
METHODS AND APPLICATIONS OF ANALYSIS. c© 2009 International Press
Vol. 16, No. 3, pp. 321–340, September 2009 004

CONCENTRATION IN LOTKA-VOLTERRA PARABOLIC OR
INTEGRAL EQUATIONS:

A GENERAL CONVERGENCE RESULT∗

GUY BARLES† , SEPIDEH MIRRAHIMI‡ , AND BENOÎT PERTHAME‡§

Abstract. We study two equations of Lotka-Volterra type that describe the Darwinian evolution
of a population density. In the first model a Laplace term represents the mutations. In the second
one we model the mutations by an integral kernel. In both cases, we use a nonlinear birth-death
term that corresponds to the competition between the traits leading to selection.
In the limit of rare or small mutations, we prove that the solution converges to a sum of moving
Dirac masses. This limit is described by a constrained Hamilton-Jacobi equation. This was already
proved in [8] for the case with a Laplace term. Here we generalize the assumptions on the initial
data and prove the same result for the integro-differential equation.
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1. Introduction. We continue the study, initiated in [8], of the asymptotic be-
havior of Lotka-Volterra parabolic equations. The model we use describes the dy-
namics of a population density. Individuals respond differently to the environment,
i.e. they have different abilities to use the available resources. To take this fact
into account, population models can be structured by a parameter, representing a
physiological (phenotypical) trait inherited from the parent, and that we denote by
x ∈ R

d. We denote by n(t, x) the density of trait x. The mathematical modeling in
accordance with Darwin’s theory consists of two effects: natural selection and muta-
tions between the traits (see [18, 24, 27, 25] for literature in adaptive evolution). We
represent the birth and death rates of the phenotypical traits by a net growth rate
R(x, I). The term I(t) is an ecological parameter that corresponds to a measure of
the total population, whatever the trait, and that represents in the simpler possible
way the resources (more precisely the inverse of it). We use two different models for
mutations. A first possibility is to represent them by a Laplacian and, in an extreme
and irrealistic simplification, we take them independent of birth, so as to write

{

∂tnǫ − ǫ△nǫ = nǫ

ǫ
R(x, Iǫ(t)), x ∈ R

d, t ≥ 0,

nǫ(t = 0) = n0
ǫ ∈ L1(Rd), n0

ǫ ≥ 0,
(1)

Iǫ(t) =

∫

Rd

ψ(x)nǫ(t, x)dx. (2)

Here ǫ is a small term that we introduce to consider only rare mutations. It is also
used to re-scale time to consider a much larger time than a generation scale.
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A more natural way to model mutations is to use, instead of a Laplacian, an
integral term that describes directly the mutation probability to generate a new-born
of trait x from a mother with trait y. This yields

{

∂tnǫ = nǫ

ǫ
R(x, Iǫ(t)) + 1

ǫ

∫

1
ǫd
K(y−x

ǫ
) b(y, Iǫ)nǫ(t, y) dy, x ∈ R

d, t ≥ 0,

nǫ(t = 0) = n0
ǫ ∈ L1(Rd), n0

ǫ ≥ 0,
(3)

Iǫ(t) =

∫

Rd

nǫ(t, x)dx. (4)

Both types of models can be derived from individual based stochastic processes
in the limit of large populations depending on the scales in mutations birth and
death (see [13, 14]).

In this paper, we study the asymptotic behavior of equations (1)-(2) and
(3)-(4) when ǫ vanishes. Our purpose is to show that under some assumptions
on R(x, I), nǫ(t, x) concentrates as a sum of Dirac masses that are traveling. In
biological terms, at every moment one or several dominant traits coexist while other
traits disappear. The dominant traits change in time due to the presence of mutations.

We use the same assumptions as [8]. We assume that there exist two constants
ψm, ψM such that

0 < ψm < ψ < ψM <∞, ψ ∈W 2,∞(Rd). (5)

We also assume that there are two constants 0 < Im < IM <∞ such that

min
x∈Rd

R(x, Im) = 0, max
x∈Rd

R(x, IM ) = 0, (6)

and there exists constants Ki > 0 such that, for any x ∈ R
d, I ∈ R,

−K1 ≤ ∂R

∂I
(x, I) ≤ −K−1

1 < 0, (7)

sup
Im
2 ≤I≤2IM

‖ R(·, I) ‖W 2,∞(Rd)< K2. (8)

We also make the following assumptions on the initial data

Im ≤
∫

Rd

ψ(x)n0
ǫ (x) ≤ IM , and ∃A, B > 0 , n0

ǫ ≤ e
−A|x|+B

ǫ . (9)

Here we take ψ(x) ≡ 1 for equations (3)-(4) because replacing n by ψn leaves
the model unchanged. For equation (3) we assume additionally that the probability
kernel K(z) and the mutation birth rate b(z) verify

0 ≤ K(z),

∫

K(z) dz = 1,

∫

K(z)e|z|
2

dz <∞, (10)
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bm ≤ b(z, I) ≤ bM , |∇xb(z, I)| < L1 b(z, I), |b(x, I1)−b(x, I2)| < L2|I1−I2|, (11)

where bm, bM , L1 and L2 are positive constants. Finally for equation (3) we replace
(6) and (7) by

min
x∈Rd

[

R(x, Im) + b(x, Im)
]

= 0, max
x∈Rd

[

R(x, IM ) + b(x, IM )
]

= 0, (12)

|R(x, I1)−R(x, I2)| < K3|I1−I2| and −K4 ≤ ∂(R+ b)

∂I
(x, I) ≤ −K−1

4 < 0, (13)

where K3 and K4 are positive constants.

In both cases, in the limit we expect n(t, x) = 0 or R(x, I) = 0, where n(t, x) is
the weak limit of nǫ(t, x) as ǫ vanishes. If we suppose that the latter is possible at
only isolated points, we expect n to concentrate as Dirac masses. Following earlier
works on the similar issue [19, 7, 8, 28], in order to study n, we make a change of

variable nǫ(t, x) = e
uǫ(t,x)

ǫ . It is easier to study the asymptotic behavior of uǫ instead
of nǫ. In section 5 we study the asymptotic behavior of uǫ while ǫ vanishes. We show
that uǫ, after extraction of a subsequence, converge to a function u that satisfies a
constrained Hamilton-Jacobi equation in the viscosity sense (see [3, 20, 16, 22] for
general introduction to the theory of viscosity solutions). Our main results are as
follows.

Theorem 1.1. Assume (5)-(9). Let nǫ be the solution of (1)-(2), and uǫ =
ǫ ln(nǫ). Then, after extraction of a subsequence, uǫ converges locally uniformly to a
function u ∈ C((0,∞) × R

d), a viscosity solution to the following equation:

{

∂tu = |∇u|2 +R(x, I(t)),

max
x∈Rd

u(t, x) = 0, ∀t > 0,
(14)

Iǫ(t) −→
ǫ→0

I(t) a.e.,

∫

ψ(x)n(t, x)dx = I(t) a.e.. (15)

In particular, a.e. in t, supp n(t, ·) ⊂ {u(t, ·) = 0}. Here the measure n is the weak
limit of nǫ as ǫ vanishes. If additionally (u0

ǫ)ǫ := ǫ ln(n0
ǫ) is a sequence of uniformly

continuous functions which converges locally uniformly to u0 then u ∈ C([0,∞)×R
d)

and u(0, x) = u0(x) in R
d.

Theorem 1.2. Assume (8)-(13), and (u0
ǫ)ǫ is a sequence of uniformly Lipschitz-

continuous functions which converges locally uniformly to u0. Let nǫ be the solution

of (3)-(4) with n0
ǫ = e

uǫ0

ǫ , and uǫ = ǫ ln(nǫ). Then, after extraction of a subsequence,
uǫ converges locally uniformly to a function u ∈ C([0,∞) × R

d), a viscosity solution
to the following equation:















∂tu = R(x, I(t)) + b(x, I(t))
∫

K(z)e∇u·zdz,

max
x∈Rd

u(t, x) = 0, ∀t > 0,

u(0, x) = u0(x),

(16)
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Iǫ(t) −→
ǫ→0

I(t) a.e.,

∫

n(t, x)dx = I(t) a.e.. (17)

In particular, a.e. in t, supp n(t, ·) ⊂ {u(t, ·) = 0}. As above, the measure n is
the weak limit of nǫ as ǫ vanishes.

These theorems improve previous results proved in [19, 8, 7, 29] in various
directions. For the case where mutations are described by a Laplace equation,
i.e. (1)-(2), Theorem 1.1 generalizes the assumptions on the initial data. This
generalization derives from regularizing effects of Eikonal Hamiltonian (see [26, 1, 2]).
But our motivation is more in the case of equations (3)-(4) where mutations are
described by an integral operator. Then we can treat cases where the mutation rate
b(x, I) really depends on x, which was not available until now. The difficulty here is
that Lipschitz bounds on the initial data are not propagated on uǫ and may blow up
in finite time (see [12, 5, 15] for regularity results for integral Hamiltonian). However,
we achieve to control the Lipschitz norm by −uǫ, that goes to infinity as |x| goes to
+∞.

We do not discuss the uniqueness for equations (14) and (16) in this paper. The
latter is studied, for some particular cases, in [8, 7].

A related, but different, situation arises in reaction-diffusion equations as in
combustion (see [6, 9, 10, 21, 23, 30]). A typical example is the Fisher-KPP equation,
where the solution is a progressive front. The dynamics of the front is described by a
level set of a solution of a Hamilton-Jacobi equation.

The paper is organized as follows. In section 2 we state some existence results
and bounds on nǫ and Iǫ. In section 3 we prove some regularity results for uǫ corre-
sponding to equations (1)-(2). We show that uǫ are locally uniformly bounded and
continuous. In section 4 we prove some analogous regularity results for uǫ correspond-
ing to equations (3)-(4). Finally, in section 5 we describe the asymptotic behavior of
uǫ and deduce the constrained Hamilton-Jacobi equation (14)-(15).

2. Preliminary results. We recall the following existence results for nǫ and a
priori bounds for Iǫ (see also [8, 17]).

Theorem 2.1. With the assumptions (5)-(8), and Im−Cǫ2 ≤ Iǫ(0) ≤ IM +Cǫ2,
there is a unique solution nǫ ∈ C(R+;L1(Rd)) to equations (1)-(2) and it satisfies

I ′m = Im − Cǫ2 ≤ Iǫ(t) ≤ IM + Cǫ2 = I ′M , (18)

where C is a constant. This solution, nǫ(t, x), is nonnegative for all t ≥ 0.

We recall a proof of this theorem in Appendix A. We have an analogous result
for equations (3)-(4):

Theorem 2.2. With the assumptions (8), (10)-(13), and Im ≤ Iǫ(0) ≤ IM , there
is a unique solution nǫ ∈ C(R+;L1 ∩ L∞(Rd)) to equations (3)-(4) and it satisfies

Im ≤ Iǫ(t) ≤ IM . (19)

This solution, nǫ(t, x), is nonnegative for all t ≥ 0.
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This theorem can be proved with similar arguments as Theorem 2.1. A uniform
BV bound on Iǫ(t) for equations (1)-(2) is also proved in [8]:

Theorem 2.3. With the assumptions (5)-(9), we have additionally to the uniform
bounds (18), the locally uniform BV and sub-Lipschitz bounds

d

dt
Iǫ(t) ≥ −ǫ C + e

−Lt
ǫ

∫

ψ(x)n0
ǫ (x)

R(x, I0
ǫ )

ǫ
dx, (20)

d

dt
̺ǫ(t) ≥ −Ct+

∫

(1 + ψ(x))n0
ǫ (x)

R(x, I0
ǫ )

ǫ
dx, (21)

where C and L are positive constants and ̺ǫ(t) =
∫

Rd nǫ(t, x)dx. Consequently, after
extraction of a subsequence, Iǫ(t) converges a.e. to a function I(t), as ǫ goes to 0.
The limit I(t) is nondecreasing as soon as there exists a constant C independent of ǫ
such that

∫

ψ(x)n0
ǫ (x)

R(x, I0
ǫ )

ǫ
≥ −Ce

o(1)
ǫ .

We also have a local BV bound on Iǫ(t) for equations (3)-(4):

Theorem 2.4. With the assumptions (8)-(13), we have additionally to the uni-
form bounds (19), the locally uniform BV bound

d

dt
Iǫ(t) ≥ −C′ + e

−L′t
ǫ

∫

n0
ǫ(x)

R(x, I0
ǫ ) + b(x, I0

ǫ )

ǫ
dx, (22)

∫ T

0

| d
dt
Iǫ(t)|dt ≤ 2C′T + C′′, (23)

where C′, C′′ and L′ are positive constants. Consequently, after extraction of a sub-
sequence, Iǫ(t) converges a.e. to a function I(t), as ǫ goes to 0.

This theorem is proved in Appendix B.

3. Regularity results for equations (1)-(2). In this section we study the
regularity properties of uǫ = ǫ lnnǫ, where nǫ is the unique solution of equations
(1)-(2). We have

∂tnǫ =
1

ǫ
∂tuǫ e

uǫ
ǫ , ∇nǫ =

1

ǫ
∇uǫ e

uǫ
ǫ , △nǫ =

(1

ǫ
△uǫ +

1

ǫ2
|∇uǫ|2

)

e
uǫ
ǫ .

Consequently uǫ is a smooth solution to the following equation

{

∂tuǫ − ǫ△uǫ = |∇uǫ|2 +R(x, Iǫ(t)), x ∈ R, t ≥ 0,

uǫ(t = 0) = ǫ lnn0
ǫ .

(24)

We have the following regularity results for uǫ.
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Theorem 3.1. Assume (5)-(9) and let T > 0 be given. Set D = B+(A2 +K2)T .
Then we have uǫ ≤ D2. For all t0 > 0, vǫ =

√
2D2 − uǫ are locally uniformly bounded

and Lipschitz in [t0, T ]× R
d,

|∇vǫ| ≤ C(T ) +
1

2
√
t0
, (25)

where C(T ) is a constant depending on T , K1, K2, A and B. Moreover, if we assume
that (u0

ǫ)ǫ := ǫ ln(n0
ǫ) is a sequence of uniformly continuous functions, then uǫ are

locally uniformly bounded and continuous in [0,∞[×R
d.

We prove Theorem 3.1 in several steps. We first prove an upper bound, then a
regularizing effect in x, then local L∞ bounds, and finally a regularizing effect in t.

3.1. An upper bound for uǫ. From assumption (9) we have u0
ǫ(x) ≤ −A|x|+B.

We claim that, with C = A2 +K2,

uǫ(t, x) ≤ −A|x| +B + Ct, ∀t ≥ 0. (26)

Define φ(t, x) = −A|x| +B + Ct. We have

∂tφ− ǫ△φ− |∇φ|2 −R(x, Iǫ(t)) ≥ C + ǫ
A(d− 1)

|x| −A2 −K2 ≥ 0.

Here K2 is an upper bound for R(x, I) according to (8). We have also φ(0, x) =
−A|x| +B ≥ u0

ǫ(x). So φǫ is a super-solution to (24) and (26) is proved.

3.2. Regularizing effect in space. Let u = f(v), where f is chosen later. We
have

∂tu = f ′(v)∂tv, ∂xu = f ′(v)∂xv, △u = f ′(v)△v + f ′′(v)|∇v|2.

So equation (24) becomes

∂tv − ǫ△v −
[

ǫ
f ′′(v)

f ′(v)
+ f ′(v)

]

|∇v|2 =
R(x, I)

f ′(v)
. (27)

Define p = ∇v. By differentiating (27) we have

∂tpi − ǫ△pi − 2

[

ǫ
f ′′(v)

f ′(v)
+ f ′(v)

]

∇v · ∇pi −
[

ǫ
f ′′′(v)

f ′(v)
− ǫ

f ′′(v)2

f ′(v)2
+ f ′′(v)

]

|∇v|2pi

= − f ′′(v)

f ′(v)2
R(x, I)pi +

1

f ′(v)

∂R

∂xi
.

We multiply the equation by pi and sum over i:

∂t
|p|2
2

− ǫ
∑

(△pi)pi − 2

[

ǫ
f ′′(v)

f ′(v)
+ f ′(v)

]

∇v · ∇|p|2
2

−
[

ǫ
f ′′′(v)

f ′(v)
− ǫ

f ′′(v)2

f ′(v)2
+ f ′′(v)

]

|p|4

= − f ′′(v)

f ′(v)2
R(x, I)|p|2 +

1

f ′(v)
∇xR · p.
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First, we compute
∑

i(△pi)pi.

∑

i

(△pi)pi =
∑

i

△p2
i

2
−

∑

|∇pi|2

= △|p|2
2

−
∑

|∇pi|2

= |p|△|p| + |∇|p||2 −
∑

i

|∇pi|2.

We also have

|∇|p||2 =
∑

i

|p · ∂xi
p|2

|p|2 ≤
∑

i

|∂xi
p|2 =

∑

i,j

|∂xi
pj |2 =

∑

j

|∇pj |2.

It follows that

∑

i

(△pi)pi ≤ |p|△|p|.

We deduce

∂t|p| − ǫ△|p| − 2

[

ǫ
f ′′(v)

f ′(v)
+ f ′(v)

]

p · ∇|p| −
[

ǫ
f ′′′(v)

f ′(v)
− ǫ

f ′′(v)2

f ′(v)2
+ f ′′(v)

]

|p|3(28)

≤ − f ′′(v)

f ′(v)2
R(x, I)|p| + 1

f ′(v)
∇xR · p|p| .

From (26) we know that, for 0 ≤ t ≤ T , uǫ ≤ D(T )2, where D(T ) =
√
B + CT .

Then we define f(v) = −v2 + 2D2, for v positive, and thus

D(T ) ≤ v,

f ′(v) = −2v, and | 1

f ′(v)
| =

1

2v
≤ 1

2D
,

f ′′(v) = −2, and | f
′′(v)

f ′(v)2
| =

1

2v2
≤ 1

2D2
,

f ′′′(v) = 0, −
[

ǫ
f ′′′(v)

f ′(v)
− ǫ

f ′′(v)2

f ′(v)2
+ f ′′(v)

]

= 2 + ǫ
1

v2
> 2.

From (28), Theorem 2.1, assumption (8) and these calculations we deduce

∂|p|
∂t

− ǫ△|p| − 2

[

ǫ
f ′′(v)

f ′(v)
+ f ′(v)

]

p · ∇|p| + 2|p|3 − K2

2D2
|p| − K2

2D
≤ 0.
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Thus for θ(T ) large enough we can write

∂|p|
∂t

− ǫ△|p| − 2

[

ǫ
f ′′(v)

f ′(v)
+ f ′(v)

]

p · ∇|p| + 2(|p| − θ)3 ≤ 0. (29)

Define the function

y(t, x) = y(t) =
1

2
√
t

+ θ.

Since y is a solution to (29), and y(0) = ∞ and |p| being a sub-solution we have

|p|(t, x) ≤ y(t, x) =
1

2
√
t

+ θ.

Thus for vǫ =
√

2D2 − uǫ, we have

|∇vǫ|(t, x) ≤
1

2
√
t

+ θ(T ), 0 < t ≤ T. (30)

3.3. Regularity in space of uǫ near t = 0. Assume that u0
ǫ are uniformly

continuous. We show that uǫ are uniformly continuous in space on [0, T ]× R
d.

For δ > 0 we prove that for h small |uǫ(t, x + h) − uǫ(t, x)| < δ. To do so define
wǫ(t, x) = uǫ(t, x+h)−uǫ(t, x). Since u0

ǫ are uniformly continuous, for h small enough
|wǫ(0, x)| < δ

2 . Besides wǫ satisfies the following equation:

∂twǫ(t, x)−ǫ△wǫ(t, x)−(∇uǫ(t, x+h)+∇uǫ(t, x))·∇wǫ(t, x) = R(x+h, Iǫ(t))−R(x, Iǫ(t)).

From Theorem 2.1 and using assumption (8) we have

∂twǫ(t, x) − ǫ△wǫ(t, x) − (∇uǫ(t, x+ h) + ∇uǫ(t, x)) · ∇wǫ(t, x) ≤ K2|h|.

Therefore by the maximum principle we arrive at

max
Rd

|wǫ(t, x)| < max
Rd

|wǫ(0, x)| +K2|h|t.

So for h small enough |uǫ(t, x+ h) − uǫ(t, x)| < δ on [0, T ]× R
d.

3.4. Local bounds for uǫ. We show that uǫ are bounded on compact subsets
of ]0,∞[×R

d. We already know from section 3.1 that uǫ is locally bounded from
above. We show that it is also bounded from below on C = [t0, T ] × B(0, R), for all
R > 0 and 0 < t0 < T .

From section 3.1 we have uǫ(t, x) ≤ −A|x|+B+CT . So for R large enough there
exists ǫ0 such that for ǫ < ǫ0

∫

|x|>R

e
uǫ
ǫ dx <

∫

|x|>R

e
−A|x|+B+CT

ǫ dx <
I ′m

2ψM
.
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We have also from (18) that

∫

Rd

e
uǫ
ǫ dx >

I ′m
ψM

.

We deduce that for R large enough and for all 0 < ǫ < ǫ0
∫

|x|<R

e
uǫ
ǫ dx >

I ′m
2ψM

.

Therefore there exists ǫ1 > 0 such that, for all ǫ < ǫ1

∃x0 ∈ R
d; |x0| < R, uǫ(t, x0) > −1, thus vǫ(t, x0) <

√

2D2 + 1.

From Section 3.2 we know that vǫ are locally uniformly Lipschitz

|vǫ(t, x+ h) − vǫ(t, x)| <
(

C(T ) +
1

2
√
t0

)

|h|,

Thus for all (t, x) ∈ C and ǫ < ǫ1

vǫ(t, x) < E(t0, T, R) :=
√

2D2(T ) + 1 + 2
(

C(T ) +
1

2
√
t0

)

R.

It follows that

uǫ(t, x) > 2D2(T ) − E2(t0, T, R).

We conclude that uǫ are uniformly bounded from below on C.

If we assume additionally that u0
ǫ are uniformly continuous, with similar argu-

ments we can show that uǫ are bounded on compact subsets of [0,∞[×R
d. To prove

the latter we use uniform continuity of uǫ instead of the Lipschitz bounds of vǫ.

3.5. Regularizing effect in time. From the above uniform bounds and conti-
nuity results we can also deduce uniform continuity in time i.e. for all η > 0, there
exists θ > 0 such that for all (t, s, x) ∈ [0, T ]× [0, T ]×B(0, R2 ), such that 0 < t−s < θ,
and for all ǫ < ǫ0 we have:

|uǫ(t, x) − uǫ(s, x)| ≤ 2η.

We prove this with the same method as that of Lemma 9.1 in [4] (see also [11]
for another proof of this claim). We prove that for any η > 0, we can find positive
constants A, B large enough such that, for any x ∈ B(0, R2 ), s ∈ [0, T ] and for every
ǫ < ǫ0,

uǫ(t, y)−uǫ(s, x) ≤ η+A|x− y|2 +B(t− s), for every (t, y) ∈ [s, T ]×B(0, R), (31)

and

uǫ(t, y)−uǫ(s, x) ≥ −η−A|x−y|2−B(t−s), for every (t, y) ∈ [s, T ]×B(0, R). (32)
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We prove inequality (31), the proof of (32) is analogous. We fix (s, x) in
[0, T [×B(0, R2 ). Define

ξ(t, y) = uǫ(s, x) + η +A|y − x|2 + B(t− s), (t, y) ∈ [s, T [×B(0, R),

where A and B are constants to be determined. We prove that, for A and B large
enough, ξ is a super-solution to (24) on [s, T ] × B(0, R) and ξ(t, y) > uǫ(t, y) for
(t, y) ∈ {s} × B(0, R) ∪ [s, T ]× ∂B(0, R).

According to section 3.4, uǫ are locally uniformly bounded, so we can take A a
constant such that for all ǫ < ǫ0,

A ≥ 8 ‖ uǫ ‖L∞([0,T ]×B(0,R))

R2
.

With this choice, ξ(t, y) > uǫ(t, y) on [0, T ]×∂B(0, R), for all η, B and x ∈ B(0, R2 ).
Next we prove that, for A large enough, ξ(s, y) > uǫ(s, y) for all y ∈ B(0, R). We
argue by contradiction. Assume that there exists η > 0 such that for all constants A
there exists yA,ǫ ∈ B(0, R) such that

uǫ(s, yA,ǫ) − uǫ(s, x) > η +A|yA,ǫ − x|2. (33)

It follows that

|yA,ǫ − x| ≤
√

2M

A
,

where M is a uniform upper bound for ‖ uǫ ‖L∞([0,T ]×B(0,R)). Now let A→ ∞. Then
for all ǫ, |yA,ǫ−x| → 0. According to Section 3.3, uǫ are uniformly continuous on space.
Thus there exists h > 0 such that if |yA,ǫ − x| ≤ h then |uǫ(s, yA,ǫ) − uǫ(s, x)| < η

2 ,
for all ǫ. This is in contradiction with (33). Therefore ξ(s, y) > uǫ(s, y) for all
y ∈ B(0, R). Finally, noting that R is bounded we deduce that for B large enough, ξ
is a super-solution to (24) in [s, T ]× B(0, R). Since uǫ is a solution of (24) we have

uǫ(t, y) ≤ ξ(t, y) = uǫ(s, x)+ η+A|y−x|2 +B(t− s) for all (t, y) ∈ [s, T ]×B(0, R).

Thus (31) is satisfied for t ≥ s. We can prove (32) for t ≥ s analogously. Then
we put x = y and we conclude taking θ < η

B
.

4. Regularity results for equations (3)-(4). In this section we study the
regularity properties of uǫ = ǫ lnnǫ, where nǫ is the unique solution of equations (3)-
(4) as given in Theorem 2.2. From equation (3) we deduce that uǫ is a solution to the
following equation

{

∂tuǫ = R(x, Iǫ(t)) +
∫

K(z)b(x+ ǫz, Iǫ)e
uǫ(t,x+ǫz)−uǫ(t,x)

ǫ dz, x ∈ R, t ≥ 0,

uǫ(t = 0) = ǫ lnn0
ǫ .

(34)
We have the following regularity results for uǫ.
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Theorem 4.1. Let nǫ be the solution of (3)-(4) with n0
ǫ = e

uǫ0

ǫ , and uǫ = ǫ ln(nǫ).
With the assumptions (8)-(13), and if we assume that (u0

ǫ)ǫ is a sequence of uniformly
bounded functions in W 1,∞, then uǫ are locally uniformly bounded and Lipschitz in
[0,∞[×R

d.

As in section 3 we prove Theorem 4.1 in several steps. We first prove an upper
and a lower bound on uǫ, then local Lipschitz bounds in space and finally a regularity
result in time.

4.1. Upper and lower bounds on uǫ. From assumption (9) we have u0
ǫ(x) ≤

−A|x| +B. As in section 3.1 we claim that

uǫ(t, x) ≤ −A|x| +B + Ct, ∀t ≥ 0. (35)

Define v(t, x) = −A|x| + B + Ct, where C = bM
∫

K(z)eA|z|dz +K2. Using (8)
and (11) we have

∂tv−R(x, Iǫ(t))−
∫

K(z)b(x+ǫz, Iǫ)e
v(t,x+ǫz)−v(t,x)

ǫ dz ≥ C−K2−bM
∫

K(z)eA|z|dz ≥ 0.

We also have v(0, x) = −A|x| + B ≥ u0
ǫ(x). So v is a supersolution to (34).

Since (3) verifies the comparison property, equation (34) verifies also the comparison
property, i.e. if v and u are respectively super and subsolutions of (34) then u ≤ v.
Thus (35) is proved.

To prove a lower bound on uǫ we assume that u0
ǫ are locally uniformly bounded.

Then from equation (34) and assumption (8) we deduce

∂tuǫ(t, x) ≥ −K2,

and thus

uǫ(t, x) ≥ −‖u0
ǫ‖L∞(B(0,R)) −K2t, ∀x ∈ B(0, R).

Moreover, |∇u0
ǫ | being bounded, we can give a lower bound in R

d

uǫ(t, x) ≥ inf
ǫ
u0
ǫ(0) − ‖∇u0

ǫ‖L∞ |x| −K2t, ∀x ∈ R
d. (36)

4.2. Lipschitz bounds. Here we assume that uǫ is differentiable in x (See
[15]). See also Appendix C for a proof without any regularity assumptions on uǫ.

Let pǫ = ∇uǫ · χ, where χ is a fixed unit vector. By differentiating (34) with
respect to χ we obtain

∂tpǫ(t, x) = ∇R(x, Iǫ(t)) · χ+

∫

K(z)∇b(x+ ǫz, Iǫ) · χ e
uǫ(t,x+ǫz)−uǫ(t,x)

ǫ dz

+

∫

K(z)b(x+ ǫz, Iǫ)
pǫ(t, x+ ǫz) − pǫ(t, x)

ǫ
e

uǫ(t,x+ǫz)−uǫ(t,x)
ǫ dz.
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Thus, using assumptions (8) and (11), we have

∂tpǫ(t, x) ≤ K2 + L1

∫

K(z)b(x+ ǫz, Iǫ)e
uǫ(t,x+ǫz)−uǫ(t,x)

ǫ dz (37)

+

∫

K(z)b(x+ ǫz, Iǫ)
pǫ(t, x+ ǫz) − pǫ(t, x)

ǫ
e

uǫ(t,x+ǫz)−uǫ(t,x)
ǫ dz.

Define wǫ(t, x) = pǫ(t, x) + L1uǫ(t, x) and ∆ǫ(t, x, z) = uǫ(t,x+ǫz)−uǫ(t,x)
ǫ

. From
(37) and (34) we deduce

∂twǫ −K2(1 + L1) −
∫

K(z)b(x+ ǫz, Iǫ)
wǫ(t, x+ ǫz) − wǫ(t, x)

ǫ
e∆ǫ(t,x,z)dz

≤ 2L1

∫

K(z)b(x+ ǫz, Iǫ)e
∆ǫ(t,x,z)dz

− L1

∫

K(z)b(x+ ǫz, Iǫ)∆ǫ(t, x, z)e
∆ǫ(t,x,z)dz

= L1

∫

K(z)b(x+ ǫz, Iǫ)e
∆ǫ(t,x,z)

(

2 − ∆ǫ(t, x, z)
)

dz

≤ L1bMe,

noticing that e is the maximum of the function g(t) = et(2 − t) in R. Therefore by
the maximum principle, with C1 = K2(1 + L1) + L1bMe, we have

wǫ(t, x) ≤ C1t+ max
Rd

wǫ(0, x).

It follows that

pǫ(t, x) ≤ C1t+ ‖ ∇u0
ǫ ‖L∞ +L1(B + Ct) + L1

(

‖∇u0
ǫ‖L∞|x| +K2t− u0

ǫ(x = 0)
)

(38)

= C2t+ C3|x| + C4,

where C2, C3 and C4 are constants. Since this bound is true for any |χ| = 1, we
obtain a local bound on |∇uǫ|.

4.3. Regularity in time. In section 4.2 we proved that uǫ is locally uniformly
Lipschitz in space. From this we can deduce that ∂tuǫ is also locally uniformly
bounded.

Let C = [0, T ] × B(x0, R) and S1 be a constant such that ‖ uǫ ‖L∞(C)< S1 for all
ǫ > 0. Assume that R′ is a constant large enough such that we have uǫ(t, x) < −S1

in [0, T ]× R
d\B(x0, R

′). According to (35) there exists such constant R′. We choose
a constant S2 such that ‖ ∇uǫ ‖L∞([0,T ]×B(x0,R′))< S2 for all ǫ > 0. We deduce

|∂tuǫ| ≤ |R(x, Iǫ(t))| +
∫

K(z)b(x+ ǫz, Iǫ)e
uǫ(t,x+ǫz)−uǫ(t,x)

ǫ

(

1|x+ǫz|<R′ + 1|x+ǫz|≥R′

)

dz

≤ K2 + bM

∫

K(z)eS2|z|1|x+ǫz|<R′dz + bM

∫

K(z)1|x+ǫz|≥R′dz

≤ K2 + bM
(

1 +

∫

K(z)eS2|z|dz
)

.

This completes the proof of Theorem 4.1.
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5. Asymptotic behavior of uǫ. Using the regularity results in sections 3 and
4, we can now describe the asymptotic behavior of uǫ and prove Theorems 1.1 and 1.2.
Here we prove Theorem 1.1. The proof of Theorem 1.2 is analogous, except the limit
of the integral term in equation (16). The latter has been studied in [19, 12, 7, 29].

Proof of theorem 1.1.

step 1 (Limit) According to section 3, uǫ are locally uniformly bounded and
continuous. So by Arzela-Ascoli Theorem after extraction of a subsequence, uǫ
converges locally uniformly to a continuous function u.

step 2 (Initial condition) We proved that if u0
ǫ are uniformly continuous then

uǫ will be locally uniformly bounded and continuous in [0, T ]× R
d. Thus we can ap-

ply Arzela-Ascoli near t = 0 as well. Therefore we have u(0, x) = lim
ǫ→0

uǫ(0, x) = u0(x).

step 3
(

max
x∈Rd

u = 0
)

Assume that for some t, x we have 0 < a ≤ u(t, x). Since

u is continuous u(t, y) ≥ a
2 on B(x, r), for some r > 0. Thus we have nǫ(t, y) → ∞,

while ǫ→ 0. Therefore Iǫ(t) → ∞ while ǫ→ 0. This is a contradiction with (18).

To prove that max
x∈Rd

u(t, x) = 0, it suffices to show that lim
ǫ→0

nǫ(t, x) 6= 0, for some

x ∈ R
d. From (26) we have

uǫ(t, x) ≤ −A|x| +B + Ct.

It follows that for M large enough

lim
ǫ→0

∫

|x|>M

nǫ(t, x)dx ≤ lim
ǫ→0

∫

|x|>M

e
−A|x|+B+Ct

ǫ = 0. (39)

From this and (18) we deduce

lim
ǫ→0

∫

|x|≤M

nǫ(t, x)dx ≥ I ′m
ψM

.

If u(t, x) < 0 for all |x| < M then lim
ǫ→0

e
uǫ(t,x)

ǫ = 0 and thus

lim
ǫ→0

∫

|x|≤M
nǫ(t, x)dx = 0. This is a contradiction with (39). It follows that

max
x∈Rd

u(t, x) = 0, ∀t > 0.

step 4 (supp n(t, ·) ⊂ {u(t, ·) = 0}) Assume that u(t0, x0) = −a < 0.
Since uǫ are uniformly continuous in a small neighborhood of (t0, x0),
(t, x) ∈ [t0 − δ, t0 + δ] × B(x0, δ), we have uǫ(t, x) ≤ −a

2 < 0 for ǫ small. We

deduce that
∫

[t0−δ,t0+δ]×B(x0,δ)
n dtdx =

∫

[t0−δ,t0+δ]×B(x0,δ)
lim
ǫ→0

e
uǫ(t,x)

ǫ dtdx = 0.

Therefore we have supp n(t, ·) ⊂ {u(t, ·) = 0} for almost every t.

step 5 (Limit equation) Finally we recall, following [8], how to pass to the limit
in the equation. Since uǫ is a solution to (24), it follows that φǫ(t, x) = uǫ(t, x) −
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∫ t

0
R(x, Iǫ(s))ds is a solution to the following equation

∂tφǫ(t, x) − ǫ△φǫ(t, x) − |∇φǫ(t, x)|2 − 2∇φǫ(t, x) ·
∫ t

0

∇R(x, Iǫ(s))ds

= ǫ

∫ t

0

△R(x, Iǫ(s))ds+ |
∫ t

0

∇R(x, Iǫ(s))ds|2.

Note that we have Iǫ(s) → I(s) for all s ≥ 0 as ǫ goes to 0, and on the other hand,
the function R(x, I) is smooth. It follows that we have the locally uniform limits

lim
ǫ→0

∫ t

0

R(x, Iǫ(s))ds =

∫ t

0

R(x, I(s))ds,

lim
ǫ→0

∫ t

0

∇R(x, Iǫ(s))ds =

∫ t

0

∇R(x, I(s))ds,

lim
ǫ→0

∫ t

0

△R(x, Iǫ(s))ds =

∫ t

0

△R(x, I(s))ds,

for all t ≥ 0. Moreover the functions
∫ t

0
R(x, I(s))ds,

∫ t

0
∇R(x, I(s))ds and

∫ t

0
△R(x, I(s))ds are continuous. According to step 1, uǫ(t, x) converge locally uni-

formly to the continuous function u(t, x) as ǫ vanishes. Therefore φǫ(t, x) converge

locally uniformly to the continuous function φ(t, x) = u(t, x) −
∫ t

0 R(x, I(s))ds as ǫ
vanishes. It follows that φ(t, x) is a viscosity solution to the equation

∂tφ(t, x) − |∇φ(t, x)|2 − 2∇φ(t, x) ·
∫ t

0

∇R(x, I(s))ds

= |
∫ t

0

∇R(x, I)ds|2.

In other words u(t, x) is a viscosity solution to the following equation

∂tu(t, x) = |∇u(t, x)|2 +R(x, I(t)).

Appendix A. Proof of theorem 2.1.

A.1. Existence. Let T > 0 be given and A be the following closed subset:

A = {u ∈ C
(

[0, T ], L1(Rd)
)

, u ≥ 0, ‖ u(t, ·) ‖L1≤ a},

where a =
(∫

n0
ǫdx

)

e
K2T

ǫ . Let Φ be the following application:

Φ : A → A

u 7→ v,
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where v is the solution to the following equation

{

∂tv − ǫ△v = v
ǫ
R̄(x, Iu(t)), x ∈ R, t ≥ 0,

v(t = 0) = n0
ǫ .

(40)

Iu(t) =

∫

Rd

ψ(x)u(t, x)dx, (41)

and R̄ is defined as below

R̄(x, I) =











R(x, I) if Im

2 < I < 2IM ,

R(x, 2IM ) if 2IM ≤ I,

R(x, Im

2 ) if I ≤ Im

2 .

We prove that
(a) Φ defines a mapping of A into itself,
(b) Φ is a contraction for T small.
With these properties, we can apply the Banach-Picard fixed point theorem and

iterate the construction with T fixed.

Assume that u ∈ A. In order to prove (a) we show that v, the solution to (40),
belongs to A. By the maximum principle we know that v ≥ 0. To prove the L1 bound
we integrate (40)

d

dt

∫

vdx =

∫

v

ǫ
R̄(x, Iu(t))dx ≤ 1

ǫ
max
x∈Rd

R̄(x, Iu(t))

∫

vdx ≤ K2

ǫ

∫

vdx,

and we conclude from the Gronwall Lemma that

‖ v ‖L1≤
(

∫

n0
ǫdx

)

e
K2T

ǫ = a.

Thus (a) is proved. It remains to prove (b). Let u1, u2 ∈ A, v1 = Φ(u1) and
v2 = Φ(u2). We have

∂t(v1 − v2) − ǫ△(v1 − v2) =
1

ǫ

[

(v1 − v2)R̄(x, Iu1 ) + v2
(

R̄(x, Iu1 ) − R̄(x, Iu2 )
)]

.

Noting that ‖ v2 ‖L1≤ a, and |R̄(x, Iu1 ) − R̄(x, Iu2 )| ≤ K1|Iu1 − Iu2 | ≤
K1ψM ‖ u1 − u2 ‖L1 we obtain

d

dt
‖ v1 − v2 ‖L1≤ K2

ǫ
‖ v1 − v2 ‖L1 +

aK1ψM

ǫ
‖ u1 − u2 ‖L1 .

Using v1(0, ·) = v2(0, ·) we deduce

‖ v1 − v2 ‖L∞
t L1

x
≤ aK1ψM

K2
(e

K2T

ǫ − 1) ‖ u1 − u2 ‖L∞
t L1

x
.
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Thus, for T small enough such that e
K2T

ǫ (e
K2T

ǫ − 1) < K2

2K1ψM

R
n0

ǫ
, Φ is a contrac-

tion. Therefore Φ has a fixed point and there exists nǫ ∈ A a solution to the following
equation

{

∂tnǫ − ǫ△nǫ = nǫ

ǫ
R̄(x, I(t)), x ∈ R, 0 ≤ t ≤ T,

nǫ(t = 0) = n0
ǫ .

I(t) =

∫

Rd

ψ(x)nǫ(t, x)dx,

With the same arguments as A.2 we prove that Im

2 < I(t) < 2IM and thus nǫ
is a solution to equations (1)-(2) for t ∈ [0, T ]. We fix T small enough such that

e
K2T

ǫ (e
K2T

ǫ − 1) < K2ψm

4K1ψMIM
. Then we can iterate in time and find a global solution

to equations (1)-(2).

A.2. Uniform bounds on Iǫ(t). We have

dIǫ

dt
=

d

dt

∫

Rd

ψ(x)nǫ(t, x)dx = ǫ

∫

Rd

ψ(x)△nǫ(t, x)dx +
1

ǫ

∫

Rd

ψ(x)nǫ(t, x)R(x, Iǫ(t))dx.

We define ψL = χL ·ψ ∈ W∞
2,c(R

d), where χL is a smooth function with a compact
support such that χL|B(0,L) ≡ 1, χL|R\B(0,2L) ≡ 0. Then by integration by parts we
find

∫

Rd

ψL(x)△nǫ(t, x)dx =

∫

Rd

△ψL(x)nǫ(t, x)dx.

As L→ ∞, ψL converges to ψ in W 2,∞
loc (Rd). Therefore we obtain

lim
L→∞

∫

Rd

△ψL(x)nǫdx =

∫

Rd

△ψ(x)nǫdx,

lim
L→∞

∫

Rd

ψL(x)△nǫ(t, x)dx =

∫

Rd

ψ(x)△nǫ(t, x)dx.

From these calculations we conclude

dIǫ

dt
= ǫ

∫

Rd

△ψ(x)nǫ(t, x)dx +
1

ǫ

∫

Rd

ψ(x)nǫ(t, x)R(x, Iǫ(t))dx.

It follows that

−ǫ C1

ψm
Iǫ +

1

ǫ
Iǫ min
x∈Rd

R(x, Iǫ) ≤
dIǫ

dt
≤ ǫ

C1

ψm
Iǫ +

1

ǫ
Iǫ max
x∈Rd

R(x, Iǫ).

Let C = C1K1

ψm
. As soon as Iǫ overpasses IM + Cǫ2, we have R(x, Iǫ) < −Cǫ2

K1
=

−ǫ2 C1

ψm
and thus dIǫ

dt
becomes negative. Similarly, as soon as Iǫ becomes less than

Im − Cǫ2, dIǫ

dt
becomes positive. Thus (18) is proved.
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Appendix B. A locally uniform BV bound on Iǫ for equations (3)-(4).
In this appendix we prove Theorem 2.4. We first integrate (3) over R

d to obtain

d

dt
Iǫ(t) =

1

ǫ

∫

nǫ(t, x)
(

R (x, Iǫ(t)) + b (x, Iǫ(t))
)

dx.

Define Jǫ(t) = d
dt
Iǫ(t). We differentiate Jǫ and we obtain

d

dt
Jǫ(t) =

1

ǫ
Jǫ(t)

∫

nǫ(t, x)
∂(R + b)

∂I
(x, Iǫ(t))dx

+
1

ǫ2

∫

(

R(x, Iǫ) + b(x, Iǫ)
)[

nǫ(t, x)R(x, Iǫ)

+

∫

Kǫ(y − x)b(y, Iǫ)nǫ(t, y)dy
]

dx.

We rewrite this equality in the following form

d

dt
Jǫ(t) =

1

ǫ
Jǫ(t)

∫

nǫ(t, x)
∂(R + b)

∂I

(

x, Iǫ(t)
)

dx

+
1

ǫ2

∫

nǫ(t, x)
(

R
(

x, Iǫ(t)
)

+ b
(

x, Iǫ(t)
))2

dx

+
1

ǫ2

∫ ∫

Kǫ(y − x)
(

R
(

x, Iǫ(t)
)

−R
(

y, Iǫ(t)
))

b
(

y, Iǫ(t)
)

nǫ(t, y)dydx

+
1

ǫ2

∫ ∫

Kǫ(y − x)
(

b
(

x, Iǫ(t)
)

− b
(

y, Iǫ(t)
))

b
(

y, Iǫ(t)
)

nǫ(t, y)dydx.

It follows that

d

dt
Jǫ(t) ≥

1

ǫ
Jǫ(t)

∫

nǫ(t, x)
∂(R+ b)

∂I

(

x, Iǫ(t)
)

dx

+
1

ǫ2

∫

nǫ(t, x)
(

R
(

x, Iǫ(t)
)

+ b
(

x, Iǫ(t)
))2

dx

− K2 + bM L1

ǫ

∫ ∫

K(z)|z|b
(

x+ ǫz, Iǫ(t)
)

nǫ(t, x+ ǫz)dzdx

≥ 1

ǫ
Jǫ(t)

∫

nǫ(t, x)
∂(R+ b)

∂I

(

x, Iǫ(t)
)

dx

+
1

ǫ2

∫

nǫ(t, x)
(

R
(

x, Iǫ(t)
)

+ b
(

x, Iǫ(t)
))2

dx− C1

ǫ
,

where C1 is a positive constant. Consequently, using (13) we obtain

d

dt
(Jǫ(t))− ≤ C1

ǫ
− C2

ǫ
(Jǫ(t))−,

with (Jǫ(t))− = max(0,−Jǫ(t)). From this inequality we deduce

(Jǫ(t))− ≤ C1

C2
+ (Jǫ(0))−e

−
C2t

ǫ .
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With similar arguments we obtain

(Jǫ(t))+ ≥ −C
′
1

C′
2

+ (Jǫ(0))+e
−

C′
2t

ǫ ,

with (Jǫ(t))+ = max(0, Jǫ(t)). Thus (22) is proved. Finally, we deduce the locally
uniform BV bound (23)

∫ T

0

| d
dt
Iǫ(t)|dt =

∫ T

0

d

dt
Iǫ(t)dt+ 2

∫ T

0

(
d

dt
Iǫ(t))−dt

≤ IM − Im + 2C′T +O(1).

Appendix C. Lipschitz bounds for equations (3)-(4).
Here we prove that uǫ are locally uniformly Lipschitz without assuming that the

latter are differentiable. The proof follows the same ideas as in section 4.2.

Let c = 2L1bM

bm
. From (34) we have

∂t
(

uǫ(t, x+ h) − uǫ(t, x) + ch
(

2uǫ(t, x+ h) − uǫ(t, x)
))

− (1 + 2ch)R(x+ h, Iǫ) + (1 + ch)R(x, Iǫ)

=

∫

K(z)b(x+ h+ ǫz, Iǫ)e
uǫ(t,x+h+ǫz)−uǫ(t,x+h)

ǫ dz

−
∫

K(z)b(x+ ǫz, Iǫ)e
uǫ(t,x+ǫz)−uǫ(t,x)

ǫ dz

+ ch
(

∫

K(z)2b(x+ h+ ǫz, Iǫ)e
uǫ(t,x+h+ǫz)−uǫ(t,x+h)

ǫ dz

−
∫

K(z)b(x+ ǫz, Iǫ)e
uǫ(t,x+ǫz)−uǫ(t,x)

ǫ dz
)

Define α = uǫ(t,x+ǫz)−uǫ(t,x)
ǫ

, β = uǫ(t,x+h+ǫz)−uǫ(t,x+h)
ǫ

, ∆(t, x) = 2uǫ(t, x+ h)−
uǫ(t, x) and wǫ(t, x) = uǫ(t,x+h)−uǫ(t,x)

h
+ c∆(t, x). Using the convexity inequality

eβ ≤ eα + eβ(β − α),

we deduce

h∂twǫ(t, x) − (1 + 2ch)R(x+ h, Iǫ) + (1 + ch)R(x, Iǫ)

≤
∫

K(z)b(x+ h+ ǫz, Iǫ)
(

eα + eβ(β − α)
)

dz −
∫

K(z)b(x+ ǫz, Iǫ)e
αdz

+ ch
(

∫

2K(z)b(x+ h+ ǫz, Iǫ)e
βdz −

∫

K(z)b(x+ ǫz, Iǫ)e
αdz

)

≤
∫

K(z)
(

b(x+ h+ ǫz, Iǫ) − b(x+ ǫz, Iǫ)
)

eαdz

+

∫

K(z)b(x+ h+ ǫz, Iǫ)e
β
(

β − α+ ch
∆(t, x+ ǫz) −∆(t, x)

ǫ

)

dz

+ ch

∫

K(z)b(x+ h+ ǫz, Iǫ)e
β(2 − 2β + α)dz − ch

∫

K(z)b(x+ ǫz, Iǫ)e
αdz.
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From assumptions (8) and (11) it follows that

∂twǫ(t, x) ≤
∫

K(z)b(x+ h+ ǫz, Iǫ)e
βwǫ(t, x+ ǫz)− wǫ(t, x)

ǫ
dz

+K2 + 3cK2 +

∫

K(z)
(

cbMe
β(2 − 2β + α) + (L1bM − cbm)eα

)

dz.

Notice that

cbMe
β(2 − 2β + α) + (L1bM − cbm)eα = cbMe

β(2 − 2β + α) − L1bMe
α,

is bounded from above. Indeed if we first maximize the latter with respect to β and
then with respect to α we obtain

cbMe
β(2 − 2β + α) − L1bMe

α ≤ 2cbMe
α
2 − L1bMe

α ≤ bMc
2

L1
.

We deduce

∂twǫ(t, x) ≤
∫

K(z)b(x+ h+ ǫz, Iǫ)e
βwǫ(t, x+ ǫz) − wǫ(t, x)

ǫ
dz +G,

where G is a constant. Therefore by the maximum principle, (35) and (36), we have

wǫ(t, x) ≤ Gt+ ‖ ∇u0
ǫ ‖L∞ −2cA|x+ h| + 2cB − cu0

ǫ(x = 0) + c ‖ ∇u0
ǫ ‖L∞ |x|.

Using again (35) and (36) we conclude that

uǫ(t, x+ h) − uǫ(t, x)

h
≤ (G+ 2cK2)t+ c

(

−A+ ‖ ∇u0
ǫ ‖L∞

)(

|x| + 2|x+ h|
)

(42)

+ 3cB+ ‖ ∇u0
ǫ ‖L∞ −3c inf u0

ǫ(x = 0).
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