo (o B (1)

i=0

2
1
(E :dl) ( +P770> <ean—2v.
ng”

Also, forO<k <e—1,

and

H

e—1 e—1

Cite/2—i k— l
j=0

I
o

i

where the integers; ; = (i, j) — nd.;2; are as in(8) and (24).
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(i) The numbersy, = ng® Zf;ég”"idi satisfy the following congruences
ap=-—-1modp and, forl<l <e-—1,

I
l
Z(—l)’"( " )a;mam =0 modp.
— mn

Also,
e—1 e—1
Z Aol = —nqz" Zdlz modp
m=0 i=0

and, forlodd(1 <! <e -1,

1
Z(_l)mm( i )almam = _lipfln(Q) mOdp
— mn

(iii) If, forl odd (1 < I < e — 1), the component,_;,(A) of the p-part of the
ideal class group ofQ(¢,) is nontrivial, then

1
[
Z(—l)mm< " >a1_mam =0 modp.
— mn

Proof. (i) Equation (18) and Propositid(i) yield

e=1 e=1 ,e-1
- _ _Z Z(ZCj+g/2—i,k—i)didj

i=0 j=0 k=0

e—1 e—1

= —Z Z(” — pdi j)d;d;

i=0 j=0

e—1

2 e—1
:—n(Zd,-) +pZd,2
i=0 i=0

Therefore,e2q"2 = (Yo di)? + ple X g d? — (Xigdi)?). By (22) we

have tha( "¢ d;)? (1”’”0) and from (21) we obtain

1 e—1 e—1

k 1 k
“l-emG@, ) = -3 DG
k=0

e—1
WE
i=0

So, by (6) and the triangle inequalitL/Zf;é di| < Zk Lg% = g
Sincen is odd, this implies thaf }"¢_5 d;)? < ¢%¢"~ 2 . The last equality is just
formula (18).

(if) The congruencer; = —1 mod p follows from (22). By (18), (24), and
Proposition 3 we have, for@ k <e —1,

rq’ =
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e—1 e-1
1=¢"=—q¢") > ((j+e/2—ik—i)—ns )did;
i=0 j=0
e—1 e—1 e—1
=—q® > N (j+e/2—ik—i)did; +ng® ) d?
i=0 j=0 i=0
e—1 e-1 1 e e—1 nl ' , ' e—1
S 3 310 30 B (i PR AR ol
i=0 j=0 =0 m=0 i=0
e—1 e—1 e—1 e—1 nl
= n2q2v ( 1)171( )gn(m(jl)l(k[))d,d],
=0 m=0 i=0 j=0 nm
this follows because
e—1 e—1 e—-1 _1 e—1 e—1
n?q® Z Z Z( 1)m< )g"m(]_’)didj = n’q® Z Z€5i,jdidj
m=0 i=0 j=0 i=0 j=0
e—1

= —ng?® Zdlz modp.
i=0

Asaresult, I= Y g Y0 (- (! )a, »am Modp and hence, for G
t<e—1,

e—1 e—1 e—1
esor =3 g™ D S ( )

k=0 =0 k=0 m=0

Z 1)”’( >a,_mam modp.

That is,a3 = 1 modp, which we already know, angjm o(— 1)’"(nm)a, mlm =
0 modp for1 < I < e — 1 The congruenc® “, ao_mam = —ng® ‘s d?
mod p can easily be obtained from (34), and the congruences

1
Z(_l)mm< i )almam = _lipfln(Q) mOdp
— mn

forl odd(1 < < e — 1) follow immediately from Proposition 6.

(iii) Follows from (ii) and Proposition 5. This ends the proof of the theorem.

O

The following examples show how to use Theorem 1 to gain information about the
components,_;,(A) of the ideal class group @(¢,) whene is small.

If e =2, thenn = (p —1)/2. Since we want odd, we must have = 3 mod
4. Supposeé,_,(Q) = i(y+1,2(Q) = 0 modp. Then, by Theorem 1(ii), we have
thata; = 0 modp and sad; = dg mod p. On the other hand, by Theorem 1(i),
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4PV — (do 4 dy)? 4 p(2(dE + d?) — (do + d1)?)
= (do + d1)? + p(do — d1).
Therefore, 47~2/2-2" = (dy + dq)? mod p2.

OBSERVATION. It is well known that, whenp = 3 mod 4, the component
ep—(p-1,2(A) = e(p+1,2(A) is trivial. This follows from the reflexion theorem
(see [14, Thm. 10.9]) and from the class number formula for the imaginary qua-
dratic fieldQ(y/=p): If e(p+1,2(A) is nontrivial there,,_12(A) is nontrivial and

sop | n —2v; butn — 2v < p, a contradiction. The preceding result, together
with Proposition 5, could lead to an alternative proof of this facte}f.1),2(A)

were nontrivial then, for each primgof order(p — 1)/2 modp, if a andb are

the integers such thay# /22" = 42 + pb? then we would have that | b.

If e =4, thenn = (p — 1)/4. Since we want: odd, we must have = 5 mod 8

By Theorem 1(ii) we have, = _%(2:)“% modp, and 16,2 (14 2ajaz +a3) =

A(d3 + d? + d2 + d2) mod p. By Theorem 1(i),
16 7Y% = (do + dy + d2 + d3)?
+ p(4dj + d? + d5 + d3) — (do + di+ d2 + da)?).
In particular,(do +d1 +d> + d3)? = 16¢ =2 modp. Suppose first that, ,(A) =
e@p+1,4(A) is nontrivial. Then, by Theorem 1(iiiy; = 0 modp, and so also

a; = 0 modp. Hence 1§7~/42 = (dy + di + d» + d3)?> mod p2. Suppose

now thate,_z,(A) = e(,+3),4(A) is nontrivial. Then, by Theorem 1(iiiys =

—1(®")aia> modp. Sincea, = —1(*)a? modp, we havers = £(*)(¥)af =

2
§ sa modp. Therefore,

Gq(p bra-2v — (do+di+dy+ d3)2
+ p(Md§ + d? + d3 + d3) — (do+ d1+ da + d3)?)
= (do + d1+ do + d3)? + p(16¢~ 2 (A + 2aya3 + a3) — 16¢2")

1 (3n)! 1((2n)!)2> 4
3mH3 4 (n)4

= (do + d1 + do + d3)* + 16pq_2”<

4 -1\ \*
= (do+d1+d2+d3)2+§p<(pT>!> g %a; modp?.

If e = 6, thenn = (p—1)/6. Since we want odd, we must have = 7 mod 12

By Theorem 1(ii) we have, = —%(z")a1 modp andas = —(*")aiaz+3 (4”)a§
modp, S0a4 = —(4”)a as+ é E4T‘))4 a7 modp. Also 1+ 2ajas + 2azas + a3
—ng® 2.5_0 d? modp and(Y7_, d:)? = 364~ modp. Therefore,

2
6Zd2 (Z ) E36q72”(2a1a5+2a2a4+a§) modp.
i=0
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By Theorem 1(i), 37 ~2/6-2 = (Y2 1 d;)2 + p(6 X0 o d? — (i o di)?).
Suppose thad,_,(A) = esp41,6(A) is nontrivial. Then, by Theorem 1(iiij =
0 modp and so als@, = 0 modp andas = 0 modp. Hence, 3g(»~1/6-2 =
(21'5:0 d;)? + 36pg~%a5 modp2.

4. Calculation of the Gaussian Periodg;

We preserve the notation of Sections 1 and 2. As in Section 1, we assume that
the order ofg modulo p, is an odd integee= 3. We have thaty = ¢“ mod p
for some integer relatively prime ton. If a € Z, we denote bya|, the small-
est nonnegative residue @fmodulo p. We denote by, the numberg*|,. Our
calculation of the Gaussian periogisis based on the Gross—Koblitz formula, in-
equality (20), and Proposition 3, which gives us an easy way to find the cyclotomic
numberg(i, j) of ordere corresponding tg. Note that, by (9) and (16), in order
to find the numbers; it is enough to calculate the numbets

By formulas (20) and (21) we have, for9i <e —1,

e—1 —gl
1 G, %)
d,-=;Z(ei+,-—n) L~
j=0
! (35)
%q(”+1)/2+1_” if g=2o0r3orb,
|dl| < 1 _(n+1/2—v H
54 if g=>7.
Set
max{3, 2 +1—v} if g =2,
m=m(q) = ”TH+1—V if ¢g=30rg=25, (36)

ntl
2

LetR = Z[0, ..., 6._1] be the ring of integers dP (6y) and letQ’ = ONR be
the prime ideal ofR below Q. Note thatQ (6p) is the decomposition field of. We
can identifyR /Q’ with Z/qZ and more generallR /Q" with Z/q'Z for1 > 1. In
particular, the period8; are congruent to rational integers mod@d. In order
to find the numbers; it is enough, by (35), to find their congruence classes mod-
ulo g™, and for that it is enough to find the congruence classes madutaf the
numberi;(;;gj )/q" and the congruence classes modgi&' of the period®);.
Recall the Gross—Koblitz formula (see [3], [5, Chap. 15, Thm. 4.3], or [1,
(11.2.12)], where one finds other references including one for Coleman’s proof,
which is valid also fory = 2). In our particular situation, and with our notation,
it reads as follows. For¥ k < p — 1, write fk = ;:éuk,;qi, whereu, ; € Z
and 0< uy; < g — 1 Sincef = 0 modg — 1, we have thaE;:éuk,,v = 0 mod
q — 1 Definev(k) = q%l Z?:_éuk,i- LetZ, be the ring ofz-adic integers, lef,
be theg-adic Gamma function (see [5, Chap. 14]), andJfor Q let (x) be the

v if ¢g=>7
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fractional part ofx (i.e.,(x) = x — [x], where [x] is the integral part o). Then,
inZ, we have that, forka < p -1,

n—1 i
ot =" o TIn(1- (7)) 0
i=0

By [5, Chap. 1, Sec. 2, Lemma 1] it follows that

n—1 i n—1 n—l
v(gr) = Z< g ffk1> = Z<q gk> Zlgkge”lp ng+e,-.
i=0

i=0 qn i=0
ForO<k < p — 2, define

nl

w(k) = Zgw (38)

Note thatv = ming<i<._1w(k) (see (13)). By (6), (37), and (38), for® k <
e —1we have k
G(Q‘P_g ) (_1)w(k) w(k)—v

I )

But () = Ligig|, = — flg“gil, = — fekrer MOdg". AlsO, if g # 4 and if
p1= p2 modg'inZ,, thenl,(p1) = I},(p2) modq’. Thus, for0<k <e—1,

—gk ) ) -V
G ) _ (=D Wg"™h

modg”. (39)
qU n—1
l_[ Fq(1+ fgk+ei)
i=0
We havel, (0) = 1 andI, (1) = —1 and ifa € Z anda > 2 then
a—1
L@ =D I Je (40)
j=1
(J,9=1

Since we only need an expression modgfofor G(;“,,‘f”k)/qU and sincen is
often much smaller tham, we can improve congruence (39) as follows. FarZ
let]al,~ be the smallest nonnegative residue @fiodulog™. Forl<a < p—1,
0<i<n-—1 andjeZ, defineu, ;j1,; = uq;. We have

I (i ey
< P > <61 —1> q"—1 '

The numerator of this expression is less tgdn- 1 and congruent tg"~ifa =
" uariq' Modg" — 1 Hence
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n—1
i Zua,lJriql et
q a =0 ! n
= =—)Y u,;+iq° modg”.
< > > pr ; al+id q
Therefore, sincggi_..; = —{q" 'gx/p) modq", we have
m—1
|fgk—eti|qm = Zugk,l+iql
1=0
and
n—1m-1 m—1
Z|fgk+u|q’" = Z Zugk 1+161 = Zugk i Zq = v(gk)(q -D.
i=0 /=0

In particular,y 0|fgk+e,|qm = (¢ — D w(k) mod 2. Thus, by (39) and (40), for
0<k <e—1wehave

G(ngk) B (_1)qw(k)7lqw(k)fv

q’ B — |f§k+el‘q’"
i=0 j=1
(=1
As before (see (23) and (24)), let

modg™. (41)

C =[ci,jlo<i,j<e—1 = [, j) — n¢/2,il0<i, j<e—1-
We can calculat€ using Proposition 3. LeF(x) be the characteristic polyno-

mial of C. We showed in Section 2 thdt(x) is the minimal polynomial of the
periodsd;, so inR[x] it follows that

F(x) = det(x] — C) = ﬁ(x —0)). (42)

Let Co = [c;, jl1<i, j<e—1 and Fo(x) = det(xI — Co) and let/, be the identity
matrix of ordere — 1. By (25) with j = 0, we have
(c11—00)01+  c1200 4+ --- + €1 e-10-1 = —c1,00
2101+ (c22—00)02 + -+ + €2,e-100-1 = —c2000

Ce-1101  +  Ce—1202  + -+ + (Cocre—1— 00)0c—1 = —Ce—1000.

Regard this as a system of- 1 equations with unknown®y, 6,, ..., 6,_1. The
matrix of coefficients of this system i = Co — 69lp. We have that d€iM) £
0; otherwise, the degree 6f would be smaller than. Therefore

01 c1,0

6> €20
=—6M7H . (43)

-1 Ce—10
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In order to use (35) and (41) to calculate the numlaersve must find integers
to, 11, ..., t._1, modulog™, such that; = 6; mod Q. Using the identification
R/Q' ~ Z/qZ, we see thaF (x) splits in linear factors iZ./gZ. Moreover, every
periodd; can be identified with g-adic integer. Recall what theadic expansion
Z;‘;O ajqf of 6; is: ag is the integer O< ag < g — 1 such that; = ag mod Q.
Sinceq is unramified iNQ(6y), we have thatb; — ag)/q € R, the localization
of Rin Q’. Thena, is the integer O< a; < g — 1 such thatd; — ag)/q = a1 mod
Q. We have thab; = ao + aig mod Q'2, so(6; — ao — a19)/q* € Rg', and so
forth. This shows in particular tha@(x) hase roots inZ,. Of course these roots
are distinct, but it can happen that two roots are congruent modulo a large power
of g. It can also happen that some roots modulo a certain powgdofnot lift to
ag-adic root. Furthermore, even if we find the set ofzallas the set of roots of
F(x) modulog™ that can be lifted tg-adic roots), there remains the problem of
labeling its elements to makecorrespond t@;. This shows that we must be care-
ful in our search for the . Let D be the discriminant of (x), Dg the discriminant
of Fo(x), R the resultant ofF(x) and Fo(x), andg?, g%, ¢* the largest powers
of g that divideD, Dg, R (respectively). Note thak # 0 becausé’(x), which is
irreducible over) of degreee, and Fp(x), which is of degree — 1, cannot have
a common root.

One way to proceed is as follows. Let= max{s, o} + m. By [7, Thm. 2.24
and Thm. A.5], every root of (x) modulog” (actually every root of*(x) mod-
ulog* with k > §) lifts to a unique root o (x) in Z4. SOF(x) hase distinct roots
modulog”’ . Among these roots there is (at least) one, which wergaiuch that
Fo(to) # 0 modgM&¥.%}+1: otherwise (again by [7, Thm. 2.24 and Thm. A.5]),
Fo(x) would havee distinct roots inZ,, which is absurd since it is a polynomial
of degreee — 1. Let My = Co — 1ol and define the integers ¢o, ..., ,_1 by

1 €10
1) 1 €20
= —toMO . (44)
fe—1 Ce—1,0

(we are only interested in the classes modyfoof these numbers). For8 i <
e —1andj € Z definet;,.; = t;. Since detMo) = — Fy(to) # 0 modgMa3.3ol+1
it follows, by (43), that; = 6; mod Q'™ for i € Z if we chooseQ = (to — 6o, q)
as the prime ideal df[¢,] overq in the definition of the;; (formula (1)).
Another way to find the integers is the following. Letu = max{s, p} + m
and letzg be any root ofF'(x) modulog”. By [7, Thm. 2.24 and Thm. A.5}, can
be lifted in a unique way to a root df(x) in Z,. We have thatFp(to) # 0 mod
gm0+l otherwise, sinceR = @ (x)F(x) + ¥(x)Fo(x) for some®(x) and
W(x) € Z[x], we would haveR = ®(t9) F(to) + W(to) Fo(to) = 0 modg”™, an
absurdity. LetMy = Co — 19l0, define the integers, ¢, ..., ._1 as in (44), and
definet;.; =t;for0 <i <e—1andj € Z. Since detMo) = —Fo(to) # 0 mod
gM6.r1+1 we have by (43) that = 6, mod Q" fori e Z if Q = (to — bo, q).
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This is the method we shall use in the program described in Section 5. But consider
also using the first method whenhappens to be too large—and larger than
Note that

n—1 n—1 n—1
h=0=> ¢& =)ol =3 ol = T(@') modQ.
j=0 j=0 j=0
Hence .
ti = T(«’®) modg.

OBSERVATION. The exponend is seldom the smallest possililthat guarantees
a unique lifting of a root modulg’ of F(x) to ag-adic root. It can be improved,
by [7, Thm. 2.24], if we are able to choose a suitable rgot

We can now write our formula to calculate the coefficiefitsin order to derive
the Gaussian periodg from the numberg/;, we use (16) and (9). By (35) and
(41), we have

1 ( 1)qw(k)7lqw(k)7v " 1 ”
‘:;Z(I’“‘ T modg™ and |d;| < a" (45)
[T IT J
=0 j=1
(,9)=1

wherem andw(k) are as in (36) and (38).

5. A MAPLE Program to Calculate the Periods »;

The following program calculates first the numbérandH = Zf;é d;0;, using
(45), and then the Gaussian periaglsising (16) and (9). Notation is close to that
used in the previous formula. Enter the numbersn odd primeg a prime dis-
tinct from p, andg a primitive root modulgy (the commang;: =primroot (p) ;

will assign tog the smallest positive primitive root modutg. Check if the value

of n (the order ofg modulo p), calculated at the beginning, is odd and greater
than 1.

There are a few pairs of primé&s, ¢), in a given range, for which the value
of u is too large (of course, the meaning of “too large” varies with time). This
complicates the calculation and the labeling of the integerthe roots ofF(x)
modulog*, using (44). In order to shorten such calculations one can try assign-
ing smaller values tp. (taken > m). This is likely to work, because our estimate
for a convenient value for this number (based on the largest powersliofding
the discriminantD and the resultank), though theoretically correct, is far from
optimal. Recall that all we want to find aeeroots modula;™ of F(x) which can
be lifted to distincty-adic roots and which are correctly labeled. Whether or not
a value assigned ta is good for calculations may depend on the choice of the
root of F(x) modulog*, which we callz. We can change MAPLE's choice of
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such a root by giving another value to the variabléchange, in the first line of
the program, the commared =1: to a:=k: wherek is a number between 1 and
¢). Choosing a different root module” of F(x) as a value fory corresponds to
changingH for one of its conjugates iR (6g), which corresponds to making a
cyclic permutation of the values of the coefficiedts

For p, g < 100, most of the calculations (using a 400-MHz PC with 384 MB of
RAM) take a few seconds; but for some valuep@ndg, they take much longer.
This is the case, for example, when= 61 andg = 13, where we have = 3,
g=2,e=200v=1m=16=26p:=32 u=33and

f0=34913+ 71 + 1113 + 213 + 111% +111F + 813 +121F + 12
13° +1113° 4+ 13" + 413° + 313% + 813° + 10137+ 213®¥ + 6
1319421320 4132 1 5122 1 11173 + 31324 + 11125+ 9136+ 8

13?7 + 1328 + 4137° + 31330+ 513
we obtain

H = —20g — 20, — 20, — 203 — 2604 — 205 — 205 — 207 — g — 2609 — 019
— 2011 — 2010 — 013 — 2014 — 2015 — 2016 — 017 — 2018 — 2010.

Other hard cases ate, ¢) = (71, 5) and(p, g) = (97, 61). They all can be cal-
culated by using smaller values @fand by changing the values @f as indicated
in the previous paragraph.

Recall that, to see a given value that has been calculated by MAPLE, one ends
the command with a semicolon; otherwise, one ends the command with a colon.
For example, to see the matiix change the command

C:=evalm(C):
to
C:=evalm(C);
To see the (often large) values of the perigdsreplace the command
etal[gexp[i16]] :=qAnu*d[i16]+eta[0]; od:
with
etal[gexp[i16]] :=qAnu*d[i16]+eta[0]; od;
The last part of the program is used to check tGét) = Zf;é n; = —land
that HH = ¢"~?".

| am grateful to Javier Thaine for an idea that improved the program by saving
much computer memory.

with(numtheory): with(linalg): with(padic):

p:=89; q:=67; n:=order(q,p); g:=primroot(p); a:=1:
e:=(p-1)/n; f:=(qAn-1)/p:

for il from 0 to p-2 do

gexp[il] :=modp(g&Ail,p); od:

for i2 from O to e-1 do
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wli2] :=(1/p)*sum(gexp[i2+exj2],j2=0..n-1); od:

Li:=[seq(w[i3-1],i3=1..e)]:

L2:=sort(L1):

nu:=L2[1];

r:=floor(5/q):

m:=(n+1) /2+r-nu;

stored:=1: gm:=qAm:

indexes:=[seq(modp(£f*i4,qm),i4=0..p-1)]:

for i5 from O to gm do

if modp(ib5,q) <>0 then stored:=modp(stored*ib5,qm); fi;

if member (i5,indexes) then Q[i5]:=stored; fi; od:

for i6 from O to p-2 do;

fgexp[i6] :=modp (f*gexp[i6] ,qAm); od:

for i7 from O to e-1 do

for j7 from 0 to n-1 do

Qf[i7,j7]1 :=Q[fgexp[iT+exj71]; od: od:

for i8 from O to e-1 do;

Hmod [18] :=modp ((-1)A(q*w [18]-1) *qA(w[i8] -nu) /
product (Qf[i8,3j8]1,j8=0..n-1) ,qAm); od:

h:=gexp[n]:

Z:=(19,j9) —>modp ((-1/(eA2))*sum(sum(binomial (n¥k9,n*19)
*h A(19%19-k9%j9) ,19=0. .e-1) ,k9=0..e),p):

Id:=array(identity,1..e,1..e):

C:=array(l..e,1..e,[]):

for i10 from 1 to e do

for j10 from 1 to e do

C[i10,3j10]:=Z(i10-1,j10-1)-n*Id[e/2+1,i10]: od: od:

C:=evalm(C):

F:=x—>charpoly(C,x):

Dis:=discrim(F(x),x):

delta:=ordp(Dis,q);

C00:=delrows(C,1..1):

C0:=delcols(C00,1..1):

FO:=x—>charpoly(C0,x):

R:=resultant (F(x),F0(x),x):

rho:=ordp(R,q);

mu:=max(delta,rho)+m;

L3:=rootp(F(x),q,mu):

100:=L3[a]:

g-adic_t0:=100;

10:=ratvaluep(100,mu) :

EO:=delcols(C00,2..e):

Id0:=array(identity,1..e-1,1..e-1):

MO :=C0-10%IdO0:

TO:=evalm(-10%xMOA(-1) &*EO) :
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Tl:=array(l..1,1..e):

T1[1,1]1:=10 mod gAm:

for i1l from 2 to e do

T1[1,i11] :=modp(TO[il11-1,1],9Am); od:

T:=evalm(concat(T1,T1)):

for i12 from O to e-1 do;

d[i12] :=mods ((1/p)*sum((T[1,i12+j12+1]-n)*xHmod[j12],
j12=0..e-1) ,qAm); od;

H:=sum(d[i13]*theta[i13],i13=0..e-1);

for i14 from O to e-1 do

for ji14 from O to n-1 do

d[il4+exj14] :=d[i14]; od: od:

etal0] :=-(1/p)*(1+nxgAnuxsum(d[i15],1156=0..e-1));

for i16 from 0 to p-2 do

etalgexp[i16]] :=qgAnuxd[i16]+etal[0]; od:

# check:

sum_of_eta_i:=sum(etal[il7],i17=0..p-1);

S:=normal ((xAp-1)/(x-1)):

HO:=x—>sum(d[i18]*sum(xAgexp[i18+exj18],j18=0..n-1),
i18=0..e-1):

Hil:=sort (HO(x)):

H2:=y—>sum(coeff (H1,x,119)%yA119,119=0..p-1):

Hconj:=normal (x ApxH2(xA(-1))):

# check:

H_times_Hconj:=ifactor (rem((H2(x)*Hconj,S,x)));

ifactor(gA(n-2%nu)) ;
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