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Near-Field Behavior of
Static Spherically Symmetric Solutions
of Einstein SU(2)-Yang/Mills Equations

ALEXANDER N. LINDEN

1. Background

1.1. Introduction

Static spherically symmetric solutions of the Einstein SU(2)-Yang/Mills equa-
tions both with and without cosmological constant have been studied extensively
over the last decade. Among the few analytical and several numerical results is a
rigorous proof of the existence of a 1-parameter family of such solutions in which
each solution in the family is smooth at the origin of spherical symmetry (see [14]).
These solutions give boundary conditions at the center of spherical symmetry that
must be satisfied for solutions to be smooth in a neighborhood of the origin. Many
studies have considered the global behavior of such solutions.

Smollerand Wasserman [7] proved the existence of a discrete family of solutions
that are everywhere smooth. These solutions exist only with vanishing cosmolog-
ical constant. Breitenlohner, Forgacs, and Maison [1], also considering only the
case of vanishing cosmological constant, classified solutions that are smooth near
the origin. References [5] and [6] describe classes of solutions that exist in the
case of a positive cosmological constant.

Other studies have considered solutions of the equations without cosmologi-
cal constant with given boundary conditions at infinity. For example, Wasserman
[16] describes the number of singularities such solutions can have. It has already
been mentioned that, in the case of zero cosmological constant, there exist con-
ditions at infinity that yield solutions that are globally smooth in Schwarzschild
coordinates. Winstanley [17] proved the existence of such solutions in the case of
negative cosmological constant. However, no such solutions can exist in the pres-
ence of a positive cosmological constant (see [5]). Specifically, with a positive
cosmological constant present, each solution that is smooth at the origin gives rise
to a singularity at some finite Schwarzschild radius. Reference [3] describes the
nature of such a singularity. Smoller, Wasserman, and Yau [13], considering only
the case of vanishing cosmological constant, analyzed the behavior of solutions
that satisfy certain conditions at this singularity.

In this paper we consider the Einstein SU(2)-Yang/Mills equations with ar-
bitrary cosmological constant in Schwarzschild coordinates and take arbitrary
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boundary conditions not at infinity or at the center of spherical symmetry or at
a singularity but rather at arbitrary positive finite radiuso as to make the equa-
tions nonsingular in a neighborhood @fWe then analyze the behavior of such
solutions ag decreases from.

We begin with Einstein’s equations

1 8nG

Rij — 5 Rgij = =7 Tij + Agij @
coupled to the Yang/Mills equation
DxDA=0. 2

In equation (1),g;; is the metric andR;;, R are (respectively) the metric Ricci
and scalar curvaturesj, ¢, andT;; are physical quantities—respectively New-
ton’s gravitational constant, the speed of light in vacuum, and the stress energy
tensor. We use\ to denote the cosmological constant. In equation #J)s the
Yang/Mills connection 1-formD is the covariant derivative with respect to this
connection, ané is the Hodge star operator. The Yang/Mills and gravitational
fields are coupled both through the stress energy tensor in equation (1) and, be-
cause the Hodge star operator depends on the metric, through equation (2).

In Schwarzschild coordinates a spherically symmetric metric assumes the form

1
ds? = Cc?Adi® — Xo|r2—r2(o|¢>2+sin2¢>o|e>2). ©)

With suitable gauge under the assumption of a static magnetic field, a spherically
symmetric SU(2)-Yang/Mills connection assumes the form
A =wr,d¢ + (cosptz — wsingt) db. (4)

Herert; are the following matrices, which form a basis of SU(2):

_ifo -1 __ifo i] _ _i[-10
=% -1 o 7 2|-i o] 2720 1|

The Einstein-Yang/Mills equations with this metric and Yang/Mills connection
are as follows:

rA' +2AW'? = @, (5a)
r?AW” + row’ + w(l —w?) =0, (5b)
C/ 2W/2
~ = , 5¢c
C r (5¢)
where . -
—-w
<I>=1—A—¥—Ar2; (6)

r2

A, w, andC are unknown functions of Here and throughout the paper, a prime
denotes a derivative with respectrto

As previously stated, we choose boundary conditions at pogitisech that
equations (5a)—(5c) are nonsingular in a neighborhoad Hfthere exists some
r < r where equations (5a)—(5c) become singular, we tgke be the largest
suchr. Otherwise, we takey = 0. We analyze the local geometry of spacetime in
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a neighborhood ofy. In particular, we prove that each solution describes a space-
time of one of the three following types.

(1) The spacetime manifold is regular in a neighborhood of the center of spher-
ical symmetry. We call such solutiorssnooth. These are the solutions that
satisfy special boundary conditionsrat 0.

(2) The spacetime manifold is regular near the center of spherical symmetry and
has a Reissner—Nordstrém singularity at this center. We call such solutions
Reissner—Nordstrom-like.

(3) The spacetime manifold has a black hole surrounding the center of spherical
symmetry. We call such solutior&hwarzschild-like.

In [9] can be found a proof that, fak = 0, every solution describes a space-
time of one of these types. However, the arguments used therein do not apply to
the general casa # 0. This paper provides a proof that does not depend on the
value of A. In particular, we prove that the value af has no qualitative effect
on the spacetime geometry in the region wheilis small. Thus, a cosmologi-
cal constant has only a far-field effect. This is as expected, bedaappears in
equations (5a)—(5c) only in a teriv-2.

Before presenting the proof, we describe these geometries as they relate to ex-
plicit well-known solutions of the Einstein—Yang/Mills equations. Setting:=\&
and integrating equation (5a) yields the metric

-1
1" T) dr? — r2(d¢? + sir ¢ do?), (1)

whereM is an arbitrary constant. Note that > 0 yields Schwarzschild solu-
tions. Of particular interest is that, in these coordinates, there exists a pogitive
such that metric (7) becomes singularat ro. The singularity occurs because
A(ro) = 1—2M/ro — Ar3/3 = 0. WhenM = 0, we have the metric either of
deSitter, Minkowski, or anti-deSitter space—depending on whether the cosmo-
logical constantA is positive, zero, or negative (respectively). All three of these
spaces are notable in that the metric is smooth neaf and can be extended to
be smooth at = 0. Finally, M < 0 yields a Reissner—Nordstrém solution. Rele-
vant here is the fact that the metric (7) becomes singulaead. The singularity
occurs because limg A(r) = co. In all cases, lim\  W'(r) = 0 and the quali-
tative behavior for smalt does not depend on the value /of

We prove that these phenomena are quite general. In particular, we choose any
point (v, A, C, W, V) € Ri x R? and consider the unique solution of equations
(5a)—(5c) that satisfieA(7), C(7), w(i), w'(7)) = (A, C, W, V). In Theorem 1
we prove that this solution is either a Schwarzschild-like solution or smooth for
all » € (0, 7). In other words, Theorem 1 precludes the possibility of any other
types of singularities at positive In Theorem 2 we consider solutions that are
not Schwarzschild-like. We prove that, as longiais bounded, any such solution
must be a smooth solution. Theorem 3 states that all solutions with unbodnded
are Reissner—Nordstrém-like with'wanishing at = 0.
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1.2. Preliminaries

We begin by stating some basic and simple facts regarding solutions to equa-
tions (5a)—(5c).

Fact 1: Equation (5c) separates from equations (5a)—(5c). Once a solution to
the latter two is known, equation (5c¢) yields

C(r) = C() exp| [, (2w'¥/s) ds}. (8)

BecauseC andC’ are both finite wheneves, w, w" are finite and- > 0O,
we can ignore equation (5c¢) and restrict our analysis to the system of equa-
tions (5a)—(5b).

Fact 2: Equations (5a)—(5b) are invariant under the transformation, w) —
(r, A, —W).

Fact 3: Any solution of equations (5a)—(5b) with constant w must be either
A=1-2M/r — Ar¥3withw? =10rA =1—2M/r — Ar%/3+ 1/r?
with w = 0. These solutions are also the only possible solutions that satisfy,
for somer > 0, w(l — w?)(#) = 0 and W(#) = 0.

Fact 3 follows from equation (5b), integrating equation (5a), and standard unique-
ness theorems.

Fact 4: Given anyA andx, there exists an intervd}, = [0, r;) in which can
be found a solution of equations (5a)—(5b) with the following properties.
() (A,w2,w') — (1,1,0) asr \ 0 and limow"(r) = —A.
(1) The solution is analytic in the interior of, andC?+* in I, for a small
o> 0.
(111) The solutions depend continuously an

A proof of Fact 4 in the casa = 0 can be found in [14]. The same proof is valid
with minor modification in the general cage# 0. Solutions that satisfy proper-
ties (1), (1), and (I11) aresmooth.

We define the region

I={r A,w,wW):r>0 A>0, w?<1 and(w,w’) # (0, 0)}.

We then have the following.

Fact 5: Suppose equations (5a)—(5b) are nonsingular for allro, r.). Sup-
pose also thatr., A(r.), W(r.), W'(r.)) € T but (r,, A(r.), W(r.), W'(r.)) ¢ T
for somer, € (ro, r.). Then(r, A(r), w(r), w'(r)) ¢ T for all r € (ro, r.).
Fact 5 follows easily from the fact that wier) > 0 whenever W(r) > 1 and
w'(r) = 0.
In order to avoid repeating the same argument several times, we state the fol-
lowing lemma of basic calculus.

LemMma 1. Supposef is differentiable for allr > 0 and Ii_mr\o(rf/)(r) > 0.
Thenlim o f(r) = —oo. Similarly, if W,\o(rf’) < Othenlim o f(r) = o0.
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2. Extending Solutions

In this section we prove that solutions of equations (5a)—(5b) become nonsingular
atro > 0 only whenA(rg) = 0. This is the content of the following theorem.

THeEOREM 1. Let (7, A, W, V) e R2 x R? be arbitrary. Let(A, w) be the unique
solution of (5a)—(5b)that satisfies(A(F), w(7), W'(F)) = (A, W, V). Then,
for arbitrary ro € (0, 7), equations(5a)—(5b)are nonsingular at-g whenever
W,\,O A(r) > 0.

Proof. It follows from standard theorems that equations (5a)—(5b) are singular at
ro only if one of the following holds:

(A) lim _A(r) <0;
(B) Tim o W2(r) = o0;

(C) Tim o W'2(r) = 00;

(D) lim <, A(r) = +o00.

We eliminate all of these possibilities in each of the following cases:
1. W,.\,o A(r) > 1

2. lim,, A(r) exists and O< lim,,, A(r) <L

3. lim,_ , A < lim,,, A(r) <1

Case 1.In Lemma 6 we will prove that lim. ,, A(r) = Ag exists and thatiy >
1 Thus, equations (5a)—(5b) cannot become singulag ah account of condi-
tion (A). The other possibilities are eliminated according to the scheme shown in
Figure 1 in the casely = oo and as shown in Figure 2 for the cadg < oo.
Figures 1 and 2 should be read as follows: at each node of the tree, we assume that
everything beginning with and including the root is true. What is cited in paren-
theses excludes the possibility that, under these assumptions, equations (5a)—(5b)
are singular aty. It is clear that the leaves of these trees exhaust all of conditions
(B), (C), and (D).

Case 2.All of the possibilities are eliminated, as shown in Figure 2.

Case 3.We claim that this case cannot occur. Indeed otherwise, because (by
hypothesis) lim. . A(r) < lim <, A(r), lim,,, A(r) > 0, andrg > O, the
mean value theorem gives > rq that satisfy 0< A(p) < 1andpA’(p) > L
Therefore,

(W2 _ 1)2

> 0,
2

[(rA/ —1) +2AW% + A + + Arz]

(r=p)

as each term on the left side is positive. However, this contradicts equation (5a).
O

It remains to prove Lemmas 2, 3, 4, 5, and 6.

LEMMA 2. Supposéim 7, A(r) > 0andlim . ;, W(r) = oc. Thenig = 0.
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|im,\,0 A(}’) =0

/T

Wr\ro W'2(r) < 00

I'i_ 12 —
M 7o W(r) = 00 (Lemma 5)

lim <, W(r) does not exist

lim w(r) exists
rro W) (Lemma 3)

/ N\

lim,, W) <oo  lim,,,W(r) =00
(Lemma 4) (Lemma 2)

Figure 1

0 < lim,,, A(r) < o0

M,y W2(r) = 00

[T 2
[iM o W2(r) < 00 (Lemma 2)

W,\m W'2(r) < 00

M W2 (@) =
W) = 00 (standard theorems)

7\

lim o W(r) exists  lim,. ,,w(r) does not exist
(Lemma 4) (Lemma 3)

Figure 2

Proof. We prove that the assumptiép > O leads to a contradiction. Because of
Fact 2, we may assumet@lri@;ow(r) = +o00. Equation (5b) gives (p) > 0
for any p € (rg, r) that satisfies ) > 1 and wW(p) = 0. Consequently,
lim 7, W(r) = oo, Ii_mr\;ow’(p) = —o0, and W(p) < 0 for all p in some
neighborhood/ = (7g, 7o + ¢).
We next prove that
Ii\zn w'(r) = —oo. 9)
r ro
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Toward this end we note that, for any solution of equations (5a)—@k) satis-
fies the following:

w(l— w?)

r(AW') 4+ 2W'2(AW) + =0. (10)

It is clear from equation (10) thatdw’)’ > O for all » € U. This implies that
lim,< 7 AW’(r) exists. Because lif_;, A(r) exists and is nonzero, lim 7, w’'(r)
also exists. The only possibility is that limyz, w'(r) = —oo. This is equation (9).
To complete the proof, we write equation (5b) as
r2Aw” 1—A—Ar2  (w2-1

ww2 —1) w(w?2 — 1) wr2 ]
For allr € U, the term inside the square brackets in equation (11) is negative. Equa-
tion (9) givesn > 0 that satisfy i(r) < —n < Oforallr € U. Itis now clear that
U can be chosen sufficiently small so that the dominant term on the right side of
equation (11) is wi(w? — 1)/(rw); that is, W'(r) < 0 for all » € U. But this con-
tradicts equation (9). O

1—w'r [ (11)

LEMMA 3. Supposdei_mr\j0 A(r) > Oand Ii_mr\;ow(r) < W,\;Ow(r). Then
Fo=0.

Proof. We assumeé, > 0 and reach a contradiction. As in Fact 5, equation (5b)
implieslim 7, w?(r) < 1. We now claim that, for any > 0 andM > 0, there
exist7(e, M) close torg that satisfy|w'(7)| < ¢ and|w”(7)| > M. Because
lim,. 7 W(r) does not exist, there exists a sequeficg \, 7o that satisfies
wW'(r,) = 0 and lim, 5o W(r,) = Ii_m,_\;ow(r). There also exif another se-
quence(s,} \ 7o that satisfies Ws,) = 0 and lim, s W(s,) = lim . 7 W(r).
Without loss of generality, we assumge < s, < r,_1. The mean value theorem
givest, € (r,, s,) that satisfy

W(Sn) - W(Vn)

Sp —Tn

W/(tn) =

Clearly, lim, 5o W'(t,) = oo. Now, for anye > 0, we definé, (¢) to be the small-
estr > r, that satisfies Wb, (¢)) = ¢ and defineV,(¢) = [r,, b.(¢)). Clearly,
w'(r) < eforallr € V,(e). For anye, eachV, is nonempty. Also, there exisi(s)
such that, ¢ V,(¢) for all n > N(e). Thus, lim, 5 (b, — r,) = 0. The mean
value theorem now gives, for eachsomeu,(¢) € V,(¢) that satisfy

W(t,) —W'(r,) e
(tp — 1) B (tn_rn).

Clearly, lim,, . W”(u,) = +o00. This proves the claim.
Finally, we evaluate equation (5b)7at

Fw w2 — 1)2 w(l— w?
W (g W DT ) g WD —0. (12)
A 72 A r=F(e, M)

W//(I/t,,) =

Since w is bounded and since (by assumptida) M) > 7o > 0 for all ¢ and M,
it follows that we can choosesufficiently small andVf sufficiently large so that
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the first term in equation (12) dominates. Hence the left side of equation (12) is
nonzero, contradicting equation (5b). The result follows. O

LeEmMa 4. Suppose thalim .« ;, A(r) exists and is positive. Suppose also that
lim 7, W'2(r) = oo and thatlim 7, W(r) = Wy is finite. Therfy = 0.
Proof. We assuméy > 0 and arrive at a contradiction. Clearly,

im &) <1
r\o

Making use of Fact 2, we assume thiat, ;, W'(r) = +oo. It follows that

lim In(w’) = 4o0.

70
This implies thatlrr;vo(ln(w))’ = —oo; that is, for anyM > 0 there exisip
nearrg that satisfy i p) > 1andw'(p)/w’(p) < —M. If M is sufficiently large,
then , L 5
|:r2AW— +rd + M} <O0. (13)
w’ w’ r=p

This is because the first term on the left side of equation (13) is large and negative
while the second term is at mostand the third term is at most 1. However, in-
equality (13) contradicts equation (5b). The result follows. O

LeEmMMA 5. Supposdim . ;, A(r) = +oo and lim . ;W'2(r) < +oo. Then
7o=0.

Proof. We rewrite equation (5a) as
A 1
7+1+2w’2=—————. (14)

Next, we assumg&, > 0 and arrive at a contradiction. As\ 7o, the right side of
equation (14) approaches 0. On the other hand, there exists some pifsttiat
satisfies 4 2w'? < 7o M in a neighborhood/ = (7o, 7o + €). Thus,

A'> —-MA forall reU. (15)
Integrating inequality (15) on any interval, ro) C U gives
A(r) < A(rp)eM2=" forall reU. (16)
Taking the limit in inequality (16) as “\ 7o yields

lim A(r) < A(r2)e™® < oo.
7o

r

O

However, this contradicts our hypothesis.

LEMMA 6. Suppose there exists somes (ro, 7) that satisfiesA(p) = A >
1— Ap?/3. Thenlim ., A(r) exists andim ., A(r) > 1— ArZ/3.

Proof. We define
w=rl—A—Ar??3). 17)
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For any solution of equations (5a)—(5p) satisfies

_ 12
W=1—A—rA'—Ar’= ( Y +2AW'%2 > 0. (18)
r2

If (W?(p), W'(p)) = (1, 0), then

2
A=1—A—r+£[A+A—p—1] wl=1 19)
3 r 3
is the unique solution of equations (5a) and (5b) that satisfi@s w 1, w/(p) =
0, andA(p) = A. However, our assumptions imply that the term in the square
brackets of equation (19) is nonnegative. This term obviously does not depend on
r. Therefore, with the solution equation (19), equations (5a)—(5b) are nonsingu-
lar for all » € (0, p). Moreover, lim~ o A(r) exists, and either lim o A(r) = 1or
lim AN) A(r) = 4o0.
To finish the proof, we need consider only the case that there existssame
(ro, 1) that satisfies
wW(L—w?)(p) # 0.

Equation (18) giveg/(p)/p > 0. Also, our assumptions imply that(p)/p? < O.

Therefore,
"(p) (p)
< >( =22 _Eh oo
Iy P
We now suppose that there exists same (ro, p) that satisfiesu/r)'(F) = 0.
Becausé can always be chosen so thaet)/7 < 0, we have

W) = ( )(V)—r< )(r)+—(r) <0. (20)
Equation (20) contradicts equation (18). Hence, in the inteinglo), (u'/r) >
0; that is, )
A= 2 <ﬁ> o2 1)
3 r 3

Since A’ is bounded from above, it follows that lim,, A(r) exists. Also, from
equation (21) and the fact thatp) > 1— Ap?/3itis clear that lim«,, A(r) >
1- Arg/3. O

3. Behavior at the Origin

3.1 CaseA <1

In this section we prove that any solution of equations (5a)—(5b) that has bounded
A and is not a Schwarzschild-like solution is smooth. We state this precisely as
follows.

THEOREM 2. Let(F, A, V) € R% x R and let(A(r), w(r)) be the solution of equa-
tions(5a)—(5b)that satisfiesA(7), w(i), w'(7)) = (A, W, V). Suppose that, with
this solution, equationgba)—(5b)are nonsingular for alk € (0, r). Suppose also
that there exisid o and A; that satisfy
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0<Ap=IlmAQr) <lmA(r) =A;<1
/”\4_0 r\.0
Then
lim (A, w2(r), w'(r)) = (1,1, 0).

We first prove that lim\ o w2(r) = 1in the cased; = 0. We then prove that
|im,\oW2(r) = 1 in the casedy > 0. We then use this limit to prove that
lim .\ oW'(r) exists. The rest of Theorem 2 will follow.

LEMMA 7. Suppos€A, w) is a solution of equationgba)—(5b)that satisfies the
hypotheses of Theorem 2. Then eittier, o w?(r) = 1or lim . o A(r) > 0.

Proof. As in [1], we introduce the new variables

N = —VA, (22)
U= Nw, (23)

_ 1 2 2
k=5 (®+2U%+2N%) (24)

and a new parameterdefined by d/dr = rN. Equations (5a)—(5c) then trans-
form into

F=rN, (25a)
W =rU, (25b)
N = (k — N)N — 2U?, (25¢)
w2
U= —M—(K—N)U, (25d)
r
CN = (k — N)CN, (25e)

where an overdot’) here and elsewhere denote&ld We also have the auxil-
liary equation

kK =142U% — k? — 2Ar%. (25f)
The metric (3) transforms into
ds? = C?N?dr? — r2()(dr? + d¢p? + sir? ¢ do?). (26)

As expected, equation (25e) separates from the others. Hence, as in Fact 1, it can
be ignored. HereV is defined to be negative, so thatlecreases with increases

in the new parameter. The solution(A, w) of equations (5a)—(5b) is equiva-

lent to the solutior(r, N, w, U) of equations (25a)—(25f) that satisfie®) = r,

N(0) = —V/A, w(0) = W, U(0) = —v/Av, and

() = 1+ A — (1— W¥/F2 — AF2 + 240%)/(—2VA).

We are free to choose = 0 for this solution because equations (25a)—(25f) are
autonomous.



Solutions of EinsteisU(2)-Yang/Mills Equations 211

Integrating equation (25a) yields, for any

r(r) =rexp| [, N()d}. (27)
By assumption and because of Lemma 6, equation (27) implies that
7(r = 0) = o0. (28)

We now consider the following three cases separately:
1. 0< "_mr/ooK(‘L');
2. -83-2/Y/3<lim_,_ k(1) <0;
3. lim_,  «(7) <-3- 2/4/3.
Case 1.We choose any that satisfies 6< ¥ < lim .« () and then choose
7 sufficiently large so that(r) > k¥ wheneverr > 7. Equation (25c) then gives,

forallt > 7, )
N < kN. (29)
Integrating equation (29) yields
im N(z) < N(F) lim =9 <0,
7 /00 7,/00
as desired.

Case 2.It suffices to assume th%r/oo N(7) = 0 and then to establish, under
this assumption, that lim-., w?(t) = 1. We establish this latter limit by elimi-
nating the following two possibilities:

a. lim; - w(r) does not exist;
b. 1im, o W(z) exists but lim ». W?(t) # L

Case 2a.lt follows easily from equation (25f) that, {ft,} oo is an arbi-
trary sequence that satisfiesr,) = 0, thenk(z,) > 0 for sufficiently largen.
Therefore]im; -« (t) < 0. In other words is bounded.

We now rewrite equation (25f) as

1—w?)?
k= —(K—N)2+¥ — Ar?. (30)

r
Because lim ., w(t) does not exist, there are two sequenggg>, and{z,}52 ;
that satisfy the following conditions:

(i) im 700 80 = M, 100 2, = 00;

(i) s, <t, < 5,41 foreachn > 0O;
(iii) there existe > 0 that satisfy wr,) — w(s,) > ¢ foralln > 0;

(iv) for eachn > 0 and for allt € (s, t,,), W(s,) < W(t) < W(Z,);

(v) there exis€ that satisfy, for alk > 0,
—1+&<w(s,) <0<w(t, <l—=¢.

Conditions(i)—(iv) are arestatement of the fact that w has no limitas” oco.
Condition (v) follows easily from equation (5b) becausernman exist that satis-
fies either all of () > 1, w/(zr) = 0, and ww/'(t) < 0 or all of 0 < w2(7) <
1, w/(tr) =0, and ww'(t) > 0. As a result, we must have
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1< lim w(r) <0< I|m w(t) <1
r/'oo
We claim that
Ii/m (t, —s,) = 0. (3D

Indeed, integrating equation (30) yields

452
k(ty) > Kk(sy) — (_3 - 2\/5)2(% —Sp) — Arsi(tn Sp) + —5 (tn Sn)s (32)
Yrl

wherer, = r(s,). Since lim -, r(r) = 0 it follows that, if there exists some
n > 0 and a subsequenggthat satisfiesr, — s,) > 7, then from inequality (32)
we easily obtain that lim) ~« «(7,;) = +o0. This contradicts the fact that is
bounded. Therefore, no such subsequence can exist and equation (31) must hold.

The mean value theorem now implies the existence of a sequence” oo
that satisfies lim - W(z,) = co. Therefore,

2 r24+ (N2 = L—=w2) +2(:U)2 — Ar?

rex = N (33)

evaluated at, gives lim r2k(t,) < 0. However, because iMoo r(Tn) =
. . ——n/00 " ]
0, this contradicts the fact thatis bounded. The result in Case 2a follows.

Case 2b.By assumptionA(r) > 0 for all » € (0, 7). The result now follows
immediately from equation (5a).

Case 3.1t follows easily from equations (25c¢) and (25f) that, for any solution
of equations (25a)—(25fJx + N)/2 satisfies

2 2
2%(’”;1\’):—(’“;]\') —3("_2N> F1-2As%  (34)
We claim that there exists sonfehat satisfies

k(t) < —1-— 2/\/§ forall T > 7.
Indeed, we choose ariythat satisfies (f) < —1— 2/+/3. From Lemma 6 it fol-
lows thatinf,.; N(r) > —1. Now, if there exists somg, ~2-2//3 > 7 that satisfies
(k + N) (1,22Y3) = —2— 2/3 or somer; 2/ that satisfies (1, 2/V?) =
—1-2/+/3, thent, 2y2/Y? < t752/Y3 However, equation (34) gives + N) <

Oforallt e (7, 7 - 2/f) This establishes the claim.
Equation (34) now gives

d/k+N 1/k+NY

E( 2 ><_§< 2 ) (35)
for all z > 7. Integrating inequality (35) then yields a finitgy that satisfies
lim; -, k(r) = —oo; that is, equations (25a)—(25f) become singularat

Integrating equation (25a) yields equation (27), from which it follows that equa-
tions (5a)—(5b) become singular at some strictly posityvéHowever, this is con-
trary to assumption. O
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LEmMA 8. SupposegA, w) is a solution of equationgsa)—(5b)that satisfies
the hypotheses of Theorem 2. Suppose also @rt\o A(r) > 0. Then
lim ~ ow?(r) = 1.

Proof. It follows easily from equation (5b) that limoew(r) exists whenever
W,\owz(r) > 1 In this case, Lemma 1 gives limgo A(r) = oo, contrary
to assumption. Similarly, Lemma 1 also gives liga A(r) = oo whenever
lim,~ ow2(r) < 1. Hence we may assume that

imw?() =1

r\0
To complete the proof, it suffices to eliminate the possibility that

—1<limw(@) <limw() <1
m N0
We prove that this inequality leads to a contradiction.
Because w has no limit, it follows that there exists a sequéng¢ey, O that sat-

isfies lim, ., W(r,) = lim,\ ow(r) and wW(r,) = 0. There also exists a sequence
{s,,} that satisfies

(AW)(s,) \, —oco and (Aw')'(s,) = 0. (36)
We choose any € (0, 1), any A; > A, and anyc that together satisfy

¢ > max{v/A1/(35A0), v/1— Ao, 1/y/Ao}. (37)
Also, for eachn, we define
rO = min{r > r, : w(r) = 0},

r,f =min{r > r, : W) = §}.

It follows easily from equation (5b) thaf is well-defined for all:, as isr? for
sufficiently smalls. Next, if w(r,,) > 1— cr, then we define

t,=min{r > r, : W) =1—cr},

whereas if Wr,) < 1—cr, then we set, = r, (see Figure 3). We will prove that,
for sufficiently largen, there can be ng,. This will be our contradiction.

From equation (10) it is clear that for eagchs,, € [r,,, r°] for somem. It is ob-
vious that, < r? for any$ and sufficiently large:. We now consider the three
intervals in whichs, could possibly lie:

1. s, €[rp, t,] for somem;
2. sy € (tn, 1)) for somem;
3. s, €[r}, r0] for somem.

We shall prove that, for large, s,, cannot lie in any of these intervals.
Intervals of type 1Becausei(s,) < 1for alln, we have

lim 2w'2(Aw’)(s,) = —o0.
n /100
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Figure 3

Equation (10) then gives ligyo. W(s,) (1 — W2(s,))/sn = 400. However, in the
interval [r,,,, t,,] we have Wl — w?)/r = w1+ w)(1 —w)/r < 2¢ for anym. It
follows that there exisM > 0 such that, whenever> M, s, ¢ J,,[rm, tm].

Intervals of type 2We note that the definition of, gives

w'(t,) < —c. (38)
Also, for sufficiently largen and allr € (t,,, r2),
CD(r):l—A—(j'_r—\évz)z—Ar2<1—A0—c2§O.
Substituting this into equation (5b) gives
rw’(r) < —W(lfwz) = —W(1+W)1r_TW < —%. (39)
We now consider the function
q(r) = 2rAow’® + w(l — w?). (40)
A simple calculation yields
q'(r) = W (QAoW'2 + 6Agrw'w” + 1 — 3w?). (41)
Since w < Oforallr € (t,, ), we have
W'(r) < W'(ty). (42)

Substituting equations (38), (39), and (42) into equation (41) yields
q'(r) < W ()[6Aorw"(rW'(t,,) — 2] < W'(r)[6A0dc? /A1 —2] < 0.  (43)
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The last inequality follows from inequality (37). Equations (10), (40), (43), (38),
and (37) now yield, for any € (t,, r}),
r2(AW') = —2rAw’® — w(l — w?)

> —2rAow”3 — w1 — w?)

=—q(r) > —q(tw)

> 2Aqrc® — 2rc

= 2rc(Agc? —1) > 0. (44)

Thus, there exists som@ > 0 such that( |, {s:}) N (U,p . 1)) = 2.
Clearly, there exist > 0 such thaUmsM(tm, r3)N(0, &) = ¥. There also exisH,,

such that J,,. , {s,} C (0, ¢). It follows that( U,y {sx}) N (U, (tm. 13)) = 9.
Intervals of type 3Form sufficiently large, equation (5b) gives

W) = W (1) + / W(p)dp

r/_ w2 /
=W/(t,,)+/< w(l W)_CDW>dp

p2A pA
< /’ _cIJW’ dp
I”A1/ W d,O
— W) —wn)] (45)
}"Al

foranyr €[}, r0]. The lastinequality follows for arbitrarye (0, c? — (1— Ag))
from inequality (37). This is because, for any sucéind for sufficiently largen,
the following inequality holds throughout the interva) [0

(1—w??

> —A}"2<1—A0—C2<—8.
,

P=1-A-

We have also used the fact t[lat w 0 in this same interval.
We now choose an arbitrasye (8, 1). Since Iimm/OO w(t,,) = 1it follows that,
for sufficiently largen and arbitrary- € [r?, ©

W(r) —w(t,) < —(1—3). (46)
Substituting equation (46) into inequality (45) yields
w'(r) < —8(1_ 8). 47)
VAl

Finally, we substitute inequality (47) into equation (10) to get, for lange
w(l—w?) 2A(r)83(1 8 1
r r3a3 o

r(AW)Y (r) = —2AW'3(r) — (48)
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It is clear that, for sufficiently large:, the first term on the right side of inequal-
ity (48) dominates. Thus, there exi#t > 0 such that, whenevet > M,

(AW') >0 forall re[r?,r0];

m?’ " md>

that is, (U, {s}) N (Upop . 1})) = 9. As with intervals of type 2, there
existe > 0 such thaUmSM(tm, r$)N (0, &) = @. There also exisM,, such that

m

Upo, 80} C (0, 8). Itfollows that(U,- y {s0}) N (U (ms 7)) = 9. O

Having established that limo w2(r) = 1, we next establish the existence of
lim . owW’(r). Because of Fact 2 and Fact 3, we may assumg|yw(r) = 1and
one of the following possibilities:

(1) foranye > 0Othere exists @ > 0 such that, for alt € (0, p),1—¢ < W(r) <
land wW(r) < 0;

(2) for anye > 0 there exists @ > 0 such that, for all € (0, p), 1 < w(r) <
1+candw(r) > 0.

We prove only the first case; the proof for the second case is similar. The existence
of lim,« o W’(r) is a consequence of the following lemma.

LeEMMA 9. Let (A, w) be a solution of equation®a)—(5b)that satisfies the hy-
potheses of Theorem 2. Then there exigisd0, r) such that, for any < (0, p)
and anys > 0,

1—eb<w() <1,
l-cer<sw@r) <1
forall r € (0, b).

It is worth noting thatp in Lemma 9 is independent éfande.

Proof. For anye > 0 we define
U ={rel0,b] :w(s) >1—es forall s €[0, r]}

as well as
a, = sup{r e U,}.

Because it contains @/, is nonempty. It is also clear th&f, is closed; that is,
a, € U,. We claim thatz, = b. In the interval fz,, b] we define

gle,r)=1—¢er —w. (49)

Sincee is constant, we denoige, r) also byg(r).

Now, if a, < b then there exist € (a., b) that satisfyg(¢) > 0. We letc €
[a., b] be whereg assumes its maximum. Singéu.) = g(b) = 0 andg(¢) > O,
it follows thatc € (a., b). Consequentlyg’(c) = 0 andg”(c) < 0; thatis, Wc) <
1—ec,W'(c) = —e, and W(c) > 0. Equation (5b) now yields
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0= [r2AW” + row’ + w1l — w?)], .
> [eW'd + w(l— W], —

> [—CE + W(l - Wz)] r=c

c

[ =
=c|—e+wWl+wW

> ce[-14+wld+wW)],— >0, (50)

providedp is small enough that @+ w) > 1for allr € (0, p). We have also used
the fact thatd(r) < 1 for all » € (O, p). Inequality (50) is a contradiction from
which it follows thata, = b. O

LemMma 10. Suppos€A, w) is a solution of equation&ba)—(5b)that satisfies the
hypotheses of Theorem 2. THen,\ o W'(r) exists and is finite.

Proof. Equation (49) is defined on [Bo] x (0, 7). We now define the set
O = {¢ > 0: there existo, > 0 such thatg(e, ) > 0 for all r € (0, p.)}.

We also define
g€ = supfe € O}. (51)

If there existe and p, such thatg(e, r) = 0in (0, p,), then there is nothing to
prove. Consequently, we assume this is not the case.

We first prove thak is well-defined.O is nonempty, since @ O. Also, for any
g€ 0, if ¢ > 1then, forallr € (0, p,),

(1—w?)?2
—_— >

1
72

As a consequence of equation (5a), there existO such that, in the same interval,
rA’ < —n.

Lemma 1 then implies lim o A(r) = oo, contrary to our hypothesis. We con-
clude that < 1. In particular,z < oo and is therefore well-defined.

We claim also thao is closed. To prove this, we choose arbitragyt O. The
definition of O gives a sequencig,} \, 0 that satisfies, for eaoh g(eg, r,) <
0. Lemma 9 then gives som& € (0O, ) that satisfieg(eg,r) < O for all r €
(0, po). Equation (5a) and Lemma 1 preclude the possibility that &— gor in
a neighborhood of = 0. Thus, there exist € (0, po) that satisfyg(eg, 7) < O.
Because: (s, r) is continuous, there exigt > 0 such that, whenevés — ¢g| <
n, g(e, 7) < 0 also. Lemma 9 now gives, for suehg (e, r) < 0forallr € (0, 7).
In other words,(eg — 1, €0 + n) N O = @. This proves thaD is closed. As a
consequence, e O.

We now consider the following possibilities:

la.z > 0;
1b. £ =0.
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Case la.Becauseb(r) < 1for all r € (0, 7), equation (5b) gives, whenever
w'(r) <0,

A’ = A=W e
r
1—-w
< -wl+w)—— —w' (52)
r
We prove that

limw'(r) > —¢. (53)
r\.0

Now, because € O, it follows that(1—w)/r > & forall r € (0, p.). This and the
fact that lim o w(r) = 1yield, for anyn € (0, £/3),

limw(@+ W)l_—W > 2¢ = §<é + i) > §(é + 7).
~0 r 2 3 2
Consequently, on any sequerieg} \, 0 that satisfies Wr,) > —(¢ + n), equa-
tions (52) and (53) givé/ such that W(r,) < 0 whenever > M. This proves
that lim, o w’(r) exists. Indeed, otherwise there exists a sequénge, 0 that
satisfies i(r,) > —(¢ + n) and w'(r,) = 0. Clearly, equation (53) implies that
lim <o W'(r) must be finite.

It remains to establish equation (53). Toward this end, we défineoy

w(r) =1—zgr —5(r). (54)
Sinceg € O, we have
8(ry >0 forall r (0, po). (55)

Indeed, otherwise there exist (0, po) that satisfys(r) < 0. Substituting equa-
tion (54) into equation (49) yields

g(&,7) = —8(F) <O.

Lemma 9 then implies that(e, ) < 0 for all r € (0, 7); that is,e ¢ O, contra-
dicting the fact that € O.
We next claim that 5
lim 2 _ o, (56)
r\0 r
Indeed, equation (55) gives_limo 8(r)/r = 0. Now we assume that there exist
arbitrarily smally; such that
)
lim 3 >3n>0
r\.0 r

and arrive at a contradiction. If so, then there egist 0 such that(r) > 27jr
whenever < (0, £). Hence

gEe+n,r)=—nr+80) >n >0

that is,e + n € 0. However, this contradicts the definition af It follows that
Ii_mr\0 8(r)/r < 0. From equation (55) we deduce equation (56).
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Finally, we choose a sequenfig} \ O that satisfies(r,)/r, \, 0. The mean
value theorem yields a sequerneg} — O that satisfies
W/(Sn) _ w(r,) —1 _ —&r, — 8(ry) - _F_ 5(/'”)'
T'n T'n Tn
Clearly, W(s,) — —&. This establishes equation (53) and completes the proof of
Lemma 10 in Case la.

Case 1b.We choose arbitrary finitd > A;. For anye > 0, there exists a se-
quencelrf} N\ 0 such that - (S/A)r,f < W(r}) < 1for eachn. From the mean
value theorem it follows that, for any> 0, there exists another sequerigg} \

0 such that-e/A < w'(s{) < O for alln. Therefore,

—& < AW'(s%) < (AW')(s?) < O. (57)
Also, Lemma 9 provideg > 0 such that, for all € (0, p),
l—er <w() <1l (58)

Now, for anyr € (0, p), wheneverAw'(r) < — /e we have

3

2
AW? = (AW)w'? < —%<§> < ¢ (59)

Substituting inequalities (58) and (59) into equation (10) implies that &P, p)
that satisfiesiw’(r) < — ¥/ also satisfiesAw’)(r) > 0. It follows from this and
(57) that, becauseis arbitrarily small,

lim Aw'(r) = 0. (60)

The mean value theorem easily giwﬁ,\o w'(r) = 0. We now assume that
Ii_mr\ow’(r) < O0and arrive at a contradiction. Indeed, this assumption implies the
existence of some; w 0 and a sequende,} \ 0 that satisfies lim - w'(z,) =

v; and wW'(¢,) = 0. Equation (5b) easily gives ligy, A(z,) = 1. However, this
implies that lim, - AW'(¢,) = v; < 0, which contradicts equation (60). O

We state the next lemma—even though it is a trivial application of the mean value
theorem—because it eliminates any ambiguity in the definition’®w

Lemma 11, If lim . oW'(r) exists and is finite and alsme is differentiable at =
0, thenw’ is right-continuous ab.

Proof. By assumption, lim\ ow(r) exists and is finite. From the definition of a
derivative, for any > 0 there exists a sequenpg} \, 0 that satisfies

W) WO oy <. (61)

n

The mean value theorem yields a sequefpgk O < s, < r,, that satisfies

wi(s,) = W — WO 62)

T'n
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Substituting equation (62) into equation (61) yields
IW(s,) —W'(0)] < &;

that is, lim, - W'(s,) = w’(0). Since we assume limo w’'(r) to exist, this limit
must also equal W0). O

Lemma 11 allows us to define, without ambiguity % lim . ow’(r) = w'(0).

Proof of Theorem 2What remains is to prove that limg A(r) =1 and wj, = 0.
We first prove that liny o A(r) exists.
Equation (5a) implies that any sequenieg \, O that satisfiest’(r,) = 0 also
satisfies
(1 — w3(r,))?
_ T
1+ 2w'2(r,)

Because \yis well-defined, it follows that, as ,” oo, the right side of equa-
tion (63) approaches

— Ar2

n

1

A(ry) = (63)

1— 4wj?
1+ 2w

Therefore, lim o A(r) exists and obviously lim o A(r) = Ao.
Now, equation (5a) gives

Ii@o(rA/) =1— Ao — AWy — 2AoW(%;

that is, lim o(rA")(r) exists. Lemma 1 gives
ll\rpo(rA )(r) =0. (64)

Since wj is finite, we have

1@0 (rA'Wi)(r) =0 (65)

also. Clearly®o = lim,« o ®(r) <1 If &g < 1then equation (5b) yields

Iir\no (rAWLW" ) (r) = —Dowg? + 2wg? > 0 (66)

unless vy = 0. Equations (66) and (65) imply that, whenevey % 0,
W, Ir@) (rAW")' (r) > 0. (67)
Lemma 1 now gives lim\ o(Aw’)(r) = co. However, this is impossible. Hence it
must be that \y= 0 in the caseby < 1. On the other handpy = 1 only if Ag =
0 and w, = 0. Thus, in all cases, §»= 0. It follows easily from equation (5a) and
from Lemma 1 thatby = 0. The definition of® then givesdg = 1. O
3.2. CaseA > 1

In this section we prove that any solution that is not Schwarzschild-like or smooth
is Reissner—Nordstrom-like. Specifically, we have the following theorem.
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THEOREM 3. Let(F, A, V) € Ri x R and let(A(r), w(r)) be the solution of equa-
tions (5a)—(5b)that satisfiegA(r), w(r), w'(r)) = (A, W, V). Suppose also that
A >1— A7?/3. Thenlim .« o A(r) = oo andlim  ow'(r) = 0.

We note that we already proved (in Section 2) that equations (5a)—(5b), with
any solution that satisfies the hypotheses of Theorem 3, are nonsingular for all
re0,r).

Proof. To prove that lim\ o A(r) = co, we recall equations (17) and (18):

_(1-a Ar?
M(”)—T’(— —T),

1—w?
w(r) = 2Aw'? + (—2) > 0.
r
Clearly, u is nondecreasing in the intervd, 7). Thus lim. o i (r) exists. Since
w(r) < 0 (by assumption), it must be that ligo () < 0; that is, lim.o rA >
0. Lemma 1 now gives lim o A(r) = oo.
In order to prove that lim ow’(r) = 0, let us assume for the moment that
lim,«,oW’(r) = wy exists. There are two cases to consider:
1. limoW2(r) = L;
2. limoW?(r) # 1

Case 1.We set w = 1 and apply L'Hépital’s rule taw? — 1)/r. The result is
lim ~ o(W2(r) — D)/r = 2w} If W} = oo, then there exists aharbitrarily close
to O that satisfies W) > 1, w/(F) > 0, and w'(¥) < 0. This contradicts equa-
tion (5b). Similarly, w, # —oo. We thus havew? — 1)/r bounded near 0 and
(W())2 < 0.

We now assume thatjw~ 0 and arrive at a contradiction. Indeed, this assump-
tion together with Fact 3 and equation (5b) imply (as in Fact 5) thatag only
one sign near = 0. Without loss of generality, we assume that w 0. Since
lim,\ 0 A(r) = oo, equation (5b) also gives> 0 such that, whenevere (0, ¢),

2 _ 1 2 / 2 _ 1 1
rW”(r) — W/(}") + ((W rz ) _ 1+ AV2>V% + W(V\:A ) - EW/(F) > 0
Lemma 1 now gives lim ow’(r) = —oo, which is impossible. It follows that

lim,ow'(r) =0.

Case 2.We prove that the assumption I w'2(r) > 2¢ > 0 (¢ < 1) leads
to a contradiction. Indeed, there exissuch that W?(r) > ¢ whenever € (0, n).
Also, [lim,\ o0 AW'(r)| = oo. Multiplying equation (10) byAw’ gives, forr e
©, ),

—2rw’2(AW’)2 — w(l — w?)(Aw')

(AW') (Aw') = ;

;
- —2er(AW)? — w(l — w?)(Aw')

(68)

2
,
Now, equation (5a) implies that limg r(rA)’ = —oo. Lemma 1 then gives
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lim(rA) = oo.
r\,0
Thus, forr € (0, n),
—2er(AW)? — W@ — W) AW = —&r(AW')? — er(AW')? — w(l — w?) Aw’

—re(AW))? — (AW)[e(rA)W’ + w(d — w?)]

< —re(AW)%;

this and equation (68) yieldw’)’/(Aw’) < —¢/r. Integrating gives > 0 such
that, forr € (0, ), |AW'(r)| < cr—¢ orré|AW’(r)| < c¢. Because < 1, this con-
tradicts the fact that lim o A(r) = oo. O

All that remains is to establish the existence of litpw’(r). Toward this end we
define, for any solution of equations (5a) and (5b),
w'(r)
0(r) = arctan——. 69
(r) = arc anw(r) (69)

For any solution of equations (5a)—(58)y) satisfies
1 . .
6’ = TA[(WZ—l) cog 0 — rd cosd sind — r2A sir? 6]. (70)
r

LemMma 12. Suppos€A, w) is a solution of equation&a)—(5b)that satisfies the
hypotheses of Theorem 3. Suppose also that there exiéte &9, r) such that,
for all r € (0, 7), w?(r) < 1. Then there existy € (0, ) such that, for allr €
(0, ro), W # 0.

Proof. The lemma follows once it is shown that, for sufficiently smafl’|s—o <
0 andf’|g=r/a > 0. The first inequality follows immediately from equation (70):

(w? —1)?

0, :—1 W2 =1 —r+AGr —rd) +
0=7/4"" 2r24 r

+ Ar3i|. (72)
We chooses sufficiently small so that, whenever € (0,¢), A(r) > 3 and
2r — 3r? > 0. Then, for anyr in this interval such thatl — w?) > r,

(w2 —1)2

1
Oo=x/a > 521 [(WZ —D-r+ +3(r — rz)i|

1 o (1—w? )
ae(2F e s

For anyr in this interval such thatl — w?) < r, because < 1/2 andA(r) > 2
we have

1
Opmrnya > m[A(l— r)—2]>0. O

LEmMA 13. Supposé€A, w) is a solution of equation&a)—(5b)hat satisfies the
hypotheses of Theorem 3. THen .« oW'(r) = W, exists.

Proof. We choose ai > 0 such thatb(r) < 0 whenever € (0, 7). Considering
Fact 3, we then choose age (0, 7) such thatl — w?)w(rq) # 0. Equation (5b)
implies (as in Fact 5) thaty can be chosen so that one of the following holds:
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1. forallr € (0, ro), W2(r) > 1;
2. forallr € (0, rg), W2(r) < L

Case 1.Using Fact 2, we assume thatwv > 1for allr € (0, rg). Equation (5b)
and Fact 3 allow us to assume (by choosing a smajldf necessary) that one of
the following holds:

a. w(r) <Oforallr e (0,rp);
b. w(r) > Oforallr € (0, rg).

Case la.lim,\ ow(r) exists and exceeds 1. We assume thafjgw’(r) does
not exist and then arrive at a contradiction. With this assumption, there exists an
arbitrarily close to O that satisfiesi®) > 1, w'(F) < 0, w”(¥) = 0, and W'(7) <
0. Differentiating equation (5b) yields
rPAW + FPAW” + rdW” + [rd) +1— 3w w' =0.  (72)
Equation (6) gives

2wW2 =12  dAww' (w2 —1)
r2 B r

(rd) = 2AW'? + — 2Ar2. (73)

Now, for anyw > 1, there exists @ such that, whenevere (0, p) and w> W,

2(w? —1)?

2 2
2 —2Arc+1—-3w" > 0. (74)

We choose any € (1, lim .« ow(r)). It follows from inequality (74) and equa-
tion (73) thatF can be chosen so thaifp)’ (7) + 1 — 3w?(7)]w’(F) < 0. The left
side of equation (72), evaluatedratis negative. This is a contradiction.

Case 1b.Equation (5b) gives W(r) > 0 for all r € (0, rg). Consequently,
lim . oW’(r) exists and is both finite and nonnegative.

Case 2.Lemma 12 implies that whas only one sign. Therefore, lixqo w(r)
must exist. We take sufficiently small so that W# 0 in (0, r). In this interval,
ww’(s) = 0 if and only if w(s) = 0; in this case(ww’)'(s) = w'?(s) > 0. It
follows that there exist such that, for all- € (0, 7), ww’ has only one sign.

If "ﬂr\ow’(r) < Wr\o w’(r), then there exists a sequereg} \, O that sat-
isfies W'(r,) = 0. If we multiply equation (5b) by W then Fact 3 and(r,,) <
0 give ww/(r,,) > 0. It follows that ww > 0 in (0, 7). Now equation (5b), mul-
tiplied by w and evaluated at any nonzexo € (Ii_mr\ow’, W,\o w’), yields
(WwW") |wn=w > 0, providedr is sufficiently small. However, if whas no limit
then there must be arbitrarily smalland nonzerav’ that satisfy w(r) = w and
(ww’)(r) < 0. It follows that w has a limit. O
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