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A CONSTANT RANK THEOREM FOR HERMITIAN k–CONVEX

SOLUTIONS OF COMPLEX LAPLACE EQUATIONS∗
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Abstract. Using the strong maximum principle, we obtain a constant rank theorem for the
Hermitian k–convex solutions of complex Laplace equation.
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1. Introduction. In some geometry and analysis problems, it is always impor-
tant to get the existence of convex solutions for partial differential equations. Up to
now, we have in general two methods to produce convex solutions for elliptic partial
differential equations. They are the macroscopic and microscopic convexity principle.

The macroscopic convexity principle was developed by Korevaar [19, 20], Ken-
nington [17], Kawohl [16], and by Alvarez–Lasry–Lions [1] for generally nonlinear
partial differential equations.

The microscopic convexity principle concentrates on the constant rank theorem
for convex solutions of partial differential equations. Caffarelli–Friedman [4] proved
a constant rank theorem for convex solutions of quasilinear elliptic equations in R2; a
similar result was also obtained by Yau [28] (in fact, Yau have known the idea much
earlier, according to A. Treibergs, and also Korevaar [21, p. 117].). The method of
Caffarelli–Friedman–Yau was generalized to Rn by Korevaar–Lewis [22] shortly after.
It is a powerful tool in producing convex solutions of partial differential equations via
the continuity methods. The microscopic convexity principle has been generalized to a
variety of fully nonlinear differential equations involving the second fundamental forms
of hypersurfaces (see, for instance, [5, 11, 12].). Recently, Bian–Guan [2] obtained
the microscopic convexity principle for the most generally fully nonlinear differential
equations and gave much interesting geometry applications. It is interesting that the
structure condition found by Bian–Guan [2] are almost the same as the structure
condition that found by Alvarez–Lasry and Lions in [1].

In differential geometry, there are much interesting on the k–convexity of the so-
lutions of the geometric partial differential equations. Here the k–convexity means
that the sum of any k eigenvalues of the Hessian matrix of the solution is nonnegative.
Similarly, we can formulate the notions of k–convexity for the curvature operator and
second fundamental forms of hypersurfaces. There has been a large amount of liter-
ature in differential geometry on this subject. For example, Sha [26, 27] and H. Wu
[30] introduced the k-positivity of the sectional curvature of Riemannian manifolds
and studied the topology for these manifolds. Chen [7] and Böhm–Wilking [3] studied
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the classification of compact Riemannian manifolds with 2–positive curvature opera-
tor via Ricci flow. Moore–Schulte [25] and Fraser [9, 10] obtained some Morse index
estimates for the minimal disk with free boundary on the k–convex surfaces and then
have some interesting consequences on the topology of k–convex domain in Rn. More
recently, Huisken–Sinestrari [15] classified the compact 2–convex hypersurfaces in Rn

using the technique of mean curvature flow. Let us also call attention to the work by
Tsui and Wang [29], in which the 2–positivity of some parallel 2–tensor on manifolds
plays an important role on the long time existence and convergence of mean curvature
flows.

In the study of elliptic equations, Harvey–Lawson [14] introduced some generally
convexity on the solutions of the nonlinear elliptic Dirichlet problem. The k–convexity
is a special case.

From the above geometry and analysis reasons, it is naturally to study the gen-
eral microscopic and macroscopic convexity principle in the context of the k-convex
solutions of partial differential equations. In Han–Ma–Wu [13] we establish a con-
stant rank theorem of the k-convex hypersurfaces on the prescribed mean curvature
equation in Rn+1, and then as an application, we obtain an existence theorem for
k-convex hypersurfaces with prescribed mean curvature.

For the potential application and independent interesting in complex analysis
and complex geometry, in this paper we establish the complex counterpart of the
constant rank theorem on the Hermitian k–convex solutions for complex Laplace
equation. The constant rank theorem on the Hermitian 1–convex (i.e., plurisubhar-
monic) solutions for some elliptic partial differential equations in complex variables
had been considered by Q. Li in [23]. We will see from below that the ranks of k–
convex (k ≥ 2) solutions enjoy certain interesting jumping phenomenon. This would
distinguish our treatment from those in the literature. The Hermitian k–convexity
(k ≥ 2) has naturally appeared, and played an important role, in the several complex
variables and complex geometry, such as the vanishing theorem (see, for example,
Kobayashi–Wu [18], and Ma–Marinescu [24]), and the Cauchy–Riemann geometry
(see, for example, Chirka [8]). We shall report the applications of our result in a later
occasion.

We consider the following equation

∆u =
n∑

α=1

∂2u

∂zα∂z̄α
= f(z) (1.1)

in a domain Ω of Cn. Here we assume that

f ∈ C2,λ(Ω), f > 0, for some 0 < λ < 1. (1.2)

We are interested in the solution u of Hermitian k–convex. Namely, the sum of any
k eigenvalues of the Hermitian matrix (uαβ̄)1≤α,β≤n is nonnegative. We would like
to know, under what condition would the Hermitian k–convex solution u has certain
constant rank in Ω. Throughout this note, k denotes an integer in {1, . . . , n − 1}
(there is nothing to prove when k = n, since f > 0 by our assumption.).

It is convenient to work with the following w–matrix, whose eigenvalues are the
sums of the k eigenvalues of (uαβ̄). First, note that (uαβ̄) induces an operator P on
Cn by

P (eα) =

n∑

γ=1

uγᾱeγ , for all 1 ≤ α ≤ n,
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where {e1, . . . , en} is the standard basis of Cn, as a complex vector space. As in
Caffarelli–Nirenberg–Spruck [6], we further extend P to acting on the complex vector
space ∧kCn by

P (eα1
∧ · · · ∧ eαk

) =
k∑

i=1

eα1
∧ · · · ∧ P (eαi

) ∧ · · · ∧ eαk
.

Here {eα1
∧ · · · ∧ eαk

| 1 ≤ α1 < · · · < αk ≤ n} is the standard basis for ∧kCn. Let
(wij) be the matrix of P under this standard basis, where the indices i and j range
from 1 to

(
n
k

)
. It is, however, more helpful to write the indices of w in terms of the

base indices. Namely, we denote by

wα1...αk,β1...βk
= 〈P (eα1

∧ · · · ∧ eαk
), eβ1

∧ · · · ∧ eβk
〉.

Here 〈·, ·〉 is the inner product on ∧kCn induced from the standard one on Cn so that

〈a eα1
∧ · · · ∧ eαk

, b eβ1
∧ · · · ∧ eβk

〉 = δ

(
α1, . . . , αk

β1, . . . , βk

)
ab̄,

in which a, b ∈ C. We denote by δ
(
a1,...,ak

b1,...,bk

)
the generalized Kronecker symbol; it

is equal to 1 (respectively, −1) if a1, . . . , ak are distinct and (b1, . . . , bk) is an even
(respectively, odd) permutation of (a1, . . . , ak); otherwise it is equal to zero. Then,

wα1...αk,β1...βk
=

k∑

i=1

n∑

γ=1

uγᾱi
δ

(
α1, . . . , αi−1, γ, αi+1, . . . , αk

β1, . . . , βi−1, βi, βi+1 . . . , βk

)
.

In particular,

wα1...αk,α1...αk
=

k∑

i=1

uαiᾱi
,

and

wα1...αk,β1...βk
= 0

if the index sets {α1, . . . , αk} and {β1, . . . , βk} are differed by two elements. It follows
that the w–matrix is Hermitian, i.e.,

wα1...αk,β1...βk
= wβ1...βk,α1...αk

.

Moreover, if we normalize the u–matrix at one point so that

uαβ̄ = δαβuαᾱ,

then the w–matrix is also diagonalized:

wα1...αk,β1...βk
=

( k∏

i=1

δαiβi

)
wα1...αk,α1...αk

=

k∏

i=1

δαiβi

k∑

i=1

uαiᾱi
.

As an example, when k = 2, we have

wαβ,ηζ = 〈P (eα ∧ eβ), eη ∧ eζ〉.
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Then

wαβ,ηζ = δβζuηᾱ − δβηuζᾱ + δαηuζβ̄ − δαζuηβ̄ (1.3)

= wηζ,αβ .

In particular, the diagonal elements are given by

wαβ,αβ = uαᾱ + uββ̄.

Throughout this note, we denote by

N = dimC ∧kCn =

(
n

k

)
=

n!

k!(n − k)!
.

Unless otherwise indicated, the Greek indices α, β, γ, . . . , are in {1, . . . , n}, while
English indices i, j, l, . . ., lie in {1, . . . , N}. We may interchangeably use (wij) and
(wα1...αk,β1...βk

) to indicate the w–matrix. That is, we may use a single index, such as
i, to represent a multi–index (α1, . . . , αk). The correspondence is given by the one–
to–one map from S = {1, . . . , N} to M = {(α1, . . . , αk) | 1 ≤ α1 < · · · < αk ≤ n},
preserving the order of the elements. Here the order in S is as usual, while the order
in M is defined to be that

(α1, . . . , αk) ≺ (β1, . . . , βk)

if there is a number q ∈ {1, . . . , n} such that αq < βq and αj = βj for all j =
1, . . . , q−1. For example, when n = 3 and k = 2, the correspondence are identified as

1 = (1, 2), 2 = (1, 3), 3 = (2, 3);

and hence,

w11 = w12,12, w12 = w12,13, w13 = w12,23, · · · .

However, a precise formula of the correspondence is not needed in the follows.
For a finite set A, we denote by #A the total number of elements in A. For

derivatives of a function h, we denote by

hα =
∂h

∂zα
, hᾱ =

∂h

∂z̄α
, hαβ̄ =

∂2h

∂zαz̄β
, · · · .

A Hermitian matrix (Hαβ̄) is called k–concave, if the sum of any k eigenvalues of
(Hαβ̄) is nonpositive, equivalently, if λ1 + · · ·+ λk ≤ 0, where λ1 ≥ λ2 ≥ · · · ≥ λn are
the eigenvalues of (Hαβ̄). In particular, a 1–concave Hermitian matrix is nonpositive
definite. A C2–function v is called Hermitian k–concave in Ω if (vαβ̄) is k–concave in
Ω. Here is our main result:

Theorem 1.1. Let u and f satisfy (1.1), (1.2). Suppose that the w–matrix
is positive semidefinite on Ω. Then the w–matrix has constant rank in Ω, if the
Hermitian matrix

(
kffαβ̄ − fαfβ̄

)

1≤α,β≤n

is k–concave in Ω. Equivalently, the w–matrix has constant rank if f1−1/k is Her-
mitian k–concave for k ≥ 2, and − log f is plurisubharmonic when k = 1.
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Remark 1.2. In the above theorem, the k = 1 case was obtained by Q. Li in
[23]. For k ≥ 2, there are restrictions on the possible ranks of w (these restrictions
are explicitly given in the proof.). Consider k = 2 for instance: The possible ranks of
w must lie in

{N − κ(κ + 1)/2 | κ = 1, . . . , n − 2} ∪ {N − n, . . . , N}.

Furthermore, if n = 6 for example, then the possible ranks are in the set

{5} ∪ {r ∈ Z | 9 ≤ r ≤ 15}.

Our proof would follow the standard approach in the literature (see Korevaar–
Lewis [22] and Guan–Ma [12], for example). Assume that (wij) has rank r < N at a
point. Let σr+1 be the sum of all r + 1 by r + 1 principal minors of (wij). The main
step is to derive the estimate

∆σr+1 ≤ c1|∇σr+1| + c2σr+1, (1.4)

where the constants c1 and c2 are under control up to the ‖u‖C4. Then the desired
result would follow from the strong maximum principle.

The major difference between the w–matrix, and the u–matrix (which was treated
in literature, such as Korevaar–Lewis [22]), is that the indices of w cannot commute,
such as wij;α 6= wiα;j . Thus, one has to convert w to u; in particular, one has to
find their correspondences of the “good” or “bad” sets of indices (see the next section
for the definitions). Given a general rank, it is not easy to determine the “good” or
“bad” indices for w, because one can never expect to order the diagonal elements of
w completely in terms of the indices, even though we can do that for u, say (3.1). We
do have some partial orders for w, however.

The key observation here is that the “bad” indices can only appear in certain
explicit regular cases, because of the partial orders of wii. In the proof we divide
the “bad” sets into two cases. Geometrically, one is the solid “cone” while the other
consists of certain boundaries of the “cone” in the index space. In particular, this
imposes some restrictions on the possible ranks on the w–matrix. As a consequence,
we do not have to derive for each σr+1 the hard estimates. More importantly, the
explicit “bad” sets of indices make it much easier to transfer from w to u. This greatly
simplifies the calculations.

For instance, for ∧2C6, the possible “bad” sets are given as follows:

B1,µ = {(α, β) | µ ≤ α < β ≤ 6}, for µ = 2, 3, 4,

and

B2,ν = {(ν, 6), (ν + 1, 6), . . . , (5, 6)}, for ν = 1, 2, . . . , 5.

In particular, this shows that the rank of w–matrix at any point can never be 1, 2, 3,
4, 6, 7, 8.

Comparing with [13] in the real case, the Hermitian k–convexity is weaker than
the k–convexity of the full Hessian. In the complex case one has to distinguish the
indices of u with bars and without bars, especially in the third derivatives. Roughly
speaking, we would drop the terms as |uααβ̄ |

2 while keep the terms |uαᾱβ̄ |
2 in the

derivation. This is one of the reasons why the powers in the concavity of f are shifted
by 1/k in the main results.
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Let us finally remark that, the Hermitian k–concavity of f1−1/k, k ≥ 2, is only
needed in the second case to establish (1.4), while a weaker assumption, such as the
Hermitian k–concavity of log f , is enough for the first case of the “bad” sets (see
Lemma 3.4 and Lemma 4.6 below).

In Section 2 certain estimates of w are established for later use. To make it
easier for the reader to comprehend the idea, we first settle Theorem 1.1 for k = 2 in
Section 3. The general case is proved in the last section.

Acknowledgment. Part of the work was done while the third author was visit-
ing the University of Science and Technology of China in July 2008, he would like to
thank their warm hospitality. The second author would also like to thank Professor
P. Guan for his encouragement and support.

2. Estimates. In this section we shall reduce the proof of Theorem 1.1 to estab-
lishing certain Laplacian estimates. Throughout this section, we denote the Hermitian
w–matrix by (wij). The English letters, i, j, l, . . . , range from 1 to N , and the Greek
letters, α, β, γ, . . . , range from 1 to n, unless otherwise indicated.

By (1.1) we have

N∑

i=1

wii =

(
n − 1

k − 1

)
f, in Ω.

Since f > 0, the rank of (wij) is at least 1 everywhere in Ω. Suppose that (wij) attains
its minimal rank r < N at some point x0 in Ω. Let φ = σr+1, the sum of all r + 1 by
r + 1 principal minors of (wij). Our goal is to show that φ vanishes identically in Ω.

We first to show that φ ≡ 0 in a neighborhood of x0. For two real–valued functions
h and g defined in a neighborhood of x0, we write h . g, if

(h − g)(x) ≤ (c1|∇φ| + c2φ)(x) (2.1)

for any x in this neighborhood, where c1 and c2 are two positive constants independent
of x. We write h ∼ g if h . g and g . h. We also denote by h(x) . g(x) the pointwise
estimate (2.1), and similarly for h(x) ∼ g(x). For complex–valued functions g and
h, we write g ∼ h if |g − h| . 0. In the following, all calculations are carried out at
one point using the relation ., with the understanding that the constants in (2.1) are
under control.

Note that we only have to show that

∆φ =

n∑

α=1

φαᾱ . 0. (2.2)

Indeed, since φ ≥ 0 and φ(x0) = 0, applying the strong maximum principle to (2.2)
yields that φ ≡ 0 in a neighborhood of x0.

Thus, by assuming (2.2) we conclude that φ ≡ 0 locally. Recall that r is the
minimal rank of (wij). Hence, the subset

Ωr = {y ∈ Ω | rank(wij)(y) = r}

is open. On the other hand, the continuity of φ implies that

rank(wij)(x1) ≤ r,
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for any x1 ∈ Ω ∩ ∂Ωr. But r is the minimal rank; this forces that

rank(wij)(x1) = r.

Hence, Ωr is also closed in Ω. Therefore, Ωr = Ω, in view of the connectivity of Ω.
Therefore, the proof of Theorem 1.1 is reduced to establishing (2.2).

To verify (2.2), let us introduce the “good” and “bad” sets of indices, and then
derive certain estimates related to these sets. Recall that (wij) has rank r at x0. We
can pick a constant c > 0 so that the r nonzero eigenvalues of (wij)(x0) are bounded
below by 2c. Then, by continuity (wij)(x) has exactly r eigenvalues ≥ c, for any point
x near x0. Fix such an x. We choose a coordinate system so that (uαβ̄) is diagonalized
at x; then so is (wij). We denote by

G = {i | wii(x) ≥ c, 1 ≤ i ≤ N}, (2.3)

and

B = {1, . . . , N} \ G. (2.4)

In other words, G consists of the indices of the eigenvalues of w–matrix which is no
less than c, and B is the complement of G in the total index set. Then, #G = r and
#B = N − r. We call G and B, respectively, the “good” and “bad” sets of indices.
We remark that, if one works with the multiple indices of w, i.e., (wα1...αk,β1...βk

), ,
then

G = {(α1, . . . , αk) | wα1...αk,α1...αk
(x) ≥ c, 1 ≤ α1 < · · · < αk ≤ n},

and

B = {(α1, . . . , αk) | 1 ≤ α1 < · · · < αk ≤ n} \ G.

Let us start with some simple observations, which will be used in the later reduction.

Proposition 2.1. Let G and B be defined as in (2.3) and (2.4), respectively.
Let i be an element in G. Then wii is not ∼ 0. If for some function h defined in a
neighborhood of x0 and x such that wiih ∼ 0, then h ∼ 0.

Proof. By continuity, there exists a neighborhood V of x0 and x such that

wjj(y) ≥ c/2, for all y ∈ V and j ∈ G. (2.5)

Here the constant c > 0 is given in (2.3). Now suppose that wii ∼ 0 for some i ∈ G.
This implies that

wii ≤ (c1|∇φ| + c2φ)

in a neighborhood of x0 and x, where c1 and c2 are constants independent of x0 and
x. Then, at the point x0 we get a contradiction

c/2 ≤ wii(x0) ≤ (c1|∇φ(x0)| + c2φ(x0)) = 0,

where the last equality holds because x0 is a minimum point of φ. This proves the first
statement. The second statement follows immediately from (2.5) and the definition
of ∼.
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As in [22] the following proposition is standard.

Proposition 2.2. Let G and B be defined as in (2.3) and (2.4), respectively.
Then,

wjj ∼ 0, for all j ∈ B, (2.6)
∑

j∈B

(wjj)α ∼ 0,
∑

j∈B

(wjj)ᾱ ∼ 0, (2.7)

and

φαᾱ .
∏

l∈G

wll




∑

j∈B

(wjj)αᾱ −
∑

i∈G

∑

j∈B

|(wij)α|2 + |(wij)ᾱ|2

wii



 ,

for each α = 1, . . . , n.

Proof. Note that wii ≥ 0 for all i = 1, . . . , N . For each j ∈ B, we have

0 ∼ φ ∼
∏

i∈G

wii ·
∑

l∈B

wll ≥ wjj

∏

i∈G

wii ≥ 0.

This implies that

wjj

∏

i∈G

wii ∼ 0.

Thus, we have wjj ∼ 0, by the second statement of Proposition 2.1. Next, for each
α = 1, . . . , n,

0 ∼ φα ∼
∏

i∈G

wii ·
∑

j∈B

(wjj)α.

Then, by the second statement of Proposition 2.1, we have for each α

∑

j∈B

(wjj)α ∼ 0, and
∑

j∈B

(wjj)ᾱ ∼ 0.

These prove (2.7).
Let us now compute φαᾱ. By (2.3) and (2.4) we obtain

φαᾱ(x) ∼
∏

i∈G

wii





∑

j∈B

(wjj)αᾱ

+
1

2

∑

l∈G

1

wll
·

∑

p,q∈B,p6=q

{
2Re

[
(wpp)α(wqq)ᾱ

]
− |(wpq)α|

2 − |(wpq)ᾱ|
2
}

+
∑

l∈G

∑

p∈B

2Re
[
(wll)α(wpp)ᾱ

]
− |(wlp)α|2 − |(wlp)ᾱ|2

wll




 .

By (2.7) we have

∑

q∈B,q 6=p

(wqq)ᾱ ∼ −(wpp)ᾱ.
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This implies that

∑

p,q∈B,p6=q

2Re
[
(wpp)α(wqq)ᾱ

]
∼ −2

∑

p∈B

|(wpp)α|
2 ≤ 0.

Substituting this back to φαᾱ and applying (2.7) to the third term yield the desired
result.

For later uses, let us rewrite the above results in terms of the multiple indices of
w. That is,

wβ1...βk,β1...βk
∼ 0, for all (β1, . . . , βk) ∈ B (2.8)

∑

(β1,...,βk)∈B

(wβ1...βk,β1...βk
)α ∼

∑

(β1,...,βk)∈B

(wβ1...βk,β1...βk
)ᾱ ∼ 0, (2.9)

and

φαᾱ . Q




∑

(β1,...,βk)∈B

(wβ1...βk,β1...βk
)αᾱ

−
∑

(γ1,...,γk)∈G

∑

(β1,...,βk)∈B

|(wβ1...βk,γ1...γk
)α|2 + |(wβ1...βk,γ1...γk

)ᾱ|2

wγ1...γk,γ1...γk



 ,

(2.10)

for each α = 1, . . . , n. Here and after, we denote by

Q =
∏

i∈G

wii =
∏

(γ1,...,γk)∈G

wγ1...γk,γ1...γk
.

3. Two–convex case. In this section, we shall prove Theorem 1.1 for the case
k = 2. Namely,

Theorem 3.1. Let u and f satisfy (1.1), (1.2). Suppose that the (wβγ,ηζ) ≥ 0
on Ω. Then (wβγ,ηζ) has constant rank in Ω, if f1/2 is Hermitian 2–concave in Ω.

From the proof, we can say more about the (constant) ranks of (wβγ,ηζ). Indeed,
instead of being an arbitrary integer from 1 to N , the rank of (wβγ,ηζ) must lie in

{N − n, . . . , N} ∪ {N − κ(κ + 1)/2 | κ = 1, . . . , n − 2}.

Hereafter, we always work on the w–matrix with the multiple indices. In view of
the previous section, we only have to derive (2.2) at the point x. We have chosen a
local coordinate system so that

uαβ̄(x) = δαβuαᾱ(x);

then wαβ,ηζ at x is also diagonalized to be

wαβ,ηζ = δαηδβζ(uαᾱ + uββ̄) = δαηδβζwαβ,αβ.

Furthermore, we can arrange for u that

u11̄(x) ≥ u22̄(x) ≥ · · · ≥ unn̄(x). (3.1)
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As before, we define the good and bad sets of indices to be, respectively,

G = {(α, β) | wαβ,αβ(x) ≥ c, 1 ≤ α < β ≤ n}, (3.2)

and

B = {(α, β) | 1 ≤ α < β ≤ n} \ G. (3.3)

We claim that any bad set must be one of the following two cases:
(i) There exists some positive integer µ ≤ n − 2 such that

B = {(α, β) | µ ≤ α < β ≤ n}.

(ii) The bad set B is a subset of {(α, n) | α = 1, . . . , n − 1}.
Assuming this claim, then we only need to verify (2.2) for the above two cases.

Furthermore, this claim imposes some constraints on the possible ranks of w at any
point. In particular, by this claim we know that

#B ∈ {1, . . . , n} ∪ {κ(κ + 1)/2 | κ = 1, . . . , n − 2}.

Therefore, the rank of w–matrix can only be in the following set:

{N − n, . . . , N} ∪ {N − κ(κ + 1)/2 | κ = 1, . . . , n − 2}.

Before proving this claim, let us first derive from Proposition 2.2 certain simple
properties regarding these sets. For k = 2, the results of Proposition 2.2 can be
reformulated as follows:

uηη̄ + uζζ̄ = wηζ,ηζ ∼ 0, for all (η, ζ) ∈ B, (3.4)
∑

(η,ζ)∈B

(uηη̄α + uζζ̄α) =
∑

(η,ζ)∈B

(wηζ,ηζ)α ∼ 0, (3.5)

and

φαᾱQ−1 .
∑

(η,ζ)∈B

(wηζ,ηζ)αᾱ −
∑

(β,γ)∈G

∑

(η,ζ)∈B

|(wβγ,ηζ)α|2 + |(wβγ,ηζ)ᾱ|2

wβγ,βγ
, (3.6)

for each α = 1, . . . , n. Here

Q =
∏

(β,γ)∈G

wβγ,βγ.

Proposition 3.2. If (n − 2, n− 1) ∈ B, then

uββ̄ ∼ 0, for β = n − 2, n − 1, n.

Proof. It follows from (3.4) that

u(n−2)(n−2) + u(n−1)(n−1) = w(n−2)(n−1),(n−2)(n−1) ∼ 0. (3.7)

But by (3.1) and the nonnegativity of wαβ,αβ ,

u(n−2)(n−2) + u(n−1)(n−1) ≥ u(n−2)(n−2) + unn̄ ≥ 0.
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Hence,

u(n−2)(n−2) + unn̄ ∼ 0. (3.8)

Similarly, we also have

u(n−1)(n−1) + unn̄ ∼ 0. (3.9)

The result then follows from solving the linear equations (3.7), (3.8), and (3.9).

Proposition 3.3. If (α, β) ∈ B for some 1 ≤ α < β ≤ n − 1, then

uγγ̄ ∼ 0, for all γ ≥ α.

Proof. By (3.4) and (3.1) we have

0 ∼ uαᾱ + uββ ≥ u(n−2)(n−2) + u(n−1)(n−1) ≥ 0.

Hence,

u(n−2)(n−2) + u(n−1)(n−1) ∼ 0.

It follows from the proof of Proposition 3.2 that

uγγ̄ ∼ 0, for all γ = n − 2, n − 1, n.

But we also have that

0 ∼ uαᾱ + uββ̄ ≥ uτ τ̄ + unn̄ ≥ 0, for all τ = α, . . . , n − 1.

This implies that

uτ τ̄ + unn̄ ∼ 0, for all τ = α, . . . , n − 1.

Since unn̄ ∼ 0, we conclude that

uτ τ̄ ∼ 0, for all τ = α, . . . , n.

Let us now to prove the claim: Suppose that for some rank r, there exists
a bad set B which is none of the two cases above. Then B must contain an element
(α1, β1) such that β1 ≤ n − 1. Let

τ = min{α | (α, β) ∈ B and β ≤ n − 1}.

Since B does not belong to Case (i), we have

{(α, β) | τ ≤ α < β ≤ n} \ B 6= ∅.

In other words, there exists an element (η, ζ) in G with τ ≤ η < ζ ≤ n. But on the
other hand, it follows from Proposition 3.3 that

uγγ̄ ∼ 0, for all γ ≥ τ .
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In particular, we have

wηζ,ηζ = uηη̄ + uζζ̄ ∼ 0.

This contradicts with the first statement in Proposition 2.1. Therefore, the claim is
proved.

The two cases are, respectively, settled in Lemma 3.4 and Lemma 3.5 below. We
should point out that the assumption in Lemma 3.4 is weaker.

Lemma 3.4. Assume that there exists a positive integer 2 ≤ µ ≤ n − 2 such that

B = {(α, β) | µ ≤ α < β ≤ n}.

Denote

r = N − #B =

(
n

2

)
−

(
n − µ + 1

2

)
.

Then,

∆σr+1 . 0,

provided that log f is Hermitian 2–concave.

Proof. Let φ = σr+1. First, applying Proposition 3.3 to (µ, µ+1) ∈ B yields that

uββ̄ ∼ 0, for all β = µ, . . . , n. (3.10)

By the Laplace equation (1.1),

µ−1∑

β=1

uββ̄ ∼ f. (3.11)

Next, it follows from (3.5) that

(n − µ)

n∑

β=µ

uββ̄α ∼ 0,

Here we also make use of the elementary identity

∑

a≤α<β≤b

(Aα + Aβ) = (b − a)

b∑

β=a

Aβ , (3.12)

for any finite numbers {Aβ; β = a, . . . , b}, where a < b are two positive integers. By
(1.1) we obtain

µ−1∑

β=1

uββ̄α ∼ fα. (3.13)

Now let us consider the second order derivatives. Apply (3.6) and (1.3) to obtain
that

Q−1φαᾱ . (n − µ)
n∑

γ=µ

uαᾱγγ̄ −

µ−1∑

β=1

n∑

γ=µ

∑

µ≤τ≤n,τ 6=γ

|uβτ̄α|2 + |uβτ̄ᾱ|2

uββ̄ + uγγ̄

∼ (n − µ)

n∑

γ=µ

uαᾱγγ̄ − (n − µ)

µ−1∑

β=1

n∑

τ=µ

|uβτ̄α|2 + |uβτ̄ᾱ|2

uββ̄

, (by (3.10)).
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Therefore,

∆φ

(n − µ)Q
.

n∑

γ=µ

fγγ̄ −
n∑

α=1

µ−1∑

β=1

n∑

τ=µ

|uβτ̄α|2 + |uβτ̄ᾱ|2

uββ̄

.

n∑

γ=µ

fγγ̄ −
n∑

τ=µ

µ−1∑

β=1

|uββ̄τ |
2

uββ̄

(by setting α = β and dropping |uββτ̄ |
2)

.

n∑

γ=µ

fγγ̄ −
n∑

τ=µ

∣∣
µ−1∑

β=1

uββ̄τ

∣∣2(
µ−1∑

β=1

uββ̄

)−1
(by Schwarz inequality)

∼
n∑

γ=µ

fγγ̄ − f−1
n∑

τ=µ

|fτ |
2, (by (3.11) and (3.13)).

Thus, the result follows immediately.

Lemma 3.5. Assume that

B ⊂ {(α, n) | α = 1, . . . , n}.

We denote by

r = N − #B.

Then,

∆σr+1 . 0,

provided that f1/2 is Hermitian 2–concave.

Proof. In view of (3.1) and Proposition 2.1 we can assume that

B = {(ν, n), (ν + 1, n), . . . , (n − 1, n)},

for some integer 1 ≤ ν ≤ n − 1. Let

φ = σr+1.

By (3.4) we have

uββ̄ + unn̄ ∼ 0, β = ν, . . . , n − 1.

Then,

uνν̄ ∼ u
(ν+1)(ν+1)

∼ · · · ∼ u
(n−1)(n−1)

∼ −unn̄. (3.14)

As a consequence, for each γ = ν, . . . , n − 1,

(n − 2)uγγ̄ .

ν−1∑

β=1

uββ̄ + (n − ν − 1)uνν̄ ∼
n∑

β=1

uββ̄ = f. (3.15)

Next, by (3.5) we have

0 ∼
n−1∑

β=ν

(uββ̄α + unn̄α) =

n−1∑

β=ν

uββ̄α + (n − ν)unn̄α. (3.16)
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Thus, applying (1.1) yields that

(n − ν)

ν−1∑

γ=1

uγγ̄α + (n − ν − 1)

n−1∑

β=ν

uββ̄α ∼ (n − ν)fα. (3.17)

For the second order derivatives, applying (1.3) to (3.6) yields that

Q−1φαᾱ .

n−1∑

β=ν

uββ̄αᾱ + (n − ν)unn̄αᾱ

−
ν−1∑

β=1

n−1∑

γ=ν

|uβn̄α|2 + |uβn̄ᾱ|2

uββ̄ + uγγ̄
−

ν−1∑

β=1

n−1∑

γ=ν

|uβγ̄α|2 + |uβγ̄ᾱ|2

uββ̄ + unn̄

−
∑

ν≤β<γ≤n−1

|uβn̄α|2 + |uβn̄ᾱ|2 + |uγn̄α|2 + |uγn̄ᾱ|2

uββ̄ + uγγ̄
.

Thus,

Q−1∆φ .

n−1∑

β=ν

fββ̄ + (n − ν)fnn̄ −
ν−1∑

β=1

n−1∑

γ=ν

|uββ̄n|
2

uββ̄ + uγγ̄

−
ν−1∑

β=1

n−1∑

γ=ν

|uββ̄γ |
2

uββ̄ + unn̄
−

∑

ν≤β<γ≤n−1

|uββ̄n|
2 + |unn̄β |2 + |uγγ̄n|2 + |unn̄γ |2

uββ̄ + uγγ̄
.

= (n − ν)fnn̄ −
ν−1∑

β=1

n−1∑

γ=ν

|uββ̄n|
2

uββ̄ + uγγ̄
−

∑

ν≤β 6=γ≤n−1

|uββ̄n|
2

uββ̄ + uγγ̄
(3.18)

+

n−1∑

γ=ν



fγγ̄ −
ν−1∑

β=1

|uββ̄γ |
2

uββ̄ + unn̄
−

∑

ν≤β≤n−1,β 6=γ

|unn̄γ |2

uββ̄ + uγγ̄



 . (3.19)

Apply the Schwarz inequality to the last two terms in (3.18) to obtain that

ν−1∑

β=1

n−1∑

γ=ν

|uββ̄n|
2

uββ̄ + uγγ̄
+

n−1∑

β=ν

∑

ν≤γ≤n−1,γ 6=β

|uββ̄n|
2

uββ̄ + uγγ̄

≥

∣∣∣(n − ν)
∑ν−1

β=1 uββ̄n + (n − ν − 1)
∑n−1

β=ν uββ̄n

∣∣∣
2

(n − ν)
∑ν−1

β=1 uββ̄ + (2n − ν − 3)
∑n−1

β=ν uββ̄

. (3.20)

By (3.14) and (3.15) we have

(n − ν)

ν−1∑

β=1

uββ̄ + (2n − ν − 3)

n−1∑

β=ν

uββ̄ ∼ (n − ν)f + (n − ν)(n − 2)uνν̄

. 2(n − ν)f.

Plugging this and (3.17) into (3.20) yields that

ν−1∑

β=1

n−1∑

γ=ν

|uββ̄n|
2

uββ̄ + uγγ̄
+

∑

ν≤β 6=γ≤n−1

|uββ̄n|
2

uββ̄ + uγγ̄
≥

(n − ν)|fn|2

2f
. (3.21)
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We next to handle (3.19). For each γ = ν, . . . , n − 1, we apply the Schwarz
inequality to obtain that

ν−1∑

β=1

|uββ̄γ |
2

uββ̄ + unn̄
+

∑

ν≤β≤n−1,β 6=γ

|unn̄γ |2

uββ̄ + uγγ̄

≥

∣∣∣
∑ν−1

β=1 uββ̄γ − (n − ν − 1)unn̄γ

∣∣∣
2

∑ν−1
β=1 uββ̄ + (ν − 1)unn̄ +

∑
ν≤β≤n−1 uββ̄ + (n − ν − 2)uγγ̄

&
|fγ |2

2
∑ν−1

β=1 uββ̄ + 2(n − ν − 1)uνν̄

(by (3.16), (3.1), and (3.14))

∼
|fγ |

2

2f
, (by (3.15)).

Now substituting this and (3.21) into (3.19) and (3.18), respectively, yields that

Q−1∆φ .

n−1∑

γ=ν

(
fγγ̄ − (2f)−1|fγ |

2
)

+ (n − ν)
(
fnn̄ − (2f)−1|fn|

2
)

=

n−1∑

γ=ν

[(
fγγ̄ − (2f)−1|fγ |

2
)

+
(
fnn̄ − (2f)−1|fn|

2
)]

.

Therefore, if f1/2 is Hermitian 2–concave then we conclude that ∆φ . 0.

Hence, the proof of Theorem 3.1 is completed.

4. General case. In this section, we shall prove Theorem 1.1 for any k =
1, . . . , n − 1. As in the previous section, we only have to show (2.2) at a point x
near x0. Let us choose a coordinate system at x so that

uαβ̄ = δαβuαᾱ,

and

u11̄ ≥ u22̄ ≥ · · · ≥ unn̄. (4.1)

Then the w–matrix is also diagonalized:

wα1...αk,β1...βk
=

( k∏

i=1

δαiβi

)
wα1...αk,α1...αk

=

k∏

i=1

δαiβi

k∑

i=1

uαiᾱi
.

But in general we do not have a similar order for wα1...αk,α1...αk
in terms of the indices.

Recall that the rank of w–matrix is assumed to be r at x0. We can pick a constant
c > 0 so that the w–matrix has exactly r eigenvalues ≥ c near x0. We denote by

G = {(α1, . . . , αk) | wα1...αk, α1...αk
≥ c, 1 ≤ α1 < · · · < αk ≤ n},

and

B = {(α1, . . . , αk) | 1 ≤ α1 < · · · < αk ≤ n} \ G.

Then, #G = r and #B = N − r. As before, G and B are referred to be the good set
and bad set of indices, respectively.

We claim that any bad set must belong to one of the two cases.
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1. There exists a positive integer µ ≤ n − k so that

B = {(α1, . . . , αk) | µ ≤ α1 < α2 < · · · < αk ≤ n}.

2. There exist positive integers ν ≤ n − k and m ≤ k − 1 so that

B = {(α1, . . . , αk−m, n − m + 1, . . . , n) | ν ≤ α1 < · · · < αk−m ≤ n − m}.

Equivalently, one can also think that Case (2) consists of the following k − 1 smaller
cases in terms of the integer m. Namely, for each m = 1, . . . , k−1, Case (2:m) is that
there exists a positive integer νm ≤ n − k so that

B = {(α1, . . . , αk−m, n − m + 1, . . . , n) | νm ≤ α1 < · · · < αk−m ≤ n − m}.

Assuming this claim, we only need to verify (2.2) for these two cases. Before
proving this claim, let us prove some simple facts. Our starting point is (2.8) in
Proposition 2.2.

Proposition 4.1. Let A = (apq)1≤p,q≤l, l ≥ 2, be a matrix given by

apq = 0, for all p + q = l + 1, and apq = 1 for all else p, q.

Then A is invertible, and A−1 = (l − 1)−1(bpq) in which

bpq = 2 − l, for all p + q = l + 1, and bpq = 1 for else.

Proof. The result follows from a direct verification.

Proposition 4.2. Suppose that w(n−k)...(n−1),(n−k)...(n−1) ∼ 0. Then

uββ̄ ∼ 0, for all β = n − k, . . . , n.

Proof. By (4.1) we have

w(n−k)...(n−1),(n−k)...(n−1) =

n−1∑

β=n−k

uββ̄ ≥
k∑

i=1

uγiγ̄i
= wγ1...γk,γ1...γk

≥ 0,

for all n − k ≤ γ1 < · · · < γk ≤ n. Hence,

k∑

i=1

uγiγ̄i
∼ 0, for all n − k ≤ γ1 < · · · < γk ≤ n. (4.2)

Then, the result follows from solving these linear equations. Indeed, we can rewrite
(4.2) as

AU ∼ 0,

Here U is the transpose of
(
u(n−k)(n−k), . . . , unn̄

)
, and A = (apq) is the k +1 by k +1

matrix given by

apq = 0, for all p + q = k + 2, and apq = 1 for all else 1 ≤ p, q ≤ k + 1.

Then A is invertible by Proposition 4.1.
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Proposition 4.3. If there exists a (β1, . . . , βk) ∈ B with βk ≤ n − 1, then

uγγ̄ ∼ 0, for all γ ≥ β1.

Proof. By (2.8) we know that

wβ1...βk,β1...βk
∼ 0.

In view of (4.1), we have

0 ≤ w(n−k)...(n−1),(n−k)...(n−1) ≤ wβ1...βk,β1...βk
.

Thus,

w(n−k)...(n−1),(n−k)...(n−1) ∼ 0.

It follows from Proposition 4.2 that

uγγ̄ ∼ 0, for all γ = n − k, . . . , n.

For each ζ such that β1 ≤ ζ ≤ n − k, we also have

wζ(n−k+2)...n,ζ(n−k+2)...n ∼ 0,

since

0 ≤ wζ(n−k+2)...n,ζ(n−k+2)...n ≤ wβ1...βk,β1...βk
.

Hence,

0 ∼ uζζ̄ +
n∑

γ=n−k+2

uγγ̄ ∼ uζζ̄ .

This completes the proof.

Proposition 4.4. Let m be an integer such that 1 ≤ m ≤ k − 1. Suppose that
there exists a (β1, . . . , βk−m, n − m + 1, . . . , n) ∈ B with βk−m ≤ n − m − 1. Then

uγγ̄ ∼ −
1

k − m

n∑

ζ=n−m+1

uζζ̄, for all β1 ≤ γ ≤ n − m.

As a consequence,

wγ1...γk−m(n−m+1)...n,γ1...γk−m(n−m+1)...n ∼ 0,

for all β1 ≤ γ1 < · · · < γk−m ≤ n − m.

Proof. By (2.8) we have

wβ1...βk−m(n−m+1)...n,β1...βk−m(n−m+1)...n ∼ 0.

Note that βk−m ≤ n − m − 1 implies that

βi ≤ n − k + i − 1, for each i = 1, . . . , k − m. (4.3)
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Then, by (4.1),

wβ1...βk−m(n−m+1)...n,β1...βk−m(n−m+1)...n

≥ wγ1...γk−m(n−m+1)...n,γ1...γk−m(n−m+1)...n ≥ 0,

for all n − k ≤ γ1 < · · · < γk−m ≤ n − m. This implies that

wγ1...γk−m(n−m+1)...n,γ1...γk−m(n−m+1)...n ∼ 0,

for all n − k ≤ γ1 < · · · < γk−m ≤ n − m. Thus,

k−m∑

i=1

uγiγ̄i
∼ −

n∑

ζ=n−m+1

uζζ̄, (4.4)

for all n− k ≤ γ1 < · · · < γk−m ≤ n−m. Let us solve these linear equations: We can
reformulate the linear equations (4.4) as

AU ∼ B, (4.5)

Here U is the transpose of (u(n−k)(n−k), . . . , u(n−m)(n−m)), A = (apq) is the (k−m+1)

by (k − m + 1) matrix given by

apq =

{
0, if p + q = k + m + 2, 1 ≤ p, q ≤ k − m + 1,

1, otherwise,

and B is the transpose of the following (k − m + 1)–vector

−
n∑

ζ=n−m+1

uζζ̄ · (1, . . . , 1).

Now applying Proposition 4.1 to (4.5) yields that

uγγ̄ ∼ −
1

k − m

n∑

ζ=n−m+1

uζζ̄ , for all n − k ≤ γ ≤ n − m. (4.6)

For those γ with β1 ≤ γ ≤ n − k, we have by (4.1) and (4.3) that

0 ≤ wγ(n−k+2)...n,γ(n−k+2)...n ≤ wβ1...βk−m(n−m+1)...n,β1...βk−m(n−m+1)...n.

Thus,

0 ∼ wγ(n−k+2)...n,γ(n−k+2)...n

∼ uγγ̄ +

n−m∑

η=n−k+2

uηη̄ +

n∑

ζ=n−m+1

uζζ̄

∼ uγγ̄ +
1

k − m

n∑

ζ=n−m+1

uζζ̄, (by (4.6)).

Therefore, we have shown that

uγγ̄ ∼ −
1

k − m

n∑

ζ=n−m+1

uζζ̄ , for all γ = β1, . . . , n − m.



CONSTANT RANK THEOREM FOR HERMITIAN k–CONVEX SOLUTIONS 281

Corollary 4.5. Suppose that there exist two positive integers ν and m, ν ≤
n − k, m ≤ k − 1, such that

B = {(α1, . . . , αk−m, n − m + 1, . . . , n) | ν ≤ α1 < · · · < αk−m ≤ n − m}.

Then,

uγγ̄ ∼ −
1

k − m

n∑

ζ=n−m+1

uζζ̄, for all γ = ν, . . . , n − m. (4.7)

Proof. Applying Proposition 4.4 to

(ν, n − k + 1, . . . , n − m − 1, n− m + 1, . . . , n) ∈ B

yields the desired result.

Let us prove this claim. Let B be a bad set which does not belong to Case (1)
nor Case (2). The idea is to show that there exists an element in G which ∼ 0. Then
this would contradicts with the first statement in Proposition 2.1.

First, assume that B contains an element (β1, . . . , βk) with βk ≤ n − 1. Let

τ1 = min{α1 | (α1, . . . , αk) ∈ B, αk ≤ n − 1}.

Since B does not belong to Case (1), we have

{(α1, . . . , αk) | τ1 ≤ α1 < · · · < αk ≤ n} \ B 6= ∅.

In other words, there exists a (η1, . . . , ηk) ∈ G with τ1 ≤ η1 < · · · < ηk ≤ n. But on
the other hand, we have by Proposition 4.3 that

uγγ̄ ∼ 0, for all γ ≥ τ1.

In particular,

wη1...ηk,η1...ηk
=

k∑

i=1

uηiηi
∼ 0.

This contradicts with Proposition 2.1. Thus, if B does not belong to Case (1) nor
Case (2), then B must be a subset of

{(α1, . . . , αk−1, n) | 1 ≤ α1 < · · · < αk−1 ≤ n − 1}.

Now suppose that B is a subset of

{(α1, . . . , αk−l, n − l + 1, . . . , n) | 1 ≤ α1 ≤ · · · ≤ αk−l ≤ n − l},

for some 1 ≤ l ≤ k−2, and that B contains an element (γ1, . . . , γk−1, n− l +1, . . . , n)
with γk−1 ≤ n − l − 1. Let

λ = min{α1 | (α1, . . . , αk−l, n − l + 1, . . . , n) ∈ B, αk−l ≤ n − l − 1}.
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Since B does not belong to Case (2: l), we have

{(α1, . . . , αk−l, n − l + 1, . . . , n) | λ ≤ α1 < · · · < αk−l ≤ n − l} \ B 6= ∅.

Thus, there exists a (ζ1, . . . , ζk−l, n − l + 1, . . . , n) in G such that

λ ≤ ζ1 < · · · < ζk−l ≤ n − l.

But it follows from Proposition 4.4 that

wζ1...ζk−l(n−l+1)...n,ζ1...ζk−l(n−l+1)...n ∼ 0.

This contradicts with Proposition 2.1. Thus, B is indeed a subset of

{(α1, . . . , αk−l−1, n − l, . . . , n) | 1 ≤ α1 ≤ · · · ≤ αk−l−1 ≤ n − l − 1},

Therefore, by induction, we obtain that B is a subset of

{(α1, n − k + 2, . . . , n) | 1 ≤ α1 ≤ n − k + 1}.

This implies that B belongs to Case (2: k − 1). It is a contradiction. This proves the
claim.

We treat Case (1) and Case (2) in the following Lemma 4.6 and Lemma 4.7,
respectively. Thus, the proof of Theorem 1.1 is completed.

Lemma 4.6. Assume that there exists an integer µ ∈ {2, . . . , n − k} so that

B = {(α1, . . . , αk) | µ ≤ α1 < · · ·αk ≤ n}.

Let

r =

(
n

k

)
− #B =

(
n

k

)
−

(
n − µ + 1

k

)
.

Then,

∆σr+1 . 0,

provided that log f is Hermitian k–concave in Ω.

Proof. Let φ = σr+1. Apply Proposition 4.3 to (µ, n − k + 1, . . . , n − 1) ∈ B to
obtain that

uγγ̄ ∼ 0, for all γ ≥ µ. (4.8)

Then,

µ−1∑

γ=1

uγγ̄ ∼
n∑

γ=1

uγγ̄ = f. (4.9)

It follows from (2.9) that, for each α = 1, . . . , n,

(
n − µ

k − 1

) n∑

β=µ

uββ̄α =
∑

µ≤β1<···<βk≤n

(uβ1β̄1α + · · · + uβkβ̄kα) ∼ 0.
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Then,

µ−1∑

γ=1

uγγ̄α ∼
n∑

γ=1

uγγ̄α = fα, for all α = 1, . . . , n. (4.10)

By (2.10) we have

Q−1φαᾱ .
∑

(β1,...,βk)∈B

(wβ1...βk,β1...βk
)αᾱ

−
∑

(γ1,...,γk)∈G

∑

(β1,...,βk)∈B

|(wβ1...βk,γ1...γk
)α|2 + |(wβ1...βk,γ1...γk

)ᾱ|2

wγ1...γk,γ1...γk

.

Note that
∑

(β1,...,βk)∈B

(wβ1...βk,β1...βk
)αᾱ =

∑

µ≤β1<···<βk≤n

(uβ1β̄1αᾱ + · · · + uβkβ̄kαᾱ)

=

(
n − µ

k − 1

) n∑

β=µ

uββ̄αᾱ.

Recall that wβ1...βk,γ1...γk
is identically zero as long as {β1, . . . , βk} and {γ1, . . . , γk}

are differed by two elements. We then obtain that

∑

(γ1,...,γk)∈G

∑

(β1,...,βk)∈B

|(wβ1...βk,γ1...γk
)α|2 + |wβ1...βk,γ1...γk

)ᾱ|2

wγ1...γk,γ1...γk

=

µ−1∑

γ=1

∑

(β1,...,βk)∈B

k∑

j=1

|uβj γ̄α|2 + |uβj γ̄ᾱ|2

uγγ̄ + uβ1β̄1
+ · · · + ûβj β̄j

+ · · · + uβkβ̄k

∼

(
n − µ

k − 1

) µ−1∑

γ=1

n∑

β=µ

|uβγ̄α|2 + |uβγ̄ᾱ|2

uγγ̄
, (by (4.8)).

Here we use the convention: a1 + · · ·+ âj + · · ·+ak means that the term aj is omitted
in the summation. Then, we have

Q−1∆φ = Q−1
n∑

α=1

φαᾱ

.

(
n − µ

k − 1

) n∑

β=µ

n∑

α=1

uββ̄αᾱ −

(
n − µ

k − 1

) n∑

α=1

µ−1∑

γ=1

n∑

β=µ

|uβγ̄α|2 + |uβγ̄ᾱ|2

uγγ̄

.

(
n − µ

k − 1

) 


n∑

β=µ

fββ̄ −
n∑

β=µ

µ−1∑

γ=1

|uγγ̄β |2

uγγ̄





.

(
n − µ

k − 1

) n∑

β=µ

[
fββ̄ −

∣∣
µ−1∑

γ=1

uγγ̄β

∣∣2(
µ−1∑

γ=1

uγγ̄

)−1

]

∼

(
n − µ

k − 1

) n∑

β=µ

(
fββ̄ − |fβ|

2f−1
)
,

(
by (4.9) and (4.10)

)
.
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Therefore, ∆φ . 0 if log f is Hermitian k–concave in Ω.

Lemma 4.7. Assume that there exist positive integers m ≤ k − 1 and ν ≤ n − k
so that

B = {(α1, . . . , αk−m, n − m + 1, . . . , n) | ν ≤ α1 < · · · < αk−m ≤ n − m}.

Let

r =

(
n

k

)
− #B =

(
n

k

)
−

(
n − m − ν + 1

k − m

)
.

Then,

∆σr+1 . 0,

provided that the matrix (kffαβ̄ − fαfβ̄)1≤α,β≤n is k–concave in Ω, equivalently,

f1−1/k is Hermitian k–concave for k ≥ 2, and log f is Hermitian 1–concave when
k = 1.

Proof. Let φ = σr+1. Notice that, by (4.7) and (4.1),

f =
ν−1∑

γ=1

uγγ̄ +
n−m∑

η=ν

uηη̄ +
n∑

ζ=n−m+1

uζζ̄

∼
ν−1∑

γ=1

uγγ̄ + (n − k − ν + 1)uνν̄ (4.11)

& (n − k)uνν̄ . (4.12)

It follows from (2.9) that

(
n − m − ν

k − m − 1

) n−m∑

η=ν

uηη̄α +

(
n − m − ν + 1

k − m

) n∑

ζ=n−m+1

uζζ̄α

=
∑

ν≤β1<···<βk≤n−m




k−m∑

i=1

uβiβ̄iα +

n∑

ζ=n−m+1

uζζ̄α



 ∼ 0,

for each α = 1, . . . , n. Then, for each α,

(
n − m − ν + 1

k − m

)
fα =

(
n − m − ν + 1

k − m

) n∑

γ=1

uγγ̄α

∼

(
n − m − ν + 1

k − m

) ν−1∑

γ=1

uγγ̄α +

(
n − m − ν

k − m

) n−m∑

η=ν

uηη̄α,

(4.13)

where we make use of the elementary identity

(
p

q

)
=

(
p − 1

q

)
+

(
p − 1

q − 1

)
,
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for any two positive integers q and p ≥ 2. Similarly, we have

(
n − m − ν

k − m − 1

)
fα

∼

(
n − m − ν

k − m − 1

) ν−1∑

γ=1

uγγ̄η −

(
n − m − ν

k − m

) n∑

ζ=n−m+1

uζζ̄α,

(4.14)

for each α = 1, . . . , n.

By (2.10) we have

Q−1φαᾱ .
∑

ν≤β1<···<βk−m≤n−m

(wβ1...βk−m(n−m+1)...n,β1...βk−m(n−m+1)...n)αᾱ

−
∑

(γ1,...,γk)∈G

∑

ν≤β1<···<βk−m≤n−m

|(wβ1...βk−m(n−m+1)...n,γ1...γk
)α|2

wγ1...γk,γ1...γk

(4.15)

−
∑

(γ1,...,γk)∈G

∑

ν≤β1<···<βk−m≤n−m

|(wβ1...βk−m(n−m+1)...n,γ1...γk
)ᾱ|2

wγ1...γk,γ1...γk

. (4.16)

Observe that

∑

ν≤β1<···<βk−m≤n−m

(wβ1...βk−m(n−m+1)...n,β1...βk−m(n−m+1)...n)αᾱ

=
∑

ν≤β1<···<βk−m≤n−m

( k−m∑

i=1

uβiβiαᾱ +

n∑

γ=n−m+1

uγγ̄αᾱ

)

=

(
n − m − ν

k − m − 1

) n−m∑

β=ν

uββ̄αᾱ +

(
n − m − ν + 1

k − m

) n∑

γ=n−m+1

uγγ̄αᾱ.

Next, (4.15) plus (4.16) is equal to

−
ν−1∑

γ=1

∑

(β1,...,βk−m)

k−m∑

j=1

|uβj γ̄α|2 + |uβj γ̄ᾱ|2

uγγ̄ +
∑

1≤l≤k−m,l 6=j uβlβl
+

∑n
τ=n−m+1 uτ τ̄

−
ν−1∑

γ=1

∑

(β1,...,βk−m)

m∑

j=1

|u(n−m+j)γ̄α|
2 + |u(n−m+j)γ̄ᾱ|

2

uγγ̄ +
∑k−m

i=1 uβiβi
+

∑
1≤l≤m,l 6=j u(n−m+l)(n−m+l)

−
n−m∑

γ=ν

◦∑

(β1,...,βk−m)

m∑

j=1

|u(n−m+j)γ̄α|
2 + |u(n−m+j)γ̄ᾱ|

2

uγγ̄ +
∑k−m

i=1 uβiβi
+

∑
1≤l≤m,l 6=j u(n−m+l)(n−m+l)

,

in which
∑

(β1,...,βk−m) denotes the summation over all ν ≤ β1 < · · · < βk−m ≤ n−m,

while
∑◦

(β1,...,βk−m) denotes the summation over all ν ≤ β1 < · · · < βk−m ≤ n − m

and βj 6= γ for all j = 1, . . . , k −m. By (4.7) we can simplify the above expression as
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follows:

−

(
n − m − ν

k − m − 1

) ν−1∑

γ=1

n−m∑

β=ν

|uβγ̄α|2 + |uβγ̄ᾱ|2

uγγ̄ − uνν̄

−

(
n − m − ν − 1

k − m

) ν−1∑

γ=1

n∑

η=n−m+1

|uηγ̄α|2 + |uηγ̄ᾱ|2

uγγ̄ − uηη̄

−

(
n − m − ν

k − m

) n−m∑

β=ν

n∑

η=n−m+1

|uηβ̄α|
2 + |uηβ̄ᾱ|

2

uββ̄ − uηη̄
.

Thus,

Q−1∆φ = Q−1
n∑

α=1

φαᾱ

.

(
n − m − ν

k − m − 1

) n−m∑

β=ν

fββ̄ +

(
n − m − ν + 1

k − m

) n∑

γ=n−m+1

fγγ̄

−

(
n − m − ν

k − m − 1

) n∑

α=1

ν−1∑

γ=1

n−m∑

β=ν

|uβγ̄α|2 + |uβγ̄ᾱ|2

uγγ̄ − uνν̄

−

(
n − m − ν − 1

k − m

) n∑

α=1

ν−1∑

γ=1

n∑

η=n−m+1

|uηγ̄α|2 + |uηγ̄ᾱ|2

uγγ̄ − uηη̄

−

(
n − m − ν

k − m

) n∑

α=1

n−m∑

β=ν

n∑

η=n−m+1

|uηβ̄α|
2 + |uηβ̄ᾱ|

2

uββ̄ − uηη̄

.




(

n − m − ν

k − m − 1

) n−m∑

β=ν

fββ̄ −

(
n − m − ν

k − m − 1

) n−m∑

β=ν

ν−1∑

γ=1

|uγγ̄β |2

uγγ̄ − uνν̄

−

(
n − m − ν

k − m

) n−m∑

β=ν

n∑

η=n−m+1

|uηη̄β |2

uββ̄ − uηη̄





+




(

n − m − ν + 1

k − m

) n∑

η=n−m+1

fηη̄ −

(
n − m − ν

k − m

) n∑

η=n−m+1

n−m∑

β=ν

|uββ̄η|
2

uββ̄ − uηη̄

−

(
n − m − ν + 1

k − m

) n∑

η=n−m+1

ν−1∑

γ=1

|uγγ̄η|2

uγγ̄ − uηη̄

]
.
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It then follows from Proposition 4.8 and Proposition 4.9 below that

Q−1∆φ .

(
n − m − ν

k − m − 1

) n−m∑

β=ν

(
fββ̄ −

|fβ|
2

kf

)

+

(
n − m − ν + 1

k − m

) n∑

η=n−m+1

(
fηη̄ −

|fη|2

kf

)

=
∑

ν≤β1<···<βk−m≤n−m

[
k−m∑

i=1

(
fβiβ̄i

−
|fβi

|2

kf

)
+

n∑

η=n−m+1

(
fηη̄ −

|fη|
2

kf

)]

Therefore, ∆φ . 0 if the Hermitian matrix
(
kffαβ̄ − fαfβ̄

)
is k–concave in Ω.

Proposition 4.8. For each ζ = ν, ν + 1, . . . , n − m, we have

(
n − m − ν

k − m − 1

) ν−1∑

γ=1

|uγγ̄ζ |2

uγγ̄ − uνν̄
+

(
n − m − ν

k − m

) n∑

η=n−m+1

|uηη̄ζ |2

uζζ̄ − uηη̄

&

(
n − m − ν

k − m − 1

)
(k − 1)|fζ |2

kf
.

Proof. Let

A =

(
n − m − ν

k − m − 1

)
, C =

(
n − m − ν

k − m

)
.

By the Schwarz inequality,

A
ν−1∑

γ=1

|uγγ̄ζ |2

uγγ̄ − uνν̄
+ C

n∑

η=n−m+1

|uηη̄ζ |2

uζζ̄ − uηη̄

&

∣∣∣A
∑ν−1

γ=1 uγγ̄ζ − C
∑n

η=n−m+1 uηη̄ζ

∣∣∣
2

A
∑ν−1

γ=1(uγγ̄ − uνν̄) + C
∑n

η=n−m+1(uνν̄ − uηη̄)

& A2|fη|
2
( Ak

k − m

ν−1∑

γ=1

uγγ̄ + Ckuνν̄

)−1

(4.17)

∼
A(k − m)

k
|fη|

2f−1. (4.18)

In (4.17) we have used (4.14) and that

−(ν − 1)uνν̄ ∼
ν − 1

k − m

n∑

η=n−m+1

uηη̄ .
1

k − m

ν−1∑

γ=1

uγγ̄ ,

while (4.18) follows from (4.11) and

C =
n − k − ν + 1

k − m
A.

This completes the proof.
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Proposition 4.9. For each η = n − m + 1, . . . , n, we have

(
n − m − ν + 1

k − m

) ν−1∑

γ=1

|uγγ̄η|2

uγγ̄ − uηη̄
+

(
n − m − ν

k − m

) n−m∑

β=ν

|uββ̄η|
2

uββ̄ − uηη̄

&

(
n − m − ν + 1

k − m

)
|fη|2

kf
.

Proof. For convenience, let us denote by

B =

(
n − m − ν + 1

k − m

)
, C =

(
n − m − ν

k − m

)
.

First, notice the fact that

−uηη̄ . (k − 1)uνν̄. (4.19)

Indeed,

0 ≤ w(n−k+1)...n,(n−k+1)...n =
n−m∑

γ=n−k+1

uγγ̄ +
n∑

ζ=n−m+1

uζζ̄

∼ (k − m)uνν̄ +

n∑

ζ=n−m+1

uζζ̄

(
by (4.7)

)

. (k − 1)uνν̄ + uηη̄,
(
by (4.1)

)
.

Now we apply the Schwarz inequality to obtain that

B

ν−1∑

γ=1

|uγγ̄η|2

uγγ̄ − uηη̄
+ C

n−m∑

β=ν

|uββ̄η|
2

uββ̄ − uηη̄

≥

∣∣∣∣∣∣
B

ν−1∑

γ=1

uγγ̄η + C

n−m∑

β=ν

uββ̄η

∣∣∣∣∣∣

2 

B

ν−1∑

γ=1

uγγ̄ + C

n−m∑

β=ν

uββ̄ − B(n − k)uηη̄




−1

∼ B|fη|
2
(
f − (n − k)uηη̄

)−1 (
by (4.13)

)

& B|fη|
2
(
f + (n − k)(k − 1)uνν̄

)−1 (
by (4.19)

)

& B|fη|
2(kf)−1,

(
by (4.12)

)
.

Therefore, the proof of Theorem 1.1 is completed.
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