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Near-Field Behavior of
Static Spherically Symmetric Solutions

of Einstein SU(2)–Yang/Mills Equations

Alexander N. Linden

1. Background

1.1. Introduction

Static spherically symmetric solutions of the Einstein SU(2)–Yang/Mills equa-
tions both with and without cosmological constant have been studied extensively
over the last decade. Among the few analytical and several numerical results is a
rigorous proof of the existence of a 1-parameter family of such solutions in which
each solution in the family is smooth at the origin of spherical symmetry (see [14]).
These solutions give boundary conditions at the center of spherical symmetry that
must be satisfied for solutions to be smooth in a neighborhood of the origin. Many
studies have considered the global behavior of such solutions.

Smoller andWasserman [7] proved the existence of a discrete family of solutions
that are everywhere smooth. These solutions exist only with vanishing cosmolog-
ical constant. Breitenlohner, Forgács, and Maison [1], also considering only the
case of vanishing cosmological constant, classified solutions that are smooth near
the origin. References [5] and [6] describe classes of solutions that exist in the
case of a positive cosmological constant.

Other studies have considered solutions of the equations without cosmologi-
cal constant with given boundary conditions at infinity. For example, Wasserman
[16] describes the number of singularities such solutions can have. It has already
been mentioned that, in the case of zero cosmological constant, there exist con-
ditions at infinity that yield solutions that are globally smooth in Schwarzschild
coordinates. Winstanley [17] proved the existence of such solutions in the case of
negative cosmological constant. However, no such solutions can exist in the pres-
ence of a positive cosmological constant (see [5]). Specifically, with a positive
cosmological constant present, each solution that is smooth at the origin gives rise
to a singularity at some finite Schwarzschild radius. Reference [3] describes the
nature of such a singularity. Smoller, Wasserman, and Yau [13], considering only
the case of vanishing cosmological constant, analyzed the behavior of solutions
that satisfy certain conditions at this singularity.

In this paper we consider the Einstein SU(2)–Yang/Mills equations with ar-
bitrary cosmological constant in Schwarzschild coordinates and take arbitrary
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boundary conditions not at infinity or at the center of spherical symmetry or at
a singularity but rather at arbitrary positive finite radiusr̄ so as to make the equa-
tions nonsingular in a neighborhood ofr̄ . We then analyze the behavior of such
solutions asr decreases from̄r.

We begin with Einstein’s equations

Rij − 1

2
Rgij = 8πG

c4
Tij +3gij (1)

coupled to the Yang/Mills equation

D ∗DA = 0. (2)

In equation (1),gij is the metric andRij, R are (respectively) the metric Ricci
and scalar curvatures;G, c, andTij are physical quantities—respectively New-
ton’s gravitational constant, the speed of light in vacuum, and the stress energy
tensor. We use3 to denote the cosmological constant. In equation (2),A is the
Yang/Mills connection 1-form,D is the covariant derivative with respect to this
connection, and∗ is the Hodge star operator. The Yang/Mills and gravitational
fields are coupled both through the stress energy tensor in equation (1) and, be-
cause the Hodge star operator depends on the metric, through equation (2).

In Schwarzschild coordinates a spherically symmetric metric assumes the form

ds2 = C2Adt 2 − 1

A
dr 2 − r 2(dφ2 + sin2 φ dθ 2). (3)

With suitable gauge under the assumption of a static magnetic field, a spherically
symmetric SU(2)–Yang/Mills connection assumes the form

A = wτ2 dφ + (cosφτ3− w sinφτ1)dθ. (4)

Hereτi are the following matrices, which form a basis of SU(2):

τ1= i

2

[
0 −1
−1 0

]
, τ2 = i

2

[
0 i

−i 0

]
, τ3 = i

2

[−1 0
0 1

]
.

The Einstein–Yang/Mills equations with this metric and Yang/Mills connection
are as follows:

rA′ + 2Aw ′2 = 8, (5a)

r 2Aw ′′ + r8w ′ + w(1− w2) = 0, (5b)

C ′

C
= 2w′2

r
, (5c)

where

8 = 1− A− (1− w2)2

r 2
−3r 2; (6)

A, w, andC are unknown functions ofr. Here and throughout the paper, a prime
denotes a derivative with respect tor.

As previously stated, we choose boundary conditions at positiver̄ such that
equations (5a)–(5c) are nonsingular in a neighborhood ofr̄ . If there exists some
r < r̄ where equations (5a)–(5c) become singular, we taker0 to be the largest
suchr. Otherwise, we taker0 = 0. We analyze the local geometry of spacetime in
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a neighborhood ofr0. In particular, we prove that each solution describes a space-
time of one of the three following types.

(1) The spacetime manifold is regular in a neighborhood of the center of spher-
ical symmetry. We call such solutionssmooth.These are the solutions that
satisfy special boundary conditions atr = 0.

(2) The spacetime manifold is regular near the center of spherical symmetry and
has a Reissner–Nordström singularity at this center. We call such solutions
Reissner–Nordström-like.

(3) The spacetime manifold has a black hole surrounding the center of spherical
symmetry. We call such solutionsSchwarzschild-like.

In [9] can be found a proof that, for3 = 0, every solution describes a space-
time of one of these types. However, the arguments used therein do not apply to
the general case3 6= 0. This paper provides a proof that does not depend on the
value of3. In particular, we prove that the value of3 has no qualitative effect
on the spacetime geometry in the region wherer is small. Thus, a cosmologi-
cal constant has only a far-field effect. This is as expected, because3 appears in
equations (5a)–(5c) only in a term3r 2.

Before presenting the proof, we describe these geometries as they relate to ex-
plicit well-known solutions of the Einstein–Yang/Mills equations. Setting w≡ 1
and integrating equation (5a) yields the metric

ds2 =
(

1− 2M

r
− 3r

2

3

)
dt 2

−
(

1− 2M

r
− 3r

2

3

)−1

dr 2 − r 2(dφ2 + sin2 φ dθ 2), (7)

whereM is an arbitrary constant. Note thatM > 0 yields Schwarzschild solu-
tions. Of particular interest is that, in these coordinates, there exists a positiver0

such that metric (7) becomes singular atr = r0. The singularity occurs because
A(r0) = 1− 2M/r0 − 3r 2

0/3 = 0. WhenM = 0, we have the metric either of
deSitter, Minkowski, or anti-deSitter space—depending on whether the cosmo-
logical constant3 is positive, zero, or negative (respectively). All three of these
spaces are notable in that the metric is smooth nearr = 0 and can be extended to
be smooth atr = 0. Finally,M < 0 yields a Reissner–Nordström solution. Rele-
vant here is the fact that the metric (7) becomes singular atr = 0. The singularity
occurs because limr↘0A(r) = ∞. In all cases, limr↘∞w ′(r) = 0 and the quali-
tative behavior for smallr does not depend on the value of3.

We prove that these phenomena are quite general. In particular, we choose any
point (r̄, Ā, C̄, w̄, v̄) ∈ R3+ × R2 and consider the unique solution of equations
(5a)–(5c) that satisfies(A(r̄ ), C(r̄ ),w(r̄ ),w ′(r̄ )) = (Ā, C̄, w̄, v̄). In Theorem 1
we prove that this solution is either a Schwarzschild-like solution or smooth for
all r ∈ (0, r̄ ). In other words, Theorem 1 precludes the possibility of any other
types of singularities at positiver. In Theorem 2 we consider solutions that are
not Schwarzschild-like. We prove that, as long asA is bounded, any such solution
must be a smooth solution. Theorem 3 states that all solutions with unboundedA

are Reissner–Nordström-like with w′ vanishing atr = 0.
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1.2. Preliminaries

We begin by stating some basic and simple facts regarding solutions to equa-
tions (5a)–(5c).

Fact 1: Equation (5c) separates from equations (5a)–(5c). Once a solution to
the latter two is known, equation (5c) yields

C(r) = C(r̄) exp
{∫ r
r̄
(2w′2/s) ds

}
. (8)

BecauseC andC ′ are both finite wheneverA,w,w ′ are finite andr > 0,
we can ignore equation (5c) and restrict our analysis to the system of equa-
tions (5a)–(5b).

Fact 2: Equations (5a)–(5b) are invariant under the transformation(r, A,w)→
(r, A,−w).

Fact 3: Any solution of equations (5a)–(5b) with constant w must be either
A = 1− 2M/r − 3r 2/3 with w2 ≡ 1 orA = 1− 2M/r − 3r 2/3+ 1/r 2

with w ≡ 0. These solutions are also the only possible solutions that satisfy,
for somer̂ > 0, w(1− w2)(r̂ ) = 0 and w′(r̂ ) = 0.

Fact 3 follows from equation (5b), integrating equation (5a), and standard unique-
ness theorems.

Fact 4: Given any3 andλ, there exists an intervalIλ = [0, rλ) in which can
be found a solution of equations (5a)–(5b) with the following properties.

(I) (A,w2,w ′)→ (1,1,0) asr ↘ 0 and limr↘0 w ′′(r) = −λ.
(II) The solution is analytic in the interior ofIλ andC2+α in Iλ for a small

α > 0.
(III) The solutions depend continuously onλ.

A proof of Fact 4 in the case3 = 0 can be found in [14]. The same proof is valid
with minor modification in the general case3 6= 0. Solutions that satisfy proper-
ties (I), (II), and (III) aresmooth.

We define the region

0 = {(r, A,w,w ′) : r > 0, A > 0, w2 ≤ 1, and(w,w ′) 6= (0,0)}.
We then have the following.

Fact 5: Suppose equations (5a)–(5b) are nonsingular for allr ∈ (r0, rc). Sup-
pose also that(rc, A(rc),w(rc),w ′(rc)) ∈ 0 but (re, A(re),w(re),w ′(re)) /∈ 0
for somere ∈ (r0, rc). Then(r, A(r),w(r),w ′(r)) /∈0 for all r ∈ (r0, rc).

Fact 5 follows easily from the fact that ww′′(r) ≥ 0 whenever w2(r) > 1 and
w ′(r) = 0.

In order to avoid repeating the same argument several times, we state the fol-
lowing lemma of basic calculus.

Lemma 1. Supposef is differentiable for allr > 0 and lim
r↘0(rf

′)(r) > 0.
Thenlim r↘0f(r) = −∞. Similarly, if lim r↘0(rf

′) < 0 thenlim r↘0f(r) = ∞.
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2. Extending Solutions

In this section we prove that solutions of equations (5a)–(5b) become nonsingular
at r0 > 0 only whenA(r0) = 0. This is the content of the following theorem.

Theorem 1. Let (r̄, Ā, w̄, v̄)∈R2+ × R2 be arbitrary. Let(A,w) be the unique
solution of (5a)–(5b) that satisfies(A(r̄ ),w(r̄ ),w ′(r̄ )) = (Ā, w̄, v̄). Then,
for arbitrary r0 ∈ (0, r̄ ), equations(5a)–(5b)are nonsingular atr0 whenever
lim r↘r0 A(r) > 0.

Proof. It follows from standard theorems that equations (5a)–(5b) are singular at
r0 only if one of the following holds:

(A) lim
r↘r0 A(r) ≤ 0;

(B) lim r↘r0 w2(r) = ∞;
(C) lim r↘r0 w ′2(r) = ∞;
(D) lim r↘r0 A(r) = +∞.
We eliminate all of these possibilities in each of the following cases:

1. lim r↘r0 A(r) > 1;
2. limr↘r0 A(r) exists and 0< lim r↘r0 A(r) ≤ 1;
3. lim

r↘r0 A(r) < lim r↘r0 A(r) ≤ 1.

Case 1.In Lemma 6 we will prove that limr↘r0 A(r) = A0 exists and thatA0 >

1. Thus, equations (5a)–(5b) cannot become singular atr0 on account of condi-
tion (A). The other possibilities are eliminated according to the scheme shown in
Figure 1 in the caseA0 = ∞ and as shown in Figure 2 for the caseA0 < ∞.
Figures 1 and 2 should be read as follows: at each node of the tree, we assume that
everything beginning with and including the root is true. What is cited in paren-
theses excludes the possibility that, under these assumptions, equations (5a)–(5b)
are singular atr0. It is clear that the leaves of these trees exhaust all of conditions
(B), (C), and (D).

Case 2.All of the possibilities are eliminated, as shown in Figure 2.

Case 3.We claim that this case cannot occur. Indeed otherwise, because (by
hypothesis) lim

r↘r0 A(r) < lim r↘r0 A(r), lim r↘r0 A(r) > 0, and r0 > 0, the
mean value theorem givesρ > r0 that satisfy 0< A(ρ) ≤ 1 andρA′(ρ) > 1.
Therefore,[

(rA′ −1)+ 2Aw ′2 + A+ (w
2 −1)2

r 2
+3r 2

]∣∣∣∣
(r=ρ)

> 0,

as each term on the left side is positive. However, this contradicts equation (5a).

It remains to prove Lemmas 2, 3, 4, 5, and 6.

Lemma 2. Supposelim r↘r̃0 A(r) > 0 and lim r↘r̃0 w(r) = ±∞. Thenr̃0 = 0.
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lim r↘r0 A(r) = ∞

�������������

&&NNNNNNNNNNNNNNNN

lim r↘r0 w ′2(r) = ∞

�� %%JJJJJJJJJJJJJJJJ
lim r↘r0 w ′2(r) <∞

(Lemma 5)

lim r↘r0 w(r) exists

��­­­­­­­­­­

��4444444444
lim r↘r0 w(r) does not exist

(Lemma 3)

lim r↘r0 w(r) <∞
(Lemma 4)

lim r↘r0 w(r) = ∞
(Lemma 2)

Figure 1

0< lim r↘r0 A(r) <∞

��������������

$$HHHHHHHHHHHHH

lim r↘r0 w2(r) <∞

�� &&LLLLLLLLLLLLLLLLL
lim r↘r0 w2(r) = ∞

(Lemma 2)

lim r↘r0 w ′2(r) = ∞

��­­­­­­­­­­

��<<<<<<<<<<<<
lim r↘r0 w ′2(r) <∞
(standard theorems)

lim r↘r0 w(r) exists
(Lemma 4)

lim r↘r0 w(r) does not exist
(Lemma 3)

Figure 2

Proof. We prove that the assumptionr̃0 > 0 leads to a contradiction. Because of
Fact 2, we may assume that lim

r↘r̃0 w(r) = +∞. Equation (5b) gives w′′(ρ) > 0
for any ρ ∈ (r0, r̄ ) that satisfies w(ρ) > 1 and w′(ρ) = 0. Consequently,
lim r↘r̃0 w(r) = ∞, lim

r↘r̃0 w ′(ρ) = −∞, and w′(ρ) < 0 for all ρ in some
neighborhoodU = (r̃0, r̃0 + ε).

We next prove that
lim
r↘r̃0

w ′(r) = −∞. (9)
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Toward this end we note that, for any solution of equations (5a)–(5b),Aw ′ satis-
fies the following:

r(Aw ′)′ + 2w′2(Aw ′)+ w(1− w2)

r
= 0. (10)

It is clear from equation (10) that(Aw ′)′ > 0 for all r ∈ U. This implies that
lim r↘r̃0 Aw ′(r) exists. Because limr↘r̃0 A(r) exists and is nonzero, limr↘r̃0 w ′(r)
also exists. The only possibility is that limr↘r̃0 w ′(r) = −∞. This is equation (9).

To complete the proof, we write equation (5b) as

r 2Aw ′′

w(w2 −1)
= 1− w ′r

[
1− A−3r 2

w(w2 −1)
− (w

2 −1)

wr 2

]
. (11)

For allr ∈U, the term inside the square brackets in equation (11) is negative. Equa-
tion (9) givesη > 0 that satisfy w′(r) < −η < 0 for all r ∈U. It is now clear that
U can be chosen sufficiently small so that the dominant term on the right side of
equation (11) is ww′(w2−1)/(rw); that is, w′′(r) < 0 for all r ∈U. But this con-
tradicts equation (9).

Lemma 3. Supposelim
r↘r̃0 A(r) > 0 and lim

r↘r̃0 w(r) < lim r↘r̃0 w(r). Then
r̃0 = 0.

Proof. We assumẽr0 > 0 and reach a contradiction. As in Fact 5, equation (5b)
implies lim r↘r̃0 w2(r) ≤ 1. We now claim that, for anyε > 0 andM > 0, there
exist r̂(ε,M) close tor̃0 that satisfy|w ′(r̂ )| < ε and |w ′′(r̂ )| > M. Because
lim r↘r̃0 w(r) does not exist, there exists a sequence{rn} ↘ r̃0 that satisfies
w ′(rn) = 0 and limn↗∞w(rn) = lim

r↘r̃0 w(r). There also exists another se-
quence{sn} ↘ r̃0 that satisfies w′(sn) = 0 and limn↗∞w(sn) = lim r↘r̃0 w(r).
Without loss of generality, we assumern < sn < rn−1. The mean value theorem
givestn ∈ (rn, sn) that satisfy

w ′(tn) = w(sn)− w(rn)

sn − rn .

Clearly, limn↗∞w ′(tn) = ∞. Now, for anyε > 0,we definebn(ε) to be the small-
estr > rn that satisfies w′(bn(ε)) = ε and defineVn(ε) = [rn, bn(ε)). Clearly,
w ′(r) < ε for all r ∈Vn(ε). For anyε, eachVn is nonempty. Also, there existN(ε)
such thattn /∈ Vn(ε) for all n > N(ε). Thus, limn↗∞(bn − rn) = 0. The mean
value theorem now gives, for eachε, someun(ε)∈Vn(ε) that satisfy

w ′′(un) = w ′(tn)− w ′(rn)
(tn − rn) = ε

(tn − rn) .
Clearly, limn↗∞w ′′(un) = +∞. This proves the claim.

Finally, we evaluate equation (5b) atr̂:[
r̂ 2w ′′ + r̂w

′

A

(
1− (w

2 −1)2

r̂ 2
−3r̂ 2

)
− r̂w ′ + w(1− w2)

A

]
r=r̂(ε,M)

= 0. (12)

Since w is bounded and since (by assumption)r̂(ε,M) > r̃0 > 0 for all ε andM,
it follows that we can chooseε sufficiently small andM sufficiently large so that
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the first term in equation (12) dominates. Hence the left side of equation (12) is
nonzero, contradicting equation (5b). The result follows.

Lemma 4. Suppose thatlim r↘r̃0 A(r) exists and is positive. Suppose also that
lim r↘r̃0 w ′2(r) = ∞ and thatlim r↘r̃0 w(r) = w0 is finite. Theñr0 = 0.

Proof. We assumẽr0 > 0 and arrive at a contradiction. Clearly,

lim
r↘r̃0

8(r) < 1.

Making use of Fact 2, we assume thatlim r↘r̃0 w ′(r) = +∞. It follows that

lim
r↘r̃0

ln(w ′) = +∞.

This implies that lim
r↘r̃0(ln(w))

′ = −∞; that is, for anyM > 0 there existρ
nearr̃0 that satisfy w′(ρ) > 1 and w′′(ρ)/w ′(ρ) < −M. If M is sufficiently large,
then [

r 2A
w ′′

w ′
+ r8+ w(1− w2)

w ′

]
r=ρ

< 0. (13)

This is because the first term on the left side of equation (13) is large and negative
while the second term is at mostρ and the third term is at most 1. However, in-
equality (13) contradicts equation (5b). The result follows.

Lemma 5. Supposelim r↘r̃0 A(r) = +∞ and lim r↘r̃0 w ′2(r) < +∞. Then
r̃0 = 0.

Proof. We rewrite equation (5a) as

rA′

A
+1+ 2w′2 = 1

A
− (w

2 −1)2

r 2A
− 3r

2

A
. (14)

Next, we assumẽr0 > 0 and arrive at a contradiction. Asr ↘ r̃0, the right side of
equation (14) approaches 0. On the other hand, there exists some positiveM that
satisfies 1+ 2w′2 < r̃0M in a neighborhoodU = (r̃0, r̃0 + ε). Thus,

A′ > −MA for all r ∈U. (15)

Integrating inequality (15) on any interval(r, r2) ⊂ U gives

A(r) < A(r2)e
M(r2−r) for all r ∈U. (16)

Taking the limit in inequality (16) asr ↘ r̃0 yields

lim
r↘r̃0

A(r) < A(r2)e
Mε <∞.

However, this contradicts our hypothesis.

Lemma 6. Suppose there exists someρ ∈ (r0, r̄ ) that satisfiesA(ρ) = Ā ≥
1−3ρ2/3. Thenlim r↘r0 A(r) exists andlim r↘r0 A(r) ≥ 1−3r 2

0/3.

Proof. We define
µ = r(1− A−3r 2/3). (17)
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For any solution of equations (5a)–(5b),µ satisfies

µ′ = 1− A− rA′ −3r 2 = (w2 −1)2

r 2
+ 2Aw ′2 ≥ 0. (18)

If (w2(ρ),w ′(ρ)) = (1,0), then

A = 1− 3r
2

3
+ ρ
r

[
Ā+ 3ρ

2

3
−1

]
, w2 ≡ 1, (19)

is the unique solution of equations (5a) and (5b) that satisfies w(ρ) = 1, w ′(ρ) =
0, andA(ρ) = Ā. However, our assumptions imply that the term in the square
brackets of equation (19) is nonnegative. This term obviously does not depend on
r. Therefore, with the solution equation (19), equations (5a)–(5b) are nonsingu-
lar for all r ∈ (0, ρ). Moreover, limr↘0A(r) exists, and either limr↘0A(r) = 1 or
lim r↘0A(r) = +∞.

To finish the proof, we need consider only the case that there exists someρ ∈
(r0, r̄ ) that satisfies

w(1− w2)(ρ) 6= 0.

Equation (18) givesµ′(ρ)/ρ > 0. Also, our assumptions imply thatµ(ρ)/ρ2 ≤ 0.
Therefore, (

µ

r

)′
(ρ) = µ′(ρ)

ρ
− µ(ρ)

ρ2
> 0.

We now suppose that there exists somer̂ ∈ (r0, ρ) that satisfies(µ/r)′(r̂ ) = 0.
Becausêr can always be chosen so thatµ(r̂)/r̂ < 0, we have

µ′(r̂ ) =
(
rµ

r

)′
(r̂ ) = r̂

(
µ

r

)′
(r̂ )+ µ

r̂
(r̂ ) < 0. (20)

Equation (20) contradicts equation (18). Hence, in the interval(r0, ρ), (µ
′/r)′ >

0; that is,

A′ = −23r

3
−
(
µ

r

)′
< −23r

3
. (21)

SinceA′ is bounded from above, it follows that limr↘rc A(r) exists. Also, from
equation (21) and the fact thatA(ρ) ≥ 1− 3ρ2/3 it is clear that limr↘rc A(r) ≥
1−3r 2

0/3.

3. Behavior at the Origin

3.1. CaseA < 1

In this section we prove that any solution of equations (5a)–(5b) that has bounded
A and is not a Schwarzschild-like solution is smooth. We state this precisely as
follows.

Theorem 2. Let (r̄, Ā, v̄)∈R2+×R and let(A(r),w(r)) be the solution of equa-
tions(5a)–(5b)that satisfies(A(r̄ ),w(r̄ ),w ′(r̄ )) = (Ā, w̄, v̄). Suppose that, with
this solution, equations(5a)–(5b)are nonsingular for allr ∈ (0, r̄ ). Suppose also
that there existA0 andA1 that satisfy
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0 ≤ A0 = lim
r↘0

A(r) ≤ lim
r↘0

A(r) = A1 ≤ 1.

Then
lim
r↘0
(A(r),w2(r),w ′(r)) = (1,1,0).

We first prove that limr↘0 w2(r) = 1 in the caseA0 = 0. We then prove that
lim r↘0 w2(r) = 1 in the caseA0 > 0. We then use this limit to prove that
lim r↘0 w ′(r) exists. The rest of Theorem 2 will follow.

Lemma 7. Suppose(A,w) is a solution of equations(5a)–(5b)that satisfies the
hypotheses of Theorem 2. Then eitherlim r↘0 w2(r) = 1 or lim

r↘0A(r) > 0.

Proof. As in [1], we introduce the new variables

N = −√A, (22)

U = Nw ′, (23)

κ = 1

2N
(8+ 2U2 + 2N 2) (24)

and a new parameterτ defined by dr/dτ = rN. Equations (5a)–(5c) then trans-
form into

ṙ = rN, (25a)

ẇ = rU, (25b)

Ṅ = (κ −N)N − 2U2, (25c)

U̇ = −w(1− w2)

r
− (κ −N)U, (25d)

˙CN = (κ −N)CN, (25e)

where an overdot(˙) here and elsewhere denotes d/dτ. We also have the auxil-
liary equation

κ̇ = 1+ 2U2 − κ 2 − 23r 2. (25f )

The metric (3) transforms into

ds2 = C2N 2 dt 2 − r 2(τ )(dτ 2 + dφ2 + sin2 φ dθ 2). (26)

As expected, equation (25e) separates from the others. Hence, as in Fact 1, it can
be ignored. HereN is defined to be negative, so thatr decreases with increases
in the new parameterτ. The solution(A,w) of equations (5a)–(5b) is equiva-
lent to the solution(r, N,w, U) of equations (25a)–(25f ) that satisfiesr(0) = r̄ ,
N(0) = −

√
Ā, w(0) = w̄, U(0) = −

√
Āv̄, and

κ(0) = (1+ Ā− (1− w̄2/r̄ 2 −3r̄ 2 + 2Āv̄2)/
(−2

√
Ā
)
.

We are free to chooseτ = 0 for this solution because equations (25a)–(25f ) are
autonomous.
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Integrating equation (25a) yields, for anyτ,

r(τ ) = r̄ exp
{∫ τ

0 N(τ̃ )dτ̃
}
. (27)

By assumption and because of Lemma 6, equation (27) implies that

τ(r = 0) = ∞. (28)

We now consider the following three cases separately:

1. 0< lim
τ↗∞ κ(τ);

2. −3− 2/
√

3≤ lim
τ↗∞ κ(τ) ≤ 0;

3. lim
τ↗∞ κ(τ) < −3− 2/

√
3.

Case 1.We choose anỹκ that satisfies 0< κ̃ < lim
τ↗∞ κ(τ) and then choose

τ̃ sufficiently large so thatκ(τ) > κ̃ wheneverτ > τ̃ . Equation (25c) then gives,
for all τ > τ̃ ,

Ṅ < κ̃N. (29)

Integrating equation (29) yields

lim
τ↗∞N(τ) < N(τ̃ ) lim

τ↗∞ e
κ̃(τ−τ̃ ) < 0,

as desired.

Case 2.It suffices to assume thatlimτ↗∞N(τ) = 0 and then to establish, under
this assumption, that limτ↗∞w2(τ ) = 1. We establish this latter limit by elimi-
nating the following two possibilities:

a. limτ↗∞w(τ ) does not exist;
b. limτ↗∞w(τ ) exists but limτ↗∞ w2(τ ) 6= 1.

Case 2a.It follows easily from equation (25f ) that, if{τn} ↗ ∞ is an arbi-
trary sequence that satisfiesκ(τn) = 0, then κ̇(τn) > 0 for sufficiently largen.
Therefore,limτ↗∞ κ(τ) ≤ 0. In other words,κ is bounded.

We now rewrite equation (25f ) as

κ̇ = −(κ −N)2 + (1− w2)2

r 2
−3r 2. (30)

Because limτ↗∞ w(τ ) does not exist, there are two sequences{sn}∞n=1 and{tn}∞n=1
that satisfy the following conditions:

(i) lim n↗∞ sn = lim n↗∞ tn = ∞;
(ii) sn < tn < sn+1 for eachn > 0;

(iii) there existε > 0 that satisfy w(tn)− w(sn) > ε for all n > 0;
(iv) for eachn > 0 and for allτ ∈ (sn, tn), w(sn) ≤ w(τ ) ≤ w(tn);
(v) there exist̃ε that satisfy, for alln > 0,

−1+ ε̃ < w(sn) < 0< w(tn) < 1− ε̃.
Conditions(i)–(iv) are arestatement of the fact that w has no limit asτ ↗ ∞.
Condition (v) follows easily from equation (5b) because noτ can exist that satis-
fies either all of w2(τ ) > 1, w ′(τ ) = 0, and ww′′(τ ) < 0 or all of 0< w2(τ ) <

1, w ′(τ ) = 0, and ww′′(τ ) > 0. As a result, we must have
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−1≤ lim
τ↗∞

w(τ ) < 0< lim
τ↗∞w(τ ) ≤ 1.

We claim that
lim
n↗∞(tn − sn) = 0. (31)

Indeed, integrating equation (30) yields

κ(tn) > κ(sn)−
(−3− 2

√
3
)2
(tn − sn)−3r 2

sn
(tn − sn)+ 4ε̃2

r 2
sn

(tn − sn), (32)

wherersn = r(sn). Since limτ↗∞ r(τ ) = 0 it follows that, if there exists some
η > 0 and a subsequencenj that satisfies(tn− sn) > η, then from inequality (32)
we easily obtain that limnj↗∞ κ(tnj ) = +∞. This contradicts the fact thatκ is
bounded. Therefore, no such subsequence can exist and equation (31) must hold.

The mean value theorem now implies the existence of a sequence{τn} ↗ ∞
that satisfies limn↗∞ ẇ(τn) = ∞. Therefore,

r 2κ = r 2 + (rN )2 − (1− w2)+ 2(rU)2 −3r 4

2N
(33)

evaluated atτn gives lim
n↗∞ r

2κ(τn) < 0. However, because limn↗∞ r(τn) =
0, this contradicts the fact thatκ is bounded. The result in Case 2a follows.

Case 2b.By assumption,A(r) > 0 for all r ∈ (0, r̄ ). The result now follows
immediately from equation (5a).

Case 3.It follows easily from equations (25c) and (25f ) that, for any solution
of equations (25a)–(25f ),(κ +N)/2 satisfies

2
d

dτ

(
κ +N

2

)
= −

(
κ +N

2

)2

− 3

(
κ −N

2

)2

+1− 23r 2. (34)

We claim that there exists someτ̃ that satisfies

κ(τ) < −1− 2/
√

3 for all τ > τ̃ .

Indeed, we choose anỹτ that satisfiesκ(τ̃ ) < −1− 2/
√

3. From Lemma 6 it fol-

lows that infτ>τ̃ N(τ) > −1. Now, if there exists someτ−2−2/
√

3
κ+N > τ̃ that satisfies

(κ +N)(τ−2−2/
√

3
κ+N

) = −2−2
√

3 or someτ−1−2/
√

3
κ that satisfiesκ

(
τ
−1−2/

√
3

κ

) =
−1−2/

√
3, thenτ−2−2/

√
3

κ+N < τ
−1−2/

√
3

κ . However, equation (34) gives(κ̇+Ṅ ) <
0 for all τ ∈ (τ̃ , τ−1−2/

√
3

κ

)
. This establishes the claim.

Equation (34) now gives

d

dτ

(
κ +N

2

)
< −1

2

(
κ +N

2

)2

(35)

for all τ > τ̃ . Integrating inequality (35) then yields a finiteτ0 that satisfies
limτ↗τ0 κ(τ) = −∞; that is, equations (25a)–(25f ) become singular atτ0.

Integrating equation (25a) yields equation (27), from which it follows that equa-
tions (5a)–(5b) become singular at some strictly positiver0. However, this is con-
trary to assumption.
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Lemma 8. Suppose(A,w) is a solution of equations(5a)–(5b)that satisfies
the hypotheses of Theorem 2. Suppose also thatlim

r↘0A(r) > 0. Then
lim r↘0 w2(r) = 1.

Proof. It follows easily from equation (5b) that limr↘0 w(r) exists whenever
lim r↘0 w2(r) > 1. In this case, Lemma 1 gives limr↘0A(r) = ∞, contrary
to assumption. Similarly, Lemma 1 also gives limr↘0A(r) = ∞ whenever
lim r↘0 w2(r) < 1. Hence we may assume that

lim
r↘0

w2(r) = 1.

To complete the proof, it suffices to eliminate the possibility that

−1≤ lim
r↘0

w(r) < lim
r↘0

w(r) ≤ 1.

We prove that this inequality leads to a contradiction.
Because w has no limit, it follows that there exists a sequence{rn} ↘ 0 that sat-

isfies limn↗∞w(rn) = lim r↘0 w(r) and w′(rn) = 0. There also exists a sequence
{sn} that satisfies

(Aw ′)(sn)↘ −∞ and (Aw ′)′(sn) = 0. (36)

We choose anyδ ∈ (0,1), anyÃ1 > A1, and anyc that together satisfy

c > max
{√
Ã1/(3δA0),

√
1− A0,1/

√
A0
}
. (37)

Also, for eachn, we define

r0
n = min{r > rn : w(r) = 0},
r δn = min{r > rn : w(r) = δ}.

It follows easily from equation (5b) thatr0
n is well-defined for alln, as isr δn for

sufficiently smallδ. Next, if w(rn) > 1− crn then we define

tn = min{r > rn : w(r) = 1− cr},
whereas if w(rn) ≤ 1− crn then we settn = rn (see Figure 3). We will prove that,
for sufficiently largen, there can be nosn. This will be our contradiction.

From equation (10) it is clear that for eachn, sn ∈ [rm, r0
m] for somem. It is ob-

vious thattn < r δn for anyδ and sufficiently largen. We now consider the three
intervals in whichsn could possibly lie:

1. sn ∈ [rm, tm] for somem;
2. sn ∈ (tm, r δm) for somem;
3. sn ∈ [r δm, r

0
m] for somem.

We shall prove that, for largen, sn cannot lie in any of these intervals.

Intervals of type 1.BecauseA(sn) < 1 for all n, we have

lim
n↗∞2w′2(Aw ′)(sn) = −∞.
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Figure 3

Equation (10) then gives limn↗∞w(sn)(1− w2(sn))/sn = +∞. However, in the
interval [rm, tm] we have w(1− w2)/r = w(1+ w)(1− w)/r < 2c for anym. It
follows that there existM > 0 such that, whenevern > M, sn /∈⋃m[rm, tm].

Intervals of type 2.We note that the definition oftm gives

w ′(tm) ≤ −c. (38)

Also, for sufficiently largem and allr ∈ (tm, r δm),

8(r) = 1− A− (1− w2)2

r 2
−3r 2 < 1− A0 − c2 ≤ 0.

Substituting this into equation (5b) gives

rw ′′(r) ≤ −w(1− w2)

rA
= −w(1+ w)

1− w

rA
< − δc

Ã1

. (39)

We now consider the function

q(r) = 2rA0w ′3+ w(1− w2). (40)

A simple calculation yields

q ′(r) = w ′(2A0w ′2 + 6A0rw
′w ′′ +1− 3w2). (41)

Since w′′ < 0 for all r ∈ (tm, r δm), we have

w ′(r) < w ′(tm). (42)

Substituting equations (38), (39), and (42) into equation (41) yields

q ′(r) < w ′(r)[6A0rw
′′(r)w ′(tm)− 2] ≤ w ′(r)[6A0δc

2/Ã1− 2] < 0. (43)
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The last inequality follows from inequality (37). Equations (10), (40), (43), (38),
and (37) now yield, for anyr ∈ (tn, r δn ),

r 2(Aw ′)′ = −2rAw ′3− w(1− w2)

> −2rA0w ′3− w(1− w2)

= −q(r) > −q(tm)
> 2A0rc

3− 2rc

= 2rc(A0c
2 −1) > 0. (44)

Thus, there exists someM > 0 such that
(⋃

n{sn}
) ∩ (⋃m>M(tm, r

δ
m)
) = ∅.

Clearly, there existε>0 such that
⋃
m≤M(tm, r δm)∩ (0, ε)= ∅. There also existMn

such that
⋃
n>Mn
{sn}⊂ (0, ε). It follows that

(⋃
n>Mn
{sn}

) ∩ (⋃m(tm, r
δ
m)
) = ∅.

Intervals of type 3.Form sufficiently large, equation (5b) gives

w ′(r) = w ′(tm)+
∫ r

tn

w ′′(ρ)dρ

= w ′(tn)+
∫ r

tm

(−w(1− w2)

ρ2A
− 8w ′

ρA

)
dρ

≤
∫ r

tn

−8w ′

ρA
dρ

≤ ε

rA1

∫ r

tn

w ′ dρ

= ε

rA1
[w(r)− w(tm)] (45)

for anyr ∈ [r δm, r
0
m]. The last inequality follows for arbitraryε ∈ (0, c2− (1−A0))

from inequality (37). This is because, for any suchε and for sufficiently largem,
the following inequality holds throughout the interval [tm, r

0
m]:

8 = 1− A− (1− w2)2

r 2
−3r 2 < 1− A0 − c2 < −ε.

We have also used the fact that w′ < 0 in this same interval.
We now choose an arbitrarỹδ ∈ (δ,1). Since limm↗∞w(tm) = 1 it follows that,

for sufficiently largem and arbitraryr ∈ [r δm, r
0
m],

w(r)− w(tm) < −(1− δ̃ ). (46)

Substituting equation (46) into inequality (45) yields

w ′(r) < −ε(1− δ̃ )
rA1

. (47)

Finally, we substitute inequality (47) into equation (10) to get, for largem,

r(Aw ′)′(r) = −2Aw ′3(r)− w(1− w2)

r
>

2A(r)ε3(1− δ̃ )3
r 3A3

1

− 1

r
. (48)
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It is clear that, for sufficiently largem, the first term on the right side of inequal-
ity (48) dominates. Thus, there existM > 0 such that, wheneverm > M,

(Aw ′)′ > 0 for all r ∈ [r δm, r
0
m];

that is,
(⋃

n{sn}
) ∩ (⋃m>M(tm, r

δ
m)
) = ∅. As with intervals of type 2, there

existε > 0 such that
⋃
m≤M(tm, r δm) ∩ (0, ε) = ∅. There also existMn such that⋃

n>Mn
{sn} ⊂ (0, ε). It follows that

(⋃
n>Mn
{sn}

) ∩ (⋃m(tm, r
δ
m)
) = ∅.

Having established that limr↘0 w2(r) = 1, we next establish the existence of
lim r↘0 w ′(r). Because of Fact 2 and Fact 3, we may assume limr↘0 w(r) = 1 and
one of the following possibilities:

(1) for anyε > 0 there exists aρ > 0 such that, for allr ∈ (0, ρ),1− ε < w(r) <
1 and w′(r) < 0;

(2) for anyε > 0 there exists aρ > 0 such that, for allr ∈ (0, ρ), 1< w(r) <
1+ ε and w′(r) > 0.

We prove only the first case; the proof for the second case is similar. The existence
of lim r↘0 w ′(r) is a consequence of the following lemma.

Lemma 9. Let (A,w) be a solution of equations(5a)–(5b)that satisfies the hy-
potheses of Theorem 2. Then there exists aρ ∈ (0, r̄ ) such that, for anyb ∈ (0, ρ)
and anyε > 0,

1− εb ≤ w(b) < 1,

1− εr ≤ w(r) < 1

for all r ∈ (0, b).
It is worth noting thatρ in Lemma 9 is independent ofb andε.

Proof. For anyε > 0 we define

Uε = {r ∈ [0, b] : w(s) ≥ 1− εs for all s ∈ [0, r]}
as well as

aε = sup{r ∈Uε}.
Because it contains 0,Uε is nonempty. It is also clear thatUε is closed; that is,
aε ∈Uε. We claim thataε = b. In the interval [aε, b] we define

g(ε, r) = 1− εr − w. (49)

Sinceε is constant, we denoteg(ε, r) also byg(r).
Now, if aε < b then there exist̃c ∈ (aε, b) that satisfyg(c̃) > 0. We let c ∈

[aε, b] be whereg assumes its maximum. Sinceg(aε) = g(b) = 0 andg(c̃) > 0,
it follows thatc ∈ (aε, b). Consequently,g ′(c) = 0 andg ′′(c) ≤ 0; that is, w(c) <
1− εc, w ′(c) = −ε, and w′′(c) ≥ 0. Equation (5b) now yields
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0= [r 2Aw ′′ + r8w ′ + w(1− w2)] r=c

≥ [cw ′8+ w(1− w2)] r=c

≥ [−cε + w(1− w2)] r=c

= c
[
−ε + w(1+ w)

(1− w)

c

]
r=c

> cε[−1+ w(1+ w)] r=c > 0, (50)

providedρ is small enough that w(1+w) > 1 for all r ∈ (0, ρ). We have also used
the fact that8(r) < 1 for all r ∈ (0, ρ). Inequality (50) is a contradiction from
which it follows thataε = b.
Lemma 10. Suppose(A,w) is a solution of equations(5a)–(5b)that satisfies the
hypotheses of Theorem 2. Thenlim r↘0 w ′(r) exists and is finite.

Proof. Equation (49) is defined on [0,∞] × (0, r̄ ). We now define the set

O = {ε ≥ 0 : there existρε > 0 such thatg(ε, r) > 0 for all r ∈ (0, ρε)}.
We also define

ε̄ = sup{ε ∈O}. (51)

If there existε andρε such thatg(ε, r) ≡ 0 in (0, ρε), then there is nothing to
prove. Consequently, we assume this is not the case.

We first prove that̄ε is well-defined.O is nonempty, since 0∈O. Also, for any
ε ∈O, if ε > 1 then, for allr ∈ (0, ρε),

(1− w2)2

r 2
> 1.

As a consequence of equation (5a), there existη > 0 such that, in the same interval,

rA′ < −η.
Lemma 1 then implies limr↘0A(r) = ∞, contrary to our hypothesis. We con-
clude that̄ε ≤ 1. In particular,ε̄ <∞ and is therefore well-defined.

We claim also thatO is closed. To prove this, we choose arbitraryε0 /∈O. The
definition ofO gives a sequence{rn} ↘ 0 that satisfies, for eachn, g(ε0, rn) ≤
0. Lemma 9 then gives someρ0 ∈ (0, r̄ ) that satisfiesg(ε0, r) ≤ 0 for all r ∈
(0, ρ0). Equation (5a) and Lemma 1 preclude the possibility that w= 1− ε0r in
a neighborhood ofr = 0. Thus, there exist̃r ∈ (0, ρ0) that satisfyg(ε0, r̃ ) < 0.
Becauseg(ε, r) is continuous, there existη > 0 such that, whenever|ε − ε0| <
η, g(ε, r̃ ) < 0 also. Lemma 9 now gives, for suchε, g(ε, r) ≤ 0 for all r ∈ (0, r̃ ).
In other words,(ε0 − η, ε0 + η) ∩ O = ∅. This proves thatO is closed. As a
consequence,̄ε ∈O.

We now consider the following possibilities:

1a. ε̄ > 0;
1b. ε̄ = 0.
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Case 1a.Because8(r) < 1 for all r ∈ (0, r̄ ), equation (5b) gives, whenever
w ′(r) < 0,

rAw′′ = −w(1− w2)

r
− w ′8

≤ −w(1+ w)
1− w

r
− w ′. (52)

We prove that
lim
r↘0

w ′(r) ≥ −ε̄. (53)

Now, becausēε ∈O, it follows that(1−w)/r ≥ ε̄ for all r ∈ (0, ρε). This and the
fact that limr↘0 w(r) = 1 yield, for anyη ∈ (0, ε̄/3),

lim
r↘0

w(1+ w)
1− w

r
≥ 2ε̄ = 3

2

(
ε̄ + ε̄

3

)
>

3

2
(ε̄ + η).

Consequently, on any sequence{rn} ↘ 0 that satisfies w′(rn) > −(ε̄ + η), equa-
tions (52) and (53) giveM such that w′′(rn) < 0 whenevern > M. This proves
that limr↘0 w ′(r) exists. Indeed, otherwise there exists a sequence{rn} ↘ 0 that
satisfies w′(rn) > −(ε̄ + η) and w′′(rn) = 0. Clearly, equation (53) implies that
lim r↘0 w ′(r) must be finite.

It remains to establish equation (53). Toward this end, we defineδ(r) by

w(r) = 1− ε̄r − δ(r). (54)

Sinceε̄ ∈O, we have

δ(r) ≥ 0 for all r ∈ (0, ρ0). (55)

Indeed, otherwise there existr̃ ∈ (0, ρ0) that satisfyδ(r) < 0. Substituting equa-
tion (54) into equation (49) yields

g(ε̄, r̃ ) = −δ(r̃ ) < 0.

Lemma 9 then implies thatg(ε̄, r) ≤ 0 for all r ∈ (0, r̃ ); that is,ε̄ /∈ O, contra-
dicting the fact that̄ε ∈O.

We next claim that

lim
r↘0

δ(r)

r
= 0. (56)

Indeed, equation (55) gives lim
r↘0 δ(r)/r ≥ 0. Now we assume that there exist

arbitrarily smallη̃ such that

lim
r↘0

δ(r)

r
≥ 3η̃ > 0

and arrive at a contradiction. If so, then there existξ > 0 such thatδ(r) > 2η̃r
wheneverr ∈ (0, ξ). Hence

g(ε̄ + η̃, r) = −η̃r + δ(r) > η̃r > 0;
that is, ε̄ + η̃ ∈ O. However, this contradicts the definition ofε̄. It follows that
lim

r↘0 δ(r)/r ≤ 0. From equation (55) we deduce equation (56).
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Finally, we choose a sequence{rn} ↘ 0 that satisfiesδ(rn)/rn ↘ 0. The mean
value theorem yields a sequence{sn} → 0 that satisfies

w ′(sn) = w(rn)−1

rn
= −ε̄rn − δ(rn)

rn
= −ε̄ − δ(rn)

rn
.

Clearly, w′(sn)→−ε̄. This establishes equation (53) and completes the proof of
Lemma 10 in Case 1a.

Case 1b.We choose arbitrary finitẽA > A1. For anyε > 0, there exists a se-
quence{r εn } ↘ 0 such that 1− (ε/Ã)r εn < w(r εn ) < 1 for eachn. From the mean
value theorem it follows that, for anyε > 0, there exists another sequence{s εn } ↘
0 such that−ε/Ã < w ′(s εn ) < 0 for all n. Therefore,

−ε < Ãw ′(s εn ) < (Aw ′)(s εn ) < 0. (57)

Also, Lemma 9 providesρ > 0 such that, for allr ∈ (0, ρ),
1− εr < w(r) < 1. (58)

Now, for anyr ∈ (0, ρ), wheneverAw ′(r) < − 3
√
ε we have

Aw ′3 = (Aw ′)w ′2 < − 3
√
ε

(
3
√
ε

A

)2

< −ε. (59)

Substituting inequalities (58) and (59) into equation (10) implies that anyr ∈ (0, ρ)
that satisfiesAw ′(r) < − 3

√
ε also satisfies(Aw ′)′(r) > 0. It follows from this and

(57) that, becauseε is arbitrarily small,

lim
r↘0

Aw ′(r) = 0. (60)

The mean value theorem easily giveslim r↘0 w ′(r) = 0. We now assume that
lim

r↘0 w ′(r) < 0 and arrive at a contradiction. Indeed, this assumption implies the
existence of some vl < 0 and a sequence{tn} ↘ 0 that satisfies limn↗∞w ′(tn) =
vl and w′′(tn) = 0. Equation (5b) easily gives limn↗∞A(tn) = 1. However, this
implies that limn↗∞Aw ′(tn) = vl < 0, which contradicts equation (60).

We state the next lemma—even though it is a trivial application of the mean value
theorem—because it eliminates any ambiguity in the definition of w′(0).

Lemma 11. If lim r↘0 w ′(r) exists and is finite and alsow is differentiable atr =
0, thenw ′ is right-continuous at0.

Proof. By assumption, limr↘0 w(r) exists and is finite. From the definition of a
derivative, for anyε > 0 there exists a sequence{rn} ↘ 0 that satisfies∣∣∣∣w(rn)− w(0)

rn
− w ′(0)

∣∣∣∣ < ε. (61)

The mean value theorem yields a sequence{sn}, 0< sn < rn, that satisfies

w ′(sn) = w(rn)− w(0)

rn
. (62)
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Substituting equation (62) into equation (61) yields

|w ′(sn)− w ′(0)| < ε;
that is, limn↗∞w ′(sn) = w ′(0). Since we assume limr↘0 w ′(r) to exist, this limit
must also equal w′(0).

Lemma 11 allows us to define, without ambiguity, w′0 = lim r↘0 w ′(r) = w ′(0).

Proof of Theorem 2.What remains is to prove that limr↘0A(r) = 1 and w′0 = 0.
We first prove that limr↘0A(r) exists.

Equation (5a) implies that any sequence{rn} ↘ 0 that satisfiesA′(rn) = 0 also
satisfies

A(rn) =
1− (1− w2(rn))

2

r 2
n

−3r 2
n

1+ 2w′2(rn)
. (63)

Because w′0 is well-defined, it follows that, asn ↗ ∞, the right side of equa-
tion (63) approaches

1− 4w′20

1+ 2w′20

.

Therefore, limr↘0A(r) exists and obviously limr↘0A(r) = A0.

Now, equation (5a) gives

lim
r↘0
(rA′) = 1− A0 − 4w′20 − 2A0w ′20 ;

that is, limr↘0(rA
′)(r) exists. Lemma 1 gives

lim
r↘0
(rA′)(r) = 0. (64)

Since w′0 is finite, we have

lim
r↘0
(rA′w ′20 )(r) = 0 (65)

also. Clearly,80 = lim r↘08(r) ≤ 1. If 80 < 1 then equation (5b) yields

lim
r↘0
(rAw ′0w ′′)(r) = −80w ′20 + 2w′20 > 0 (66)

unless w′0 = 0. Equations (66) and (65) imply that, whenever w′0 6= 0,

w ′0 lim
r↘0
(rAw ′)′(r) > 0. (67)

Lemma 1 now gives limr↘0(Aw ′)(r) = ∞. However, this is impossible. Hence it
must be that w′0 = 0 in the case80 < 1. On the other hand,80 = 1 only if A0 =
0 and w′0 = 0. Thus, in all cases, w′0 = 0. It follows easily from equation (5a) and
from Lemma 1 that80 = 0. The definition of8 then givesA0 = 1.

3.2. CaseA > 1

In this section we prove that any solution that is not Schwarzschild-like or smooth
is Reissner–Nordström-like. Specifically, we have the following theorem.
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Theorem 3. Let (r̄, Ā, v̄)∈R2+×R and let(A(r),w(r)) be the solution of equa-
tions (5a)–(5b)that satisfies(A(r̄ ),w(r̄ ),w ′(r̄ )) = (Ā, w̄, v̄). Suppose also that
Ā ≥ 1−3r̄ 2/3. Thenlim r↘0A(r) = ∞ and lim r↘0 w ′(r) = 0.

We note that we already proved (in Section 2) that equations (5a)–(5b), with
any solution that satisfies the hypotheses of Theorem 3, are nonsingular for all
r ∈ (0, r̄ ).
Proof. To prove that limr↘0A(r) = ∞, we recall equations (17) and (18):

µ(r) = r
(

1− A− 3r
2

3

)
,

µ′(r) = 2Aw ′2 + (1− w2)

r 2
≥ 0.

Clearly,µ is nondecreasing in the interval(0, r̄ ). Thus limr↘0 µ(r) exists. Since
µ(r̄) < 0 (by assumption), it must be that limr↘0 µ(r) < 0; that is, limr↘0 rA >

0. Lemma 1 now gives limr↘0A(r) = ∞.
In order to prove that limr↘0 w ′(r) = 0, let us assume for the moment that

lim r↘0 w ′(r) = w ′0 exists. There are two cases to consider:

1. limr↘0 w2(r) = 1;
2. limr↘0 w2(r) 6= 1.

Case 1.We set w0 = 1 and apply L’Hôpital’s rule to(w2 − 1)/r. The result is
lim r↘0(w2(r) − 1)/r = 2w′0. If w ′0 = ∞, then there exists añr arbitrarily close
to 0 that satisfies w(r̃ ) > 1, w ′(r̃ ) > 0, and w′′(r̃ ) < 0. This contradicts equa-
tion (5b). Similarly, w′0 6= −∞. We thus have(w2 − 1)/r bounded near 0 and
(w ′0)2 <∞.

We now assume that w′0 6= 0 and arrive at a contradiction. Indeed, this assump-
tion together with Fact 3 and equation (5b) imply (as in Fact 5) that w′ has only
one sign nearr = 0. Without loss of generality, we assume that w′ > 0. Since
lim r↘0A(r) = ∞, equation (5b) also givesε > 0 such that, wheneverr ∈ (0, ε),

rw ′′(r) = w ′(r)+
(
(w2 −1)2

r 2
−1+3r 2

)
w ′

A
+ w(w2 −1)

rA
>

1

2
w ′(r) > 0.

Lemma 1 now gives limr↘0 w ′(r) = −∞, which is impossible. It follows that
lim r↘0 w ′(r) = 0.

Case 2.We prove that the assumption limr↘0 w ′2(r) > 2ε > 0 (ε < 1) leads
to a contradiction. Indeed, there existη such that w′2(r) > ε wheneverr ∈ (0, η).
Also, |lim r↘0Aw ′(r)| = ∞. Multiplying equation (10) byAw ′ gives, forr ∈
(0, η),

(Aw ′)(Aw ′)′ = −2rw ′2(Aw ′)2 − w(1− w2)(Aw ′)
r 2

≤ −2εr(Aw ′)2 − w(1− w2)(Aw ′)
r 2

. (68)

Now, equation (5a) implies that limr↘0 r(rA)
′ = −∞. Lemma 1 then gives
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lim
r↘0
(rA) = ∞.

Thus, forr ∈ (0, η),
−2εr(Aw ′)2 − w(1− w2)Aw ′ = −εr(Aw ′)2 − εr(Aw ′)2 − w(1− w2)Aw ′

= −rε(Aw ′)2 − (Aw ′)[ε(rA)w ′ + w(1− w2)]

≤ −rε(Aw ′)2;
this and equation (68) yield(Aw ′)′/(Aw ′) ≤ −ε/r. Integrating givesc > 0 such
that, forr ∈ (0, η), |Aw ′(r)| ≤ cr−ε or r ε|Aw ′(r)| ≤ c. Becauseε < 1, this con-
tradicts the fact that limr↘0A(r) = ∞.
All that remains is to establish the existence of limr↘0 w ′(r). Toward this end we
define, for any solution of equations (5a) and (5b),

θ(r) = arctan
w ′(r)
w(r)

. (69)

For any solution of equations (5a)–(5b),θ(r) satisfies

θ ′ = 1

r 2A
[(w2 −1) cos2 θ − r8 cosθ sinθ − r 2A sin2 θ ]. (70)

Lemma 12. Suppose(A,w) is a solution of equations(5a)–(5b)that satisfies the
hypotheses of Theorem 3. Suppose also that there exists anr̂ ∈ (0, r̄ ) such that,
for all r ∈ (0, r̂ ), w2(r) < 1. Then there existr0 ∈ (0, r̂ ) such that, for allr ∈
(0, r0), w ′ 6= 0.

Proof. The lemma follows once it is shown that, for sufficiently smallr, θ ′|θ=0 <

0 andθ ′|θ=π/4 > 0. The first inequality follows immediately from equation (70):

θ ′θ=π/4 =
1

2r 2A

[
(w2 −1)− r + A(r − r 2)+ (w

2 −1)2

r
+3r 3

]
. (71)

We chooseε sufficiently small so that, wheneverr ∈ (0, ε), A(r) > 3 and
2r − 3r 2 > 0. Then, for anyr in this interval such that(1− w2) ≥ r,

θ ′θ=π/4 >
1

2r 2A

[
(w2 −1)− r + (w

2 −1)2

r
+ 3(r − r 2)

]
= 1

2r 2A

[
(1− w2)

(
1− w2

r
−1

)
+ 2r − 3r 2

]
≥ 0.

For anyr in this interval such that(1− w2) < r, becauser < 1/2 andA(r) > 2
we have

θ ′θ=π/4 >
1

2rA
[A(1− r)− 2] > 0.

Lemma 13. Suppose(A,w) is a solution of equations(5a)–(5b)that satisfies the
hypotheses of Theorem 3. Thenlim r↘0 w ′(r) = w ′0 exists.

Proof. We choose añr > 0 such that8(r) < 0 wheneverr ∈ (0, r̃ ). Considering
Fact 3, we then choose anr0 ∈ (0, r̃ ) such that(1−w2)w(r0) 6= 0. Equation (5b)
implies (as in Fact 5) thatr0 can be chosen so that one of the following holds:
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1. for all r ∈ (0, r0), w2(r) > 1;
2. for all r ∈ (0, r0), w2(r) < 1.

Case 1.Using Fact 2, we assume that w(r) > 1 for all r ∈ (0, r0). Equation (5b)
and Fact 3 allow us to assume (by choosing a smallerr0, if necessary) that one of
the following holds:

a. w′(r) ≤ 0 for all r ∈ (0, r0);
b. w′(r) > 0 for all r ∈ (0, r0).

Case 1a.lim r↘0 w(r) exists and exceeds 1. We assume that limr↘0 w ′(r) does
not exist and then arrive at a contradiction. With this assumption, there exists anr̃

arbitrarily close to 0 that satisfies w(r̃ ) > 1, w ′(r̃ ) < 0, w ′′(r̃ ) = 0, and w′′′(r̃ ) ≤
0. Differentiating equation (5b) yields

(r 2A)′w ′′ + (r 2A)w ′′′ + (r8)w ′′ + [(r8)′ +1− 3w2]w ′ = 0. (72)

Equation (6) gives

(r8)′ = 2Aw ′2 + 2(w2 −1)2

r 2
− 4ww′(w2 −1)

r
− 23r 2. (73)

Now, for anyw̄ > 1, there exists aρ such that, wheneverr ∈ (0, ρ) and w> w̄,

2(w2 −1)2

r 2
− 23r 2 +1− 3w2 > 0. (74)

We choose anȳw ∈ (1, lim r↘0 w(r)). It follows from inequality (74) and equa-
tion (73) thatr̃ can be chosen so that [(r8)′(r̃ )+1− 3w2(r̃ )]w ′(r̃ ) < 0. The left
side of equation (72), evaluated atr̃ , is negative. This is a contradiction.

Case 1b.Equation (5b) gives w′′(r) ≥ 0 for all r ∈ (0, r0). Consequently,
lim r↘0 w ′(r) exists and is both finite and nonnegative.

Case 2.Lemma 12 implies that w′ has only one sign. Therefore, limr↘0 w(r)
must exist. We taker sufficiently small so that w′ 6= 0 in (0, r). In this interval,
ww ′(s) = 0 if and only if w(s) = 0; in this case(ww ′)′(s) = w ′2(s) > 0. It
follows that there exist̂r such that, for allr ∈ (0, r̂ ), ww ′ has only one sign.

If lim
r↘0 w ′(r) < lim r↘0 w ′(r), then there exists a sequence{rn} ↘ 0 that sat-

isfies w′′(rn) = 0. If we multiply equation (5b) by w′, then Fact 3 and8(rn) <
0 give ww′(rn) > 0. It follows that ww′ > 0 in (0, r̂ ). Now equation (5b), mul-
tiplied by w and evaluated at any nonzerow̄′ ∈ (lim

r↘0 w ′, lim r↘0 w ′), yields
(ww ′′)|w ′(r)=w̄′ > 0, providedr is sufficiently small. However, if w′ has no limit
then there must be arbitrarily smallr and nonzerōw′ that satisfy w′(r) = w̄ and
(ww ′′)(r) ≤ 0. It follows that w′ has a limit.
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