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A CLASS OF SOBOLEV TYPE INEQUALITIES*

GU-JI TIANT AND XU-JIA WANGH

Abstract. In this paper, we prove that for any strictly convex polynomial, or more generally
any strictly convex function satisfying appropriate conditions, there is an associated Sobolev type
inequality.
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1. Introduction. Sobolev type inequalities play a crucial role in the study
of local behavior of solutions to elliptic partial differential equations. To prove the
local estimates such as the Harnack inequality and Holder continuity, usually one first
proves related Sobolev type inequalities [GT]. In particular various weighted Sobolev
type inequalities have been established in the study of degenerate elliptic equations,
such as those generated by vector fields which satisfy Hormander’s condition [CDG,
FGW1, FGW2, FL, GN, L1].

In this paper we consider the inverse problem. We prove that the Sobolev inequal-
ity can also be obtained from the Harnack inequality. We will prove a family of Sobolev
type inequalities from the Harnack inequality for the linearized Monge-Ampere equa-
tion, established by Caffarelli and Gutierrez [CG2]. We prove that for each convex
function satisfying appropriate conditions, there is an associate Sobolev type inequal-
ity. For example the classical Sobolev embedding W, () — L**/(»~2)(Q) is associ-
ated with the quadratic function ¢(z) = 1|z|>. Here we state the results for convex
polynomials.

THEOREM 1.1. Let ¢ be a strictly convex polynomial in R™, n > 3. Denote by
A = {a;;} the cofactor matriz of D*p. Then for any bounded domain Q C Br(0) and
any function u € C§°(Q),

1 1
3 2
{ A lu|Pv d:c} <C [/Q Zijaijuxiuzj d:c} , (1.1)

where
v = det D%, (1.2)

and the constant p > 2 depends only on n and ¢, and C also depends on R.

Theorem 1.1 is a special case of Theorem 3.1 below. In Theorem 3.1 we show
that (1.1) holds for any strictly convex function ¢ provided v satisfies (3.14) and a
structure condition CG in Section 3. Let us consider some examples.
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EXAMPLE 1. Let
— a+2 2
p(x) = |aa|*2 4+ Y af, (1.3)

where o > —1. Then for any v € C§°(£2),

1 1
» 2
P a 2 a 2
{/Q |u|P |z | da:] <C {/Q uy, + |21 E g Yo dz] . (1.4)

The power p can easily computed by (3.33) and (3.40). The left hand side of (1.4) can
be replaced by the norm ||ul|1»(q) for a different p > 2 given by (3.37), see Remark
3.4. We remark that the functional on the right hand side of (1.4) is related to the
Grushin type operator [FGW2, M].

Example 2. More generally, let

P(x) = [ [ 4 [, (1.5)
where o; > —1 satisfy (3.42). Then we obtain

{/Q |u|Po d:c} ’ <C [/Q Ziai ul, d:c} i ; (1.6)

where o(x) = []|z:|*, oi(z) = o(z)/zf". When ay,--- ,a, satisfies the condition
(3.41), we can drop the weight o and (1.6) holds for a different p > 2, see Remark 3.4.
Note also that (1.6) holds obviously if one replaces o; by another function &; which
satisfies &;(x) > 0,# 0 and 6; > o;, where i = 1,2,--- ,n. Hence (1.6) represents a
family of Sobolev type inequalities.

Example 3. Let ¢ be a strictly convex function satisfying

C, <detD?*¢ < Cy in Q (1.7)

n—2

for two positive constants C1, Cs, then for any u € C§°(9),
o 3

[ |u|%d:c} <C {/ aij(a:)umiuzjd:c} (1.8)
Q Q

provided a;; are integrable functions. Obviously the exponent in (1.8) is sharp. Note
that even in dimension two, there are many nonsmooth, strictly convex functions
satisfying (1.7). For example, the following two functions satisfy (1.7) in B,(0) for
some r > 0 [W],

2
i 2 2
= log | 1 ; 1.9
P = fogTlog ey 72 o8l tos el ()
and
a} + 323 /a3 if |xo] < |23,
@) =91 , 23 43 . 3 (1.10)
sx1Ty 4 22, if |zo| > |z1]°.

Both functions ¢ are C*“ but not C1! smooth, and the corresponding matrix {a;;}
is both degenerate and singular.

We would like to point out that for most convex functions ¢, the associated
Sobolev type inequalities we obtained are either new or improve previous ones. Our
proof is based on a crucial lemma (Lemma 2.1), of which the proof is essentially
due to Carron [C] but we made some necessary modifications. Lemma 2.1 shows
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that the Sobolev inequality follows from a decay estimate (2.2) of the corresponding
Green function. This argument also applies to more general elliptic operators, namely
we can also obtain the Sobolev type inequality from the Harnack inequality for other
degenerate or singular linear elliptic equations. In particular our argument also applies
to linear elliptic equations on manifolds. Note also that in Lemma 2.1 we allow a weight
, which can be the function v given in (1.2) as in Theorems 1.1 and 3.1, or v =1 as
in Theorem 3.2. But other choices are also possible.

This paper is arranged as follows. In Section 2 we prove the crucial lemma. In
Section 3 we use the Harnack inequality to establish a decay estimate for the Green
function.

This paper is dedicated to Professor Neil Trudinger on the occasion of his 65th
birthday. We would like to express our gratitude for his enthusiasm, influence, and
leadership in elliptic partial differential equations. In particular the second author
would like to thank him for his friendship in their collaboration over the last ten
years.

2. A crucial lemma. Let L =3 0;,(ai;(x)0,,) be a linear elliptic operator in

i
a bounded domain 2. We assume that L is uniformly elliptic but our argument below
does not depend on the upper and lower bounds of the eigenvalues of the matrix {a;;}.
Let G(z,y) be the Green function of L in , namely G(-,y) is a positive solution of

—L[G(-,y)] =6, in Q, (2.1)
G(-,y) =0 on 09,

where §, is the Dirac measure at y € 2. For an integrable function p, we also denote
by p the corresponding measure, that is for any Borel set S C R™,

M(S):/Sdu:/sudx-

LEMMA 2.1. Suppose there is an integrable, almost everywhere positive function
i such that for any t > 0,

p{r e Q: G(x,y) >t} < Kt7P/2 (2.2)

where p > 2 and K > 0 are constants. Suppose also that u satisfies the doubling
condition, namely there exists a constant b > 0 such that

u[B(z, )] > bu[B(x,2r)] (2.3)

for any ball B(x,2r) € Q. Then for any smooth function u € C§°(Q), we have the
iequality

where the constant C' depends only on n,p,b, and K.

Proof. Our proof is inspired by that in [C], see also Chapter 8 of [H]. For any
open set U C €, let 11 = 11,y be the first eigenfunction, and Ay = Ay y the first
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eigenvalue, of the operator L in U, namely

L{y1] = Mipypr in U,
1/)1 =0 on OU.

Let Gy be the Green function of L in U. Then we have
Yi(y) =M /U 1 Gu(z, y)¢r(z)de.
Suppose 17 attains its maximum at y. Letting y = ¢ in the above formula, we obtain
1<) /U/LGU(UC,?J)CZZE-
By (2.2),
/UuGu(w,y)dw = /OOO {Gu(-,y) >t} (2.5)
ngmmmvfoWﬂ
—Tu()+ K [0
()
where T is chosen such that KT~P/2 = ;(U). Tt follows that

M) r > Ch (2.6)

Denote

SIS
—
o
EN{
~—

* s 1—
¢ = inf AylpU)F,

*=in QiiUiU; @ U LQ U = )
s =i [ aguy s ue C@. | Fluydu=1} (2.8)

where F(u) = [ f(t)dt and
[t]p—1 if |t] <k,
kp—t if [t| >k,

)=

and k > 1 is a constant which will be sent to infinity. Suppose the infimum (2.8) is
attained by a positive function v = v, € C*(Q). Then v vanishes on 99 and satisfies
the equation

—L[v] = Auf(v) in Q, (2.9)
where A is the Langrange multiplier. By our choice of f, %f(v)v < F(w) < f(v)v.
Hence multiplying (2.9) by v and taking integration we obtain

A< s* < ph (2.10)

We point out here that we only use the existence of a Holder continuous solution v
but do not need any a priori bound for this solution. Hence we do not need any a
priori bounds for the eigenvalues of {a;;}.
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Denote M = ||v|| e, 2 = {v(z) > M —t}. For ¢t € (0, M), we claim

@) > (< )" (2.11)
HEE) =\ Ggprr—1 ' '
Indeed, by (2.9),
fQ Qi U;V; dx
A () < L
18 < th(’U —M+t)2du
_ Jo,v—=M+t)(—Lv)dz
B th(v —M+t)2du
Jo,(v =M +t)du
th (v—M+1t)2du

1/2
< S*Mp71 /L(Qt)
- th(v—M—Ft)Qd,u '

< g*MP1

Noting that
ty2
/Q (v—M+t)*du > (5) (2 /2),

we obtain from (2.7),

L QS*MP_l 0 1/2
()7 < M) < t (u/zf(?t;i)> '

It follows that
1(S2e) = Bu(Q/2) %1, (2.12)

2p
ter O\ T
b= <25*M1’—1 >

() > E (75)" (9 g ) (77)

where

By iteration,

m

Let a = supg, [Dv|. We have € /om D B(o, 5e—), where xg is the maximum point of
v. Hence by the doubling condition (2.3),

t t
Qyjom] > ulB —)] > " "ulB —
HlS 2] 2 B0, )] 2 5"l Blwo, )]

where myg is the smallest integer such that B(x, ﬁ) C Q. Recalling that p > 2, we
obtain

m

M(Qt/zm)(s”%) -1

as m — o0o. Therefore we get

_P_
Sio(mia)t gy _ (_t T
(@) > pio(s=)” = gaies —<2S*M,,_1

and so (2.11) is proved.
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Now we have
1—/F Ydp = /F(M)u{:veﬂz F(v)(z) > t}dt
= / plz € Q: v(z) > t}F'(t)dt
0
= /Mu{x €Q: v(x)>M—t}F' (M —t)dt
OM
= / w(Q)F' (M — t)dt

M
tr2 (M — t)dt
(zs*Mw)/o -0

c* 1 e F'(M(1-t
) [,

Y

2s*
Denote nn = k/M. By our definition of f, we have
{ pMP~L(1—t)p~1  if 1-n<t<l,
Ep—1 if 0<t<l-—n

F'(M(1—1))

Hence we have

1 ’ 1— 1

» F'(M(1—1t T, p

/ tr—2 #dt: / tpf277p71 +p/ tr—2 (l—t)pil. (2.13)
0 Mr 0 1-n

Recalling that [, F'(u)dp = 1, we have

1 1
1= / F(v)du > —/ kPdu = —kPu(w),
Q w

namely

p(w) < pk7?, (2.14)
where w = {v > k}. Recalling also that v satisfies the equation

L(v) = Py in w

and by (2.10), A < s* < C, hence by the boundary condition v = k on dw we have

v(x) < k+5\k”’1/G(I,y)du

w

< k+ CRP L p(w)' 7,

where G is the Green function in w and we have used the estimate (2.5). By (2.14),
it follows that
M =supv < (14 O)k.

Therefore we obtain 7 = 4= > (1+ C)~!. By (2.13) we therefore obtain

' FI(MO - 1)

; Mpl dt>C>0
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Consequently we obtain

s* > Cic”.
From (2.8) we obtain
2/p
/ a;juuyde > Cic* {/ fu)|ul d,u] (2.15)
Q Q
for any u € C}(Q2). Sending k — oo, we obtain (2.4). 0

REMARK 2.1. In (2.8) we may choose F'(u) = |u|P~¢ and letting ¢ — O[H]. Indeed,
since p < -2 by the Sobolev embedding W'2(2) — Lo (), the infimum (2.8) is
attained by a minimizer v.. By the above argument we then obtain

2
{ A |ulP~® d,u] < C’/Q aijuiu; de, (2.16)

where C is a constant independent of €. Sending ¢ — 0 we also obtain (2.4). Our mod-
ification in (2.8) is to avoid the use of the Sobolev embedding W12() — Lo Q).

3. Estimate for the Green function. The purpose of this section is to verify
the decay estimate (2.2) for the Green function of the linearized Monge-Ampere equa-
tion. By the Harnack inequality of Caffarelli and Gutierrez [CG2], we can prove a more
general Wolff potential estimate for functions which is sub-harmonic with respect to
the linear elliptic operator L, as in [TW1] for quasilinear subelliptic equations. For
the linearized Monge-Ampere equation, it suffices to replace the metric ball in [TW1]
by sub-level sets of the convex function . We refer the reader to [KM, L, TW1] for
the Wolff potential estimate and [CW, FS, FJK, L2] for estimates for Green functions.

Let ¢ be a smooth, strictly convex function. The linearized Monge-Ampere equa-
tion relative to the function ¢ is given by

Lolu] = f(), (3.1)

where

L,u] = Zijami (aij(x)0,;u)
1,3

and {a;;} is the cofactor matrix of D?p. The second equality is due to that {a;;} is
of divergence free, i.e.,

Denote

v = detD?p.

Assume that v satisfies the structure condition:
CG For any given € > 0, there exists > 0 such that for any convex set S C  and
any set E C S, if |E| < 4|5, then

/l/d:vga/l/dac, (3.2)
E s

where | - | denotes the Lebesgue measure.
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When ¢ satisfies the condition CG, Caffarelli and Gutierrez [CG2] proved a Har-
nack inequality for positive solutions to the equation

L,[u] =0. (3.3)
Their Harnack inequality can be stated as follows.

LEMMA 3.1. Let ¢ be a smooth, strictly convez function in Q satisfying condition
CG. Let u be a positive solution to (3.3) in the sub-level set

Se(y,h) :={zeQ: p(x) < l,(x)+h}, (3.4)
where {y is the tangent plane of ¢ at y. If Sy(y, h) is strictly contained in Q, we have
sup u<C inf |, (3.5)

S (y,h/2) Se (y,h/2)

where C is a constant depending only on n and the structure condition CG.

It is convenient to use the above Harnack inequality in a normalized form. Let
U be a bounded convex domain. There is a unique ellipsoid E, called the minimum
ellipsoid of U, which attains the minimum volume among all ellipsoids containing U.
Moreover

lE CcUCE, (3.6)
n

where aF' denotes the a-dilation of E with respect to its center. Choosing the coor-
dinates properly, we assume that F is given by

E={§:§«<u. (3.7)

Making the linear transform x — & = Tz,
fi=xifri, i=1,2--,n, (3.8)

such that T(E) is the unit ball. Also let

P) = 5 le(z) = by — N (3.9)

such that
l or = 0, infy0 = —1, (3.10)

where U = T(U). In the following we say ¢ and U are normalized if the minimum
ellipsoid of U is the unit ball and ¢ satisfies (3.10).

Note that the structure condition CG is invariant under the above changes. Under
condition CG, the function ¢ is strictly convex and uniformly Hoélder continuous in
U with Holder exponent 1/n [P]. Therefore by the finite covering [CG1] and the
invariance of the Harnack inequality under linear transforms, we see that if u is a
positive solution to (3.3) in S, (y, h) — S, (y, h/2), then

sup u<C inf w. (3.11)
9S4 (y,3h/4) 85, (y,3h/4)

The next lemma is related to capacity estimate in potential theory.
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LEMMA 3.2. Let ¢ be a normalized function defined in a normalized domain Q.
Suppose ¢ satisfies the condition CG. Let w be the solution of
Liwl=0 in U, (3.12)
w=¢ on OU,
where U = {z € Q: —3 < @(z) <0}. Then

C1 < / > ag(@wiy < O, (3.13)
o i
where 7 is the unit outer normal of 0N2.

Proof. The condition CG implies that v = detD? satisfies the doubling condi-
tion, namely v(Q2) < Cv(82;/3), where Q; = {z € Q: @(z) < —t}, t € (0,1). Since
¢ and € are normalized, we have dist(€2; /2,952) > C and v(§/3) < C for a different
constant C.

Observing that Ly[¢] = ndetD?$ > 0 and w = ¢ = 0 on dU, by the comparison
principle we have 0 > w > ¢ in U. Hence

aij(T)wiy; < ai; (T)Piy;
L3 e < [ 30, as@en,
:n/ detD?*¢ < C.

Q

We obtain the second inequality. To prove the first inequality, we extend w smoothly
to the whole domain Q. Noting that Ls[w] = 0 in U, by (3.2) we have

/ > aii(@)wivy =/ > aij(@)wivy
o0 2,7 aﬂlm 1,7

> a;ii (T)Pivj
B /aszl/z Z” ()0

=n / detD?*¢ > C. 0
Q1/2

We are ready to prove (2.2) for the linearized Monge-Ampere equation.

_ LEmMA 3.3. Let ¢ be a smooth, strictly convex function defined in a neighborhood
of Q. Suppose ¢ satisfies condition CG. Let G(-,y) be the Green function of L, in ,
where y € Q. Suppose for any sub-level set S,(y,h) CC €,

C1IS" 0 < v(Sh) < ColSulTTH, S 1= S,(y, h), (3.14)
where 0 > 0, C1,Cy,0 > 0 are constants. Then we have
vz eQ: Glz,y) >t} < Kt~ G=huro=T, (3.15)

Proof. Since ¢ is defined in a neighborhood of Q, by considering the Green
function of L, in a larger domain we may assume that dist(y, 0Q2) > co.
By the Harnack inequality (3.11), we have

sup G(-,y) < Cinf G(-,y) (3.16)
8Sh oSy,
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provided Sy, is compactly contained in €. For any large ¢ > 1, let h such that
inf G(-,y) =t. 1
Inf G(y) (3.17)

Let E be the minimum ellipsoid of Ss,. Suppose E is given by (3.7). Let & = Tz be
the linear transform given in (3.8), and let

&=l — b, — 2] /r[v(San)] ", (3.18)
i =[u— 1SI21£ u]/r[l/(S’gh)]l/", (3.19)

where 7 = (ry - --7,,)"/™. Then equations (1.2) and (3.1) change to
2 A

detD*¢p =D, (3.20)
Lfi) = f, (3.21)
where N .
i) = Sigrle), f(#) = o) at & =T
Denote

By direct computation,

. R ™ v(Sap)
(Sap) = dv = =1, 3.22
(San) /S e (3.22)
5 on s, fde 1
dz = 2h = dx.
o ! v(Sap) T v(S2n) Js,), !
Let 1
u* = v(Sop) @ = ;[y(sgh)p*% [u— inf ul. (3.23)
Then we have R
Lolu] = f* in Sop, (3.24)

where f*(z) = r"f(x),

/ frdi =1 if/ fda = 1. (3.25)
San, San

From now on, we let the function u in (3.19) be the Green function G(-,y). We
claim that R
u* >c* on 0Sh. (3.26)

To prove (3.26), noting that Sy, is normalized and ¢ = 0 on 855, by (3.22) and
condition CG we have
—C1 <infg ¢ < -0y, (3.27)

namely, ¢ is normalized up to a constant under control. If (3.26) is not true, by the
Harnack inequality, u* is nonnegative but small everywhere on aSh,. Recalling that
u* > 0in th, by replacing u* by the Green function of L, in S’Qh, we may assume
that u* = 0 on 8S2,. Let w be the solution of (3.12). Then —w > C*u* on a8, for a
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large constant C*. Hence —w > C*u* in Son — S By the divergence structure of Ly
and integrating by parts, we have

/A Qijwiy; ZC*/A agj (—ui)v; :C*/ Lou®™ =C",
652;1 652)1 SZh,

where 7 is the unit outer normal and {a;;} is the cofactor matrix of D?¢. We reach
a contradiction with the second inequality in (3.13).

Denote S, = S,(y,27%), tx = infas, G(,y), tx = supyg, G(-,y), r& = | Sk |M/™.
From (3.23) and (3.26), it follows

* 1 _
ther — ti > cFr[v(SK)] L

Hence .
* 1
the1 > C ijlrj[’/(sj)]" g

By the Harnack inequality (3.16),
_ k—1
B <Ot < Cry (S

J:
We claim that there exists m > 0 such that for any k > 0,

Pt [V (S )] 7 1 > 20k [0(Sp)] 7L (3.28)

Indeed, by normalizing as in (3.8)-(3.10), it suffices to prove (3.28) for k& = 0. But
when &k = 0, (3.28) follows by the second inequality in assumption (3.14).
By induction and (3.28) it is easy to show that for any k > 1,

CZC) ) SN b

AS a consequence,
ter1 > (14 6o)tk (3.29)

for a positive constant Jp depending only on ¢; and m.
From (3.29) it follows that
u* <c¢f on AS). (3.30)
Indeed, let m > 1 such that (1 + dp)™ > C, where C is the constant in the Harnack
inequality (3.16). Then we have {x € Q: u(z) >t} C Sy(y,2™h). Hence u* < 0 on
dSym . Similar to the proof of (3.26), we obtain (3.30) from Lemma 3.2.
From (3.23), (3.29) and (3.30) it follows that
1 — = *
(SRt < ¢ /.
By the first inequality in assumption (3.14) and noting that ™ =~ |Sap| &= |Sh|, we
have r < [v(Sy,)/C]*/"(1+9)  where the notation a ~ b means C~'a < b < Ca for some
constant C under control. Hence

W (Sy)]' 7 Fm <

? (3.31)

We have proved (3.15). O
By Lemma 3.3 and Lemma 2.1 we have therefore obtain
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THEOREM 3.1. Let ¢ be a smooth, strictly convex function defined in a neigh-
borhood of a bounded domain Q C R™, n > 3. Suppose ¢ satisfies (3.14), and the
structure condition CG. Then for any u € C3°(£2),

|u|? dv v <C aij(z)uuj de 1/2, (3.32)
Q Q
where
P=m —211)((];199)) -1 (3:33)

and C depends only on n, the constants in (3.14), and the structure condition CG.
By the first inequality of (3.14) and (3.31) we have

|Su[ 105" < ? (3.34)
Hence if 1 4+ 6 — # < 1, namely 6 < %, we obtain
|Su| < Kt=P/? (3.35)

for p = (n—1)++0)—1 > 2. Therefore by Lemma 2.2, we obtain

THEOREM 3.2. Let ¢ be a smooth, strictly convex function defined in in a neigh-
borhood of a bounded domain 2 C R™, n > 3. Suppose @ satisfies (3.14) with 6 < %
Suppose also that the structure condition CG holds. Then for any u € C§° (),

{ /Q Iulpda:] v <C [ /Q aij (x)usu; d:c} 1/2, (3.36)

2n
(n—1)(1+0)—1

and C depends only on n, the constants in (3.14), and the structure condition CG.

where

(3.37)

p:

REMARK 3.1. In Theorems 3.1 and 3.2 we don’t assume the doubling condition
(2.3), as it follows from the condition CG. Note that if the first inequality of (3.14)
holds for all sub-level sets, then necessarily 6 > 0. Hence p < %

REMARK 3.2. In Theorems 3.1 and 3.2, the function ¢ is assumed to be smooth
and strictly convex. But the constant C' in (3.32) and (3.36) do not depend on the
upper and lower bounds of D?y. Therefore by approximation, Theorems 3.1 and 3.2
hold for strictly convex functions ¢ provided its cofactor matrix is integrable. More
precisely, let ¢° be the mollification of ¢ and let aj; be the cofactor matrix of D2y",
then aj; converges to a;; weakly as measures [TW2]. In particular, for any continuous
function f;; € C°(€), one has

/Qafjfijdw — /Q aij fijdz. (3.38)
REMARK 3.3. Let Wol_ﬁ (©) be the completion of C§°(£2) under the norm

1/2
||U||W01ﬁ(g) = [/Qzaijuiuj} . (3.39)
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Then by the Sobolev inequality (3.32) or (3.36), one can introduce a weak solution to
the linearized Monge-Ampere equation (3.1) with f € L*(Q2). Note that the matrix
{aij} can be both degenerate and singular. It is inconvenient to introduce a weak
solution for (3.1) without a Sobolev type inequality related to the norm (3.39).
Remark 3.4. Here we verify the conditions in Theorems 3.1 and 3.2 for the example
(1.5). For the first inequality in (3.14), it suffices to consider the sub-level sets S, (y, h)
at y = 0. We have
v=detD?*p = |z1|** - - |2, |,

It is easy to compute that

1S(0, )]~ haiee ™ F

an+1

(5,0, h)) ~ hariz b,

Hence v(S,(0, h)) = |S,(0, k)¢ with
a;+1 NI an,+1

a1 +2 an+2
0= oy
ar1+2 an+2

- 1 (3.40)

a2ttt A

Therefore 6 < % is equivalent to

1 1 n—1
e 3.41
mrz T a2 (3.41)
Similarly, the second inequality of (3.14) holds if
1
-1 e . 3.42
" o o+ 2 + + oy + 2 ( )
Recall that o; > —1 for ¢ = 1,2,--- ,n. The function v is allowed to be singular.

It is easy to see that (3.41) holds if a; < 0 for all 4 > 2, or if ayas < 4 and a; <0
for all ¢ > 3. In particular the Sobolev inequality (3.36) holds for the first example
(1.3) for all & > —1.

For the second example (1.5), we also note that the exponents p given in (3.33)
and (3.37), with 6 given by (3.40) are optimal, as the inequality is invariant under
linear transforms which normalizes sub-level sets of . In particular we see that when
(3.41) is not satisfied, one cannot expect a Sobolev embedding W&Z(Q) — LP(Q)
for any p > 2. It also means the Harnack inequality of Caffarelli and Gutierrez for
the linearized Monge-Ampere equation (3.3) cannot be obtained by the De Giorgi or
Nash-Moser iterations.
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