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ON THE DIFFERENTIAL OPERATORS OF THE GENERALIZED

FIFTH-ORDER KORTEWEG-DE VRIES EQUATION∗

CHUN-TE LEE†

Abstract. In this paper, we present the differential operators of the generalized fifth-order KdV
equation. We give formal proofs on the Hamiltonian property including the skew-adjoint property
and Jacobi identity by the use of prolongation method. Our results show that there are five 3-order
Hamiltonian operators, which can be used to construct the Hamiltonians, and no 5-order operators
are shown to pass the Hamiltonian test, although there are infinite number of them, and are skew-
adjoint.
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1. Introduction. The study of the generalized fifth-order Korteweg-de Vries
(fifth–order KdV) equation

ut + αuuxxx + βuxuxx + γu2ux + uxxxxx = 0, (1)

where α, β and γ are arbitrary real parameters, has always been an important topic
in nonlinear physical phenomena. This equation not only describes the motions of
long waves in shallow water under gravity and in a one-dimensional nonlinear lattice
but also is an important mathematical model with wide applications in quantum me-
chanics and nonlinear optics. Typical examples are widely used in various fields such
as solid state physics, plasma physics, fluid physics and quantum field theory. A great
deal of research work has been conducted during the past decades for exact solutions,
such as soliton solutions [1, 2, 3, 4]. Several different approaches, such as Backlund
transformation, a bilinear form, and Lax pairs, have been used independently for
some constants α, β and γ, by which some of the soliton and multi-soliton solutions
are obtained [5]. Interesting and deeply examined examples of the fifth-order KdV
equation are

• Sawada-Kotera equation (SK equation) [6]

ut + 5uuxxx + 5uxuxx + 5u2ux + uxxxxx = 0. (2)

• Caudrey-Dodd-Gibbon equation (CDG equation) [7]

ut + 30uuxxx + 30uxuxx + 180u2ux + uxxxxx = 0. (3)

• Lax equation [8]

ut + 10uuxxx + 20uxuxx + 30u2ux + uxxxxx = 0. (4)

• Kaup-Kupershmidt-type equation I (KK I equation, [9])

ut + 10uuxxx + 25uxuxx + 20u2ux + uxxxxx = 0. (5)
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• Kaup-Kupershmidt-type equation II (KK II equation, [10, 11])

ut − 15uuxxx −
75

2
uxuxx + 45u2ux + uxxxxx = 0. (6)

• Ito equation [12]

ut + 3uuxxx + 6uxuxx + 2u2ux + uxxxxx = 0. (7)

As the constants α, β and γ taking different values, the properties of Eq. (1)
drastically change. For instance, the Lax equation with α = 10, β = 20, and γ = 30
and SK equation where α = β = γ = 5 are completely integrable and have N -soliton
solutions [6]. The KK-type equations (KK I, KKII) with α = 10, β = 25, γ = 20
and α = −15, β = − 75

2 , γ = 45 respectively are known to be integrable too, and
has bilinear representations [10, 11, 13]. The Ito equation with α = 3, β = 6, and
γ = 2 is not integrable, but has a limited number of special conserved densities [14].
We also note that the Caudrey-Dodd-Gibbon equation can be transformed to the
Sawada-Kotera equation through a particular scaling transformation for u. So they
are the same equation.

As far as we are concerned, the question of Hamiltonian structures for the fifth-
order KdV equation is very important and deserves serious considerations, since soli-
ton equations often come with some surprising Hamiltonian structures and are now
being recognized as an important aspect in soliton theory [15, 16, 17].

In this paper, we rummage through all possible differential operators for the
generalized fifth-order KdV equation (1), and give full validation tests of their Hamil-
tonian structures regarding the skew-adjoint property and the Jacobi identity. Such
two important properties will be verified in a systematic way carefully and directly
through prolongation method, and we will present all possible Hamiltonian operators
for equation (1).

2. Preliminaries. Most integrable systems are known to have Hamiltonian
structures. These are systems whose dynamical equations can be described through
Hamilton’s equations. The general form of an infinite-dimensional Hamiltonian sys-
tem takes the form

∂u

∂t
+ D

δH

δu
= 0, (8)

where D is a skew-adjoint operator and H is a functional

H
[

u, u(n)
]

:=

∫ ∞

−∞

H (u, ux, . . . , unx) dx, (9)

with the density function H coming from the space of differentiable functions. Then
one can define the Poisson bracket as

{F , G} =

∫ ∞

−∞

δF

δu
D

δG

δu
dx, (10)

for any two smooth functionals F , G. For instance, it is well known that the KdV
equation

ut − 6uux + uxxx = 0,
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admits a Hamiltonian system as

∂u

∂t
= D

δH

δu
, H =

∫ (

1

2
u2

x + u3

)

dx, (11)

where D = ∂x, H is a functional called Hamiltonian and δ/δu is the variational
derivative. Its Poisson structure is

{F , G} =

∫ ∞

−∞

δF

δu
∂x

δG

δu
dx. (12)

A general differential operator D is of the form

D :=

n
∑

i=0

Pi (u, ux, . . . , unx)
∂i

∂xi
·, (13)

for some smooth differentiable functions Pi, where n is a finite, natural number. For
simplicity, one can write D as

D =
∑

J

PJ∂J ·, (14)

where J = 1, 2, . . . , n, for some finite number n, and ∂J := ∂J/∂xJ . A differential
operator D is of order n if its leading coefficient is not zero, i.e. Pn 6= 0, and of order
0 if it is a single differentiable function.

Definition 1. Let A be the space of differentiable functions, suppose

D =
∑

J

PJ∂J ·, Pj ∈ A, (15)

then its adjoint D∗ is a differential operator which satisfies

∫

P DQ dx =

∫

Q D∗P dx, ∀ P, Q ∈ A.

Corollary 1. The adjoint of a differential operator can be written as

D∗ =
∑

J

(−∂J) · PJ ·, (16)

which means that for any Q ∈ A, we have

D∗Q =
∑

J

(−∂J) · [PJQ] .

Moreover, an operator D is self-adjoint if D∗ = D, and skew-adjoint if D∗ = −D.

Definition 2. A differential operator D is called Hamiltonian if its Poisson
bracket (10) satisfies the “skew-symmetry ” property

{P , Q} = −{Q, P} , (17)
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and the “Jacobi identity”

{P , {Q, R}} + {{R, P} , Q} + {{Q, R} , P} = 0, (18)

for any smooth functionals P , Q, and R.

We note that if D is a skew-adjoint differential operator whose coefficients do not
depend on u or its derivatives, then D is automatically a Hamiltonian operator.

Although we should check the Jacobi identity in (18) by direct verifications, it
still requires quite a lot of calculations even in such a relatively simple example like
the KdV equation. A radical simplification is offered by Olver [18] using the theory of
multi-vectors and prolongation of the vector field. In this section we will apply such
method to justify a Hamiltonian operator.

Let Aq be the space of general q-tuple differentiable functions. One can define
the general multi k-vector as follows

Θ =

∫





∑

α,J

Rα
J

(

u (x) , u(n) (x)
)

θα1

J1
∧ · · · ∧ θαk

Jk



 dx, (19)

where Rα
J ∈ Aq are differentiable functions depending on u and derivatives of u up to

some finite number. Here x =
(

x1, . . . , xp
)

are independent variables, u =
(

u1, . . . , uq
)

are dependent variables and J = (J1, J2, . . . , Jk) is a k-th order multi-index with
0 ≤ Jk ≤ p indicating which derivatives are being taken. Here α=(α1, α2, . . . , αn) is
a multi-index with 1 ≤ αi ≤ q indicating which variable are being using. The variables
θαi

Ji are unit vectors of u corresponding to the derivatives ∂/∂uαi

Ji
and ∧ is the wedge

product. Olver [18] further indicated that any skew-adjoint differential operator D
can be written as a canonical form of functional bi-vector

ΘD =
1

2

∫

{θ ∧ Dθ} dx =
1

2

∫





q
∑

α,β=1

θα ∧ Dαβθβ



 dx, (20)

where D = (Dαβ) is a q × q-dimensional differential operator. Thus studying the
Hamiltonian operator of the differential equation is equally important as studying the
bi-vector of the equation.

Theorem 1. Let D be a skew-adjoint operator and let θ be a unit vector of D,
suppose

ΘD =
1

2

∫

(θ ∧D (θ)) dx, (21)

is the corresponding functional bi-vector. Then D is Hamiltonian if and only if

pr vDθ (ΘD) = 0, (22)

where “pr” stands for prolongation calculations.

3. Three-order operator. We start with the general three-order differential
operator of the form

D = ∂3
x + α1u∂x + β1ux, (23)



DIFFERENTIAL OPERATOR OF FIFTH-ORDER KdV EQUATIONS 127

where α1 and β1 are real parameters to be determined. In order to make the fifth-order
KdV equation (1) from (8), we take a guess at the Hamiltonian form as

H =

∫ (

1

2
uuxx +

γ1

3
u3

)

dx, (24)

where γ1 is a real parameter to be determined too. Then one can substitute (23) and
(24) into (8) to get

ut +
(

∂3
x + α1u∂x + β1ux

) (

uxx + γ1u
2
)

= 0,

and we obtain a nonlinear system of algebraic equations for α1, β1 and γ1 :

(1) SK equation :







2γ1 + α1 = 5,
6γ1 + β1 = 5,
2α1γ1 + β1γ1 = 5.

Then we have solution α1 = 3, β1 = −1 and γ1 = 1, and the “potential”
Hamiltonian operator as well as the Hamiltonian are

Dsk−3 = ∂3
x + 3u∂x − ux, (25)

Hsk−3 =

∫
(

1

2
uuxx +

1

3
u3

)

dx. (26)

(2) CDG equation :







2γ1 + α1 = 30,
6γ1 + β1 = 30,
2α1γ1 + β1γ1 = 180.

Then we have α1 = 18, β1 = −6 and γ1 = 6, and the “potential” Hamiltonian
operator as well as the Hamiltonian are

DCDG−3 = ∂3
x + 18u∂x − 6ux, (27)

HCDG−3 =

∫ (

1

2
uuxx + 2u3

)

dx. (28)

(3) Lax equation :







2γ1 + α1 = 10,
6γ1 + β1 = 20,
2α1γ1 + β1γ1 = 30.

Then we have α1 = 4, β1 = 2 and γ1 = 3, and the “potential” Hamiltonian
operator as well as the Hamiltonian are

DLax−3 = ∂3
x + 4u∂x + 2ux, (29)

HLax−3 =

∫ (

1

2
uuxx + u3

)

dx. (30)
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(4) KK I equation :






2γ1 + α1 = 10,
6γ1 + β1 = 25,
2α1γ1 + β1γ1 = 20.

Then we have α1 = 2, β1 = 1 and γ1 = 4, and the “potential” Hamiltonian
operator as well as the Hamiltonian are

DKKI−3 = ∂3
x + 2u∂x + ux, (31)

HKKI−3 =

∫ (

1

2
uuxx +

4

3
u3

)

dx. (32)

(5) KK II equation:






2γ1 + α1 = −15,
6γ1 + β1 = − 75

2 ,
2α1γ1 + β1γ1 = 45.

Then we have α1 = −3, β1 = − 3
2 and γ1 = −6, and the “potential” Hamil-

tonian operator as well as the Hamiltonian are

DKKII−3 = ∂3
x − 3u∂x −

3

2
ux, (33)

HKKII−3 =

∫ (

1

2
uuxx − 2u3

)

dx. (34)

(6) Ito equation :






2γ1 + α1 = 3,
6γ1 + β1 = 6,
2α1γ1 + β1γ1 = 2.

Then we have α1 = 1, β1 = 0 and γ1 = 1, and the “potential” Hamiltonian
operator as well as the Hamiltonian are

DIto−3 = ∂3
x + u∂x, (35)

HIto−3 =

∫ (

1

2
uuxx +

1

3
u3

)

dx. (36)

4. Three-order operator revisited. In this section we focus on 3-order, skew-
adjoint differential operator form as

D = ∂3
x + 2a∂x + ax, (37)

where a = a (x, t) is an analytic function to be determined.
Now technically we set a (x, t) = α2u (x, t), where α2 is a real parameter to be

determined. A quick judgement of (1), (8) and (37) gives the Hamiltonian form

H =

∫ (

β2

2
uuxx +

γ2

3
u3

)

dx, (38)

where β2, γ2 are real parameters to be determined. We substitute (37) and (38) into
(8) to get

ut +
(

∂3
x + 2a∂x + ax

) (

β2uxx + γ2u
2
)

= 0,

and obtain the following nonlinear system of algebraic equations for α2, β2 and γ2 :
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(1) SK equation :







6γ2 + α2β2 = 5,
2γ2 + 2α2β2 = 5,
5α2γ2 = 5.

Solving the above nonlinear system, we get α2 = 2, β2 = 1 and γ2 = 1/2, and

Dsk−3−1 = ∂3
x + 4u∂x + 2ux, (39)

Hsk−3−1 =

∫ (

1

2
uuxx +

1

6
u3

)

dx. (40)

(2) CDG equation :







6γ2 + α2β2 = 30,
2γ2 + 2α2β2 = 30,
5α2γ2 = 180.

Solving the above nonlinear system, we have α2 = 12, β2 = 1 and γ2 = 3,
and

DCDG−3−1 = ∂3
x + 24u∂x + 12ux, (41)

HCDG−3−1 =

∫ (

1

2
uuxx + u3

)

dx. (42)

(3) Lax equation :







6γ2 + α2β2 = 20,
2γ2 + 2α2β2 = 10,
5α2γ2 = 30.

The above system admits α2 = 4, β2 = 1 and γ2 = 3, so that we have

DLax−3−1 = ∂3
x + 4u∂x + 2ux, (43)

HLax−3−1 =

∫ (

1

2
uuxx + u3

)

dx. (44)

We note that this is the same as DLax−3.
(4) KK I equation :







6γ2 + α2β2 = 25,
2γ2 + 2α2β2 = 10,
5α2γ2 = 20.

Then the above system gives α2 = 1, β2 = 1 and γ2 = 4, and hence

DKKI−3−1 = ∂3
x + 2u∂x + ux, (45)

HKKII−3−1 =

∫ (

1

2
uuxx +

4

3
u3

)

dx. (46)

We note that this is the same as DKKI−3.
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(5) KK II equation :







6γ2 + α2β2 = − 75
2 ,

2γ2 + 2α2β2 = −15,
5α2γ2 = 45.

The above system gives α2 = −3/2, β2 = 1 and γ2 = −6, so that we have

DKKII−3−1 = ∂3
x − 3u∂x −

3

2
ux, (47)

HKKII−3−1 =

∫ (

1

2
uuxx − 2u3

)

dx. (48)

We note that this is the same as DKKII−3.
(6) Ito equation :







6γ2 + α2β2 = 6,
2γ2 + 2α2β2 = 3,
5α2γ2 = 2.

The above system is a contradictory linear system of equations, and no solu-
tions for α2, β2 and γ2 can be found.

5. Fifth-order operator. In this section take the fifth-order, skew-adjoint op-
erator of the form

D = ∂5
x + a∂3

x + ∂3
xa + b∂x + ∂xb, (49)

where a = a (x, t) , b = b (x, t) are to be determined. We suppose that

a = α3u, b = β3uxx + γ3u
2, (50)

where α3, β3 and γ3 are real parameters to be determined. A quick judgement of
suitable Hamiltonian form from (8) and (49) is

H =

∫

1

2
u2dx, (51)

Substituting (49) and (51) into (8), we obtain

ut +

[

uxxxxx + 2α3uuxxx + α3uxxxu + 3α3uxxux + 3α3uxuxx

+2
(

β3uxx + γ3u
2
)

ux + (β3uxxx + 2γ3uux) u

]

= 0

and nonlinear system of algebraic equations for α3, β3 and γ3 :

(1) SK equation :







3α3 + β3 = 5,
6α3 + 2β3 = 5,
4γ3 = 5.

This system is a contradictory system of linear equations with no solutions
can be found.
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(2) CDG equation :







3α3 + β3 = 30,
6α3 + 2β3 = 30,
4γ3 = 180.

This system is a contradictory system of linear equations with no solutions
can be found.

(3) Lax equation :







3α3 + β3 = 10,
6α3 + 2β3 = 20,
4γ3 = 30.

This system gives infinite solutions under the condition 3α3 + β3 = 10 and
γ3 = 15/2. It gives infinite numbers of skew-adjoint operators as

DLax−5 =





∂5
x + 2α3u∂xxx + (α3 + β3)uxxx

+ (3α3 + 2β3)uxx∂x + 3α3ux∂xx

+15u2∂x + 15uux



 , (52)

HLax−5 =

∫

1

2
u2dx. (53)

(4) KK I equation :







3α3 + β3 = 10,
6α3 + 2β3 = 25,
4γ3 = 20.

This system is a contradictory system, meaning no solutions can be found for
α3, β3 and γ3.

(5) KK II equation :







3α3 + β3 = −15,
6α3 + 2β3 = − 75

2 ,
4γ3 = 45.

This system contains contradictory linear equations such that no solutions
can be found for suitable α3, β3 and γ3.

(6) Ito equation :







3α3 + β3 = 3,
6α3 + 2β3 = 6,
4γ3 = 2.

This system gives solutions when 3α3 +β3 = 3 and γ3 = 1/2, so that we have

DIto−5 =





∂5
x + 2α3u∂xxx + (α3 + β3)uxxx

+ (3α3 + 2β3)uxx∂x + 3α3ux∂xx

+u2∂x + uux



 , (54)

HIto−5 =

∫

1

2
u2dx. (55)
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6. Classification of the differential operators. In previous sections, we ap-
ply the operator multiplications to obtain many “potential” Hamiltonian operators
of 3-order and 5-order for the fifth-order KdV equations (1). These operators are all
nontrivial, but need to be further verified for its Hamiltonian nature. In this section
we would use the method of prolongation [18] to verify the skew-adjoint property and
Jacobi identity in order to justify the Hamiltonian structure for the equation (1).

6.1. Skew and non-skew adjoint operator. First we note that

D∗
sk−3 = −∂3

x − ∂x · (3u) − ux,

= −∂3
x − 3u∂x − 4ux,

6= Dsk−3,

hence Dsk−3 is not skew-adjoint, let alone can be used to define a Hamiltonian struc-
ture for the SK equation. Similarly, we have

D∗
CDG−3 = −∂3

x − ∂x · (18u)− 6ux,

= −∂3
x − 18u∂x − 24ux,

6= −DCDG−3,

which shows that it is not skew-adjoint and surely can not be used to construct the
Hamiltonian system for the CDG equation. Furthermore, DIto−3 is not skew-adjoint.

On the other hand, we have

D∗
sk−3−1 = −∂3

x − ∂x · (4u) + 2ux,

= −∂3
x − 4u∂x − 2ux,

= −Dsk−3−1.

Therefore Dsk−3−1 is a skew-adjoint operator for the SK equation, and plays a suitable
candidate for being a Hamiltonian operator, which will be verified later.

In a similar manner, DLax−3, DKKI−3, DKKII−3, and DCDG−3−1 are all skew-
adjoint operators and will be further verified for the Jacobi identity later.

We now turn to the obtained 5-order Lax operator to get

D∗
Lax−5 =





−∂5
x − ∂3

x (2α3u) + (α3 + β3)uxxx

−∂x ((3α3 + 2β3)uxx)
+∂xx (3α3ux) − ∂x

(

15u2
)

+ 15uux





=









−∂5
x − 2α3uxxx − 6α3uxx∂x − 6α3ux∂xx

−2α3u∂xxx + (α3 + β3) uxxx − (3α3 + 2β3)uxxx

− (3α3 + 2β3) uxx∂x + 3α3uxxx + 6α3uxx∂x

+3α3ux∂xx − 15uux − 15u2∂x









,

=

(

−∂5
x − 2α3u∂xxx − (α3 + β3) uxxx

− (3α3 + 2β3)uxx∂x − 3α3ux∂xx − 15u2∂x − 15uux

)

,

= −DLax−5.

Therefore it is skew-adjoint.
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For the 5-order Ito operator, we have

D∗
Ito−5 =

(

−∂5
x − ∂3

x (2α3u) + (α3 + β3)uxxx − ∂x ((3α3 + 2β3)uxx)
+∂xx (3α3ux) − ∂x

(

u2
)

+ uux

)

,

=





−∂5
x − 2α3uxxx − 6α3uxx∂x − 6α3ux∂xx − 2α3u∂xxx

− (α3 + β3)uxxx − (3α3 + 2β3)uxxx − (3α3 + 2β3) uxx∂x

+3α3uxxx + 6α3uxx∂x + 3α3ux∂xx − u2∂x − uux



 ,

=

(

−∂5
x − 2α3u∂xxx − (α3 + β3)uxxx − (3α3 + 2β3)uxx∂x

−3α3ux∂xx − u2∂x − uux

)

,

= −DIto−5,

hence it is also a skew-adjoint operator.

6.2. Hamiltonian and non-Hamiltonian operator. The skew adjoint prop-
erty of differential operators are easily checked through (16). Jacobi identity is nor-
mally easier to check by examining the closure of the corresponding symplectic form.
However, most of the operators are highly nontrivial, making it extremely difficult
to invert. Thus we will turn to the use of the method of prolongation. We refer the
interested readers to [18, 19] for details on this method. Here we simply note that
if we define a bi-vector as ΘD = 1

2

∫

θ ∧ D (θ) dx, then D would satisfy the Jacobi
identity provided

pr vDθ (ΘD) = 0.

Here the assumption is that

θ 6= θ [u] ,

and by definition, prolongation acts only on coefficients functionally dependet on u.
Now we examine DLax−3 in (29), but we first write its bi-vector form as

ΘDLax−3
=

∫
(

1

2
θ ∧ θxxx + 2uθ ∧ θx + uxθ ∧ θ

)

dx.

Notice that

pr vDLax−3θ (u) = θxxx + 4uθx + 2ux,

so we have

pr vDLax−3θ

(

ΘDLax−3

)

= pr vDLax−3θ

∫ (

1

2
θ ∧ θxxx + 2uθ ∧ θx + uxθ ∧ θ

)

dx,

= 2

∫

(θxxx ∧ θ ∧ θx + 4uθx ∧ θ ∧ θx + 2uxθ ∧ θ ∧ θx) dx,

= 0.

This shows that DLax−3 is a Hamiltonian operator, and HLax−3 =
∫ (

1
2uuxx + u3

)

dx
is the corresponding Hamiltonian. Following similar procedures, DKKI−3, DKKII−3,
Dsk−3−1 and DCDG−3−1 are all shown to be Hamiltonian operators.
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Furthermore, DLax−5 in (52) has the bi-vector form as

ΘDLax−5
=

1

2

∫

θ ∧ DLax−5 (θ) dx

=
1

2

∫





θ ∧ θxxxxx + 2α3uθ ∧ θxxx + (α3 + β3) θ ∧ uxxxθ
+ (3α3 + 2β3) θ ∧ uxxθx + 3α3θ ∧ uxθxx

+15u2θ ∧ θx + 15θ ∧ uuxθ



dx.

Notice that

pr vDLax−5θ (u) =





θxxxxx + 2α3uθxxx + (α3 + β3)uxxxθ
+ (3α3 + 2β3)uxxθx + 3α3uxθxx

+15u2θx + 15uuxθ



 ,

we have, by using the integration by parts and boundary conditions,

pr vDLax−5θ

(

ΘDLax−5

)

=
1

2

∫





























(2α3 + 2β3)





θxxxxx + 2α3uθxxx + (α3 + β3)uxxxθ
+ (3α3 + 2β3)uxxθx + 3α3uxθxx

+15u2θx + 15uuxθ



 ∧ θ ∧ θxxx

−2β3





θxxxxx + 2α3uθxxx + (α3 + β3)uxxxθ
+ (3α3 + 2β3)uxxθx + 3α3uxθxx

+15u2θx + 15uuxθ



 ∧ θxx ∧ θx

+30u





θxxxxx + 2α3uθxxx + (α3 + β3)uxxxθ
+ (3α3 + 2β3)uxxθx + 3α3uxθxx

+15u2θx + 15uuxθ



 ∧ θ ∧ θx





























dx,

=
1

2

∫













− (2α3 + 4β3) θx ∧ θxxxx ∧ θxxx

3α3ux (2α3 + 2β3) θxx ∧ θ ∧ θxxx

(−4α3β3u − 30u) θxxx ∧ θxx ∧ θx

−2β3

(

(α3 + β3)uxxx

+15uux − 90α3uux

)

θ ∧ θxx ∧ θx













dx.

When 3α3 + β3 = 10, we have

pr vDLax−5θ

(

ΘDLax−5

)

=
1

2

∫













− (40 − 10α3) θx ∧ θxxxx ∧ θxxx

3α3ux (20 − 4α3) θxx ∧ θ ∧ θxxx

(−4α3 (10 − 3α3) − 30)uθxxx ∧ θxx ∧ θx

−2β3

(

(10 − 2α3)uxxx

+ (15 − 90α3)uux

)

θ ∧ θxx ∧ θx













dx.

Therefore

pr vDLax−5θ

(

ΘDLax−5

)

6= 0,

which proves that DLax−5 is not Hamiltonian as a form of (49).
To verify the 5-order Ito operator in (54), we first write its bi-vector form as

ΘDIto−5
=

1

2

∫

θ ∧ DIto−5 (θ) dx,

=
1

2

∫





θ ∧ θxxxxx + 2α3uθ ∧ θxxx + θ ∧ (α3 + β3)uxxxθ
+θ ∧ (3α3 + 2β3)uxxθx + θ ∧ 3α3uxθxx

+θ ∧ u2θx + θ ∧ uuxθ



dx.
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Since

pr vDIto−5θ (u) =

(

θxxxxx + 2α3uθxxx + (α3 + β3)uxxxθ
+ (3α3 + 2β3) uxxθx + 3α3uxθxx + u2θx + uuxθ

)

,

it is tedious but straightforward to show that

pr vDIto−5θ

(

ΘDIto−5

)

=
1

2

∫





















(2α3 + 2β3) θxxxxx ∧ θ ∧ θxxx

+3α3 (2α3 + 2β3)uxθxx ∧ θ ∧ θxxx

−2β3





θxxxxx + 2α3uθxxx

+ (α3 + β3)uxxxθ
+uuxθ



 θxx ∧ θx

+2u

(

θxxxxx + 2α3uθxxx

+3α3uxθxx

)

θ ∧ θx





















dx,

=
1

2

∫

















− (2α3 + 2β3) θxx ∧ θxxxx ∧ θxx

(2α3 + 4β3) θxxxxx ∧ θx ∧ θxx

+ (3α3 (2α3 + 2β3)ux) θxx ∧ θ ∧ θxxx

(−4α3β3u − 2u) θxxx ∧ θxx ∧ θx
(

6α3uux + 2β3 (α3 + β3)uxxx

+2β3uux

)

θxx ∧ θ ∧ θx

















dx,

by using the integration by parts and boundary conditions.
Notice that with the condition 3α3 + β3 = 3, the above expression turns out to

be

pr vDIto−5θ

(

ΘDIto−5

)

=
1

2

∫













− (6 − 4α3) θxx ∧ θxxxx ∧ θxx

(12 − 10α3) θxxxxx ∧ θx ∧ θxx

+ (3α3 (6 − 4α3)ux) θxx ∧ θ ∧ θxxx

(−4α3 (3 − 3α3)u − 2u) θxxx ∧ θxx ∧ θx

(6uux + 2 (3 − 3α3) (3 − 2α3)uxxx) θxx ∧ θ ∧ θx













dx,

6= 0,

for any α3. This shows that the Ito equation has no 5-order Hamiltonian operator as
the form of (49).

7. Conclusions. In this paper, we present all of the differential operators for
the fifth-order KdV equation (1) including the order-3 and order-5 differential op-
erators. All the skew-adjoint and Hamiltonian operators have been presented and
identified. We show that there are five order-3 Hamiltonian operators, but no order-5
Hamiltonian operators existed for the fifth-order KdV equations, although they are
perfectly skew-adjoint and there are infinite number of them.
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