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PARTIAL REGULARITY OF WEAK SOLUTIONS TO MAXWELL’S
EQUATIONS IN A QUASI-STATIC ELECTROMAGNETIC FIELD*
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Abstract. We study Maxwell’s equations in a quasi-static electromagnetic field, where the
electrical conductivity of the material depends on the temperature. By establishing the reverse
Hoélder inequality, we prove partial regularity of weak solutions to the non-linear elliptic system and
the non-linear parabolic system in a quasi-static electromagnetic field.
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1. Introduction. In this paper, let 2 be a domain in R™ with n > 3, and let u(z)
and H(x) for i = 1,...,n be scalar functions defined on Q. For any positive integer k,
let Ak (€2) denote the space of k-forms on Q. We have the usual exterior derivative d
of forms with d : Agx(Q) — Ap41(Q). Consider a 1-form H = """ | H'(z)dz;, which
may be regarded as a connection in differential geometry. We define the curvature F
of the connection H by

F—dH — ZFijdxi Adz;,

i<j

where F = %—T - %—fi (e.g. [9)).
i J
Let * be the Hodge star linear operator which assigns to each k-form on ) an

(n — k)-form and which satisfies
sk = (—1)k=R),
We have a product (-,-) in the k-form space A ()
(a,bydxy A ... Ndx, = a Axb, |a|* = (a,a)

for all a,b € Ak(Q) (e.g. [15]).
By definition, we have

P = (1) = S, P = (i, aH) = L ST (o)

i=1 i,j=1

Let d* be the adjoint operator of d with d* = (—1)"T" 1 dx : Ay (Q) — Ap_1(Q)

and
/(da,b)d:vz/(a,d*b>dx
Q Q

for a € Ap(Q),b € Agy1(Q2), where b or a has compact support inside of Q.

N =
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We consider the following system

(1.1) d*[o(u)dH] =0 in Q

(1.2) —Au=oc(u)|dH|? inQ

where o is a positive function defined on R.

We say that a pair (u, H) is a weak solution to the system (1.1)-(1.2) if u €
Wh4(Q) for some ¢ € (1, 25) and H € WH?(;R™), and the pair (u, H) satisfies the
following:

/(J(u)dH, de)dz =0,
Q

/Vu-de:v:/a(u)|dH|2z/1d:v
Q Q

for all ¢ :=>""" | ¢'(x)dx; for i = 1,...,n, where ¢' € C3(Q;R) and ¢ € CZ (4 R).
ASSUMPTION (S). o(u) is uniformly Holder continuous in R and there exist two
constants o1 and o1 such that

0<o1<o(u) <os.

Uniform Holder continuity above can be replaced by the assumption of Holder
continuity of o(u) (see [1]). Without loss of generality, we assume that Assumption
(S) holds throughout this paper.

In this paper, we prove the partial regularity of the above weak solution to the
system (1.1)-(1.2) in the following:

THEOREM A. Let a pair (u, H) be a weak solution to the system (1.1)-(1.2) with
u e WHI(Q,R) for some q € (1,-25), H € WH2(Q;R") and d*H(x) = 0 for a.e.
x € Q. Then there exists an open subset Qo of Q such that the solution (u, H) is CH®
locally in Qo, and H" 1 (Q\Qy) = 0 for some ¢1 > where H"~ % denotes the
(n — q1)-dimensional Hausdorff measure.

The system (1.1)-(1.2) is not elliptic since it is invariant under the gauge trans-
formation (u, H) — (u, H + V¢) for all ¢ € W22(Q). By a gauge transformation, one
can fix a gauge satisfying

_n_
n—1’

d'H=divH =Y 9L =0
The system (1.1)-(1.2) with d*H = 0 on  is a quasi-linear elliptic system which has a
natural growth structure. When n = 3, Yin in [13], [14] proved the existence of weak
solutions (u, H) to (1.1)-(1.2) with u € WH9(Q,R), ¢ € (1,-27), H € WH2(;R?)
and divH = 0 in Q. Moreover, he also proved the regularity of continuous weak
solutions to (1.1)-(1.2). However, he also pointed out that the continuity of the weak
solution is unknown. For n > 3, we have a similar existence result for weak solutions
to the system (1.1)-(1.2) using the same proof as in [13] and [14]. Generally, weak
solutions of non-linear elliptic systems may have singularities by De Giorgi’s example
and Giusti-Miranda’s example (see [8]). Partial regularity theory for weak solutions
of non-linear elliptic systems began around 1968 by Morrey, Giusti-Miranda (e.g. see
[1] or [2]). The reader may refer to an excellent book [1] on the further development of
the general theory of partial regularity. For many cases of quasi-linear elliptic systems



WEAK SOLUTIONS TO MAXWELL’S EQUATIONS 207

which have natural growth, e.g. harmonic map equations, one usually assumes that
weak solutions to (1.1)-(1.2) are in the space W12 N L>(Q). From the existence result
for weak solutions, we only know v € W'4(€2) with ¢ € (1, -%5), we do not know if
in W12 N L>(Q), so the general theory of non-linear elliptic systems in [1] does not
apply to our system (1.1)-(1.2). Recently, the partial regularity of non-linear elliptic
systems involving forms and maps was studied in [4].

When n = 3, the system (1.1)-(1.2) arises from approximating Maxwell’s equa-
tions in a quasi-stationary electromagnetic field with non-ferromagnetic bodies (e.g.
[11]). In the study of the penetration of a magnetic field in a medium, the electrical
resistance strongly depends on the temperature. By taking the temperature effect into
consideration, the classical Maxwell system in the quasi-static electromagnetic field
can be reduced to the following system (see [11], [13] and [14]):

(1.3) OH+V x[oc(uw)VxH=0; (z,t) eQx(0,T)
(1.4) ou— Au=o(u)|V x H?;  (x,t) € Q2 x (0,T)
(1.5) divH =0;  (2.8) € 2 x (0,T),

where H = (H'(x,t), H?(x,t), H3(z,t)) and u(x,t) represent the strength of the mag-
netic field and the temperature respectively, and o~ (u) denotes the electrical con-
ductivity of the material. By changing the notation from vector functions to forms,
we can consider the vector function H and its ‘curl’ V x H as a 1-form H(z) and its
curvature dH respectively.

Now we generalize the Maxwell systems (1.3)-(1.5) to higher dimensional cases;
ien > 3. Let u = u(x,t) and H = Y, H'(z,t)dz; be a function and a 1-form on
Qr = Q x [0, T] respectively. Then we consider the following system

(1.6) O H = —d*[o(u)dH]; in Qr

(1.7) o = A+ o(u)|dH|?;in Qr,

with d*H(z,t) = 0 for a. e. (x,t) € Qr, where o is a positive function satisfying
Assumption (S). The weak solution in V;"*(Qr) to system (1.6)-(1.7) is defined in
Section 4.

The second main result of this paper is the following;:

THEOREM B. Let (u,H) be a weak solution to equations (1.6) and (1.7) with

u € V0(Qr) for some q € (1, 282), H' € V3 '(Qr;R") fori=1,..,n and d*H = 0

for a. e. (x,t) € Qr. Then when n > 3, there exists an open subset Q of Qr such

that the solution (u, H) is CY® in Q, and H" 2~ %3 (Qr\Q) = 0 with g3 = éi;ri);p for

some p > 2, where H"t27% denotes the Hausdorff measure.

The paper is organized as follows. In Section 2, we prove Caccioppoli’s inequality
for H (Lemma 1) and then obtain LP-estimates (Theorem 3) by applying the reverse
Holder inequality. In Section 3, we prove partial regularity for system (1.1)-(1.2) by
applying Theorem 3. Finally, in Section 4, we establish partial regularity of weak
solutions for the parabolic problem (1.6)-(1.7)using the analogous techniques as in the
elliptic case.
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2. Reverse Holder inequalities and LP-estimates. In this section, we es-
tablish the Caccioppoli inequality for H and the LP-estimate.

Let o be a point in  with Bgr(xzo) C Q. For any function f, any 1-form H and
any measurable set A, denote

1 )
][ fdz = 7/ fdx, me,Rz][ fdz, (H)zyr=H,, gdz;.
A |Al J 4 Br(zo0)

LEMMA 1. (Caccioppoli’s inequality for H) Assume that (u, H) is a weak solution
of (1.1)-(1.2) with w € W4, H € W'2 and d*H(x) = 0 for a.e. x € Q. Then there
exists a constant C' such that for any xo € Q and p, R with p < R with Br(zo) C £,

C
|VH|? dx < 7/ |H — (H)y,.r|* d.
~/B,,(aco) (R=0)* JBr(wo) ’

Proof. Without loss of generality, we assume g = 0. Let ¢ be a smooth cut off
function with ¢ = 1 on B,, ¢ = 0 outside Bg, |¢| <1 on Br\B,, and |[V¢| < 5= on

Bgr\B,. Choosing ¢?(H — Hy r) as a test function in (1.1), we have
/ (d*[o(u)dH], ¢*(H — Ho r)) dx = 0.
Br
By Stokes’ formula, we obtain

/ o(u)|dH|?¢* dz = —2/ (o(w)dH, ¢pde A (H — Ho g)) dz
Br

Br

c
ga/ |dH|?¢? d:c—i—i/ |H — Ho gl da.
Br (R —p)? /B,

Choosing ¢ to be sufficiently small, we have

C
2.1 / dH2¢2d:c§7/ H — Hy p|? dx

‘We note

OH'  9HI\?
2
|dH| 2 Z (317] )

Z

=|VH[ -

Z OH' OHY
8Ij 8IEZ '

1,5=1

Since H € W2, we can approximate it by smooth functions Hj in W2 for
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k=1,2,3,---. By Stokes’ formula, we have
- OH} 0H]
dHy, 2¢2dfc:/ VH|?¢* dx — / k Z "k p2 dy
/. 1at [l > &z&yam
OH? ‘ ,
:/ |V Hy|*¢* da + 2 Z / (%k (% — (H})o,r] dz
4,j=1 J !
n ; ; 92 Hi
¢*[H] — (H})o,r]| s—=% dx
/BR ijl k k 8$J8$Z
OH} ;
:/ |V H |>¢? da + 2 Z/ 893’“ — (H})o,r) dx
4,j=1 J i
0/, OH;j
— — HJ H kd
/BRZ,Z oz, (‘M (Hio, R]) dz;
where we note aizg; = 88%15% As k — o0, it follows from using ), %—Z = 0 that
/ |dH|2¢2da::/ [VH|?¢* dz 4 2 Z/ 8H1 [H? — (H?)o,g) dx
Br BIJ 8961 ’

7,j=1

Therefore

/ |VH|2¢2d:v§/ |dH|2¢2dx+l/ |VH|?¢* dx
Br Br 2 Br

C / 9
+ — H—-(H dx.
e BR| (H)o,rl

Now it follows from (2.1) that

C
VH2¢2d:c§7/ H — (H)o g|? d.
/v G [, 1= o

This proves our claim. O
By the Proposition in [1; Chapter V. Proposition 1.1, page 122-123], we have

PROPOSITION 2. (Reverse Holder inequalities) Let © be an open domain and let
f and g be positive functions. Suppose

q
]l gldr <b ]l gdx +][ fqda:—l—ﬁ]l gldz
Br(zo) Bar(zo) Bar(z0) Bar(zo)

for each xg € Q and each R < % 5 dist (x0,08) A Ry, where Ry, b, 0 are constants with
b>1,Ry>0,0<60<1. ThengeLloc( ) for p € [qg,q+¢€) and

1/p 1/4q 1/p
][ gP dx <c ]l gldx +c ][ fPdx
Br(zo) Bar(zo) Bar(zo)

for Bop C ), R < Ry, where ¢ and € are positive constants depending on b, 6, n.
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THEOREM 3. (LP-estimates) Let (u, H) be a weak solution of (1.1)-(1.2) with
ue WHI(QR), He WH2(Q,R") and d*H(x) = 0 for a.e. & € Q. Then there exists
a small positive constant € such that H € VV;f(Q,R") for some p € (2,2 +¢). More
precisely,

1/p
(2.2) <][ |VHP da:) <c <]Z |VH|? d:c)
Br(zo) Bagr(zo)

for all xg € Q and all R with 2R < Ry with Br,(x9) C Q for some Ro > 0. Moreover
u € VVll’cq1 with g1 = i 5 > —5 where p > 2 is fized above.

__np
o 2n—p

1/2

Proof. By the Sobolev-Poincare inequality, we have

2/q2
/ |H — (H)z,r|* dz < CR*-@n (/ |VH|% dw)
Br Br

forq2:n2—f:2<2.

Letting p = R/2 in Lemma 1, we have

1/2 1/q2
][ |VH? dx <C ]l |VH|%2dx :
Brya(zo) Br(zo0)

Applying Proposition 2, there exists a p > 2 such that H € Wh?(Q; R") and (2.2)
holds. Applying the standard LP-theory for equation (1.2), we get u € VVf’p / 2(Q; R).

oc

By Sobolev’s inequality again, we have u € whenm O

3. Proof of Theorem A. In this section, we give a proof of Theorem A.
Let Q(z,p) = QN B,(x) and let p > 1 and A > 0. At first, let us define the
Morrey space LP*(Q) in the following

DEFINITION A. (Morrey spaces) We say that u belongs to LPN(Q) if u € LP(Q)
satisfies

1/p
[ull Lrroy = { sup PfA/ |u|P dz} < 400
zo€8,0<p<diam Q2 Q(zo,p)

and the Campanato space £P*(Q)

DEFINITION B. (Campanato space) We say that u belongs to LP*(Q) if u € LP(£2)
satisfies

1/p
-2
[ulpr = sup p / |u — gy, p|P dx < +o00,
0€0,0<p<diam Q Q(zo0,p)

where Uz, p = m fﬂ(%p) u(x)dx.

Let us recall some results about Morrey and Campanato spaces from [1] and [2].
If there exists a constant A such that |Q(z, p)| > Ap™ for all Q(z, p), the Campanato
space LPA(Q) is isomorphic to the Morrey space LPA(Q2) when 0 < A\ < n, and

moreover, when n < A\ < n + p, £P*(Q) is isomorphic to the Holder space C%% with
A—n
e

o =
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LEMMA 4. Let (u, H) be a weak solution to (1.1)-(1.2). Then u is also a weak
solution to the following equation

(3.1) Au = d*[o(u)(dH, H)),
where
(3.2) (dH, H) := Zn: F9 HI da;.

Proof. Taking ¢H as a test function in (1.1), we obtain
/<o(u)dH, d(¢H))dx =0,
Q
where ¢ is a function with ¢ € C2(£;R). Then by the definition in Section 1, we get
/ po(u)|dH|* dx = — / (o(u)dH,dp N H) dx
Q Q
- 9
=- U(u)(Z FYH dx;, Y ——dy,)dx
Q

ox
i,j m m

=— A ¢d*[o(u)(dH, H)] dx

for all ¢ € C2(Q;R), where (dH, H) is defined in (3.2). This proves our claim. O
Now we prove partial regularity of the weak solutions (u, H) to the system (1.1)-
(1.2).

Proof of Theorem A. Under the gauge condition d*H = 0, we know from the
Hodge theory that

—AH=d"dH + dd*H = d*dH.

Let 29 € Q with Bg,(zo) CC Q for some Ry > 0. Let a 1-form H; € W12(Bg(zo))
be a weak solution of the following Dirichlet problem

(3.3) o(uzy,r) &N Hi = 0,Yx € Bg(xo),

(3.4) Hy, — H € Wy*(Bgr(z0), R").

Then for all p < R < Ry, we have

/ IVH |2 dz < C (ﬁ)"/ VH, |2 d.
By (w0) R7 JBa(ao)

and therefore for all p < R < Ry with some Ry > 0

[ vapas<c(8) [  jwmPwec [ vir-m)P
B, (x0) R7" JBa(xo) Br(wo)

Let W = H — H;. Using equations (1.1) and (3.3), W is the weak solution of the
following

0 (uzo,r) AW = d*{[o(u) — 0 (us,,r)|dH}
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with boundary condition W = 0 on 0Bgr(x¢). Using W as a test function in the above
equation, we get

(3.5) 0(um07R)/ VW2 dx = —/ ([o(u) — o (g, r)|dH,dW) dz.
BR BR
By the assumption on o(u), there exists a non-negative, bounded function w(t) in-
creasing in t, concave, continuous with w(0) = 0, such that for u,v € R,
(3.6) |o(u) = o (v)] < w(lu —v["),

where q1 = 5% - and p is a fixed exponent in (2,2 + ¢) from Theorem 3. Hence we

get from (3.5)-(3.6)

/ VW2 dx < C'/ Wt — gy, r|™)|VH|? dz.
Br(zo) Br(zo)
By the Sobolev-Poincare inequality, we obtain

/ |t — Ugy, | T d:cSCR‘“/ |Vu|? dz.
Br

Br

Using the LP-estimate (Theorem 3) and the boundedness and concavity of w, we have

/ (.«)2(|u—uImR|‘“)|VH|2 dzx
BR(:E())

P

p—2

2/p P
<c / VHP de / W72 (Ju = gy | ™) da
Br(zo) Br(zo)

P
<c / VH dz |BR(;CO)|—1/ [t = gy | ) da
Bagr(o) Br(zo0)
<Ow's CR‘h—"/ |Vu|" dx </ |VH|2da:>,
BR(;E()) BZR

where last inequality comes from the concavity of w using the Jensen inequality and
the Poincare inequality.
Therefore for all p < R < 2R < R we have

(3.7)

[N 2
VHP?de < C(Z / VH|? dx+
/Bp(m| Par<c(g) [ v

2r(Z0)

C
BQR(wo) B2R(10)

By Theorem 3, u belongs to W2?/2(Q). Let v € W2?/2(Bg(z¢)) be a weak solution
of the following Dirichlet problem:

—Av=0, in Br(xo),

vloBr = uloBr, * € 0BR(xo).
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For the harmonic function v, it is easy to see that for p < R < 2R < Ry, we obtain
/ Vol da < C(ﬁ)n/ Vol da.
B,(z0) R Br(zo)
Let w = u —v. Then w € W?P/2(Bg(xo); R) satisfies
— Aw=c(u)|dH|*, in Bg(zo),
w=0 on dBr(xo).
Then
IVau|® dz < c(ﬁ)"/ V| dz + c/ |Vaw|® dz.
R™ JBr(zo) B

By(z0) R

We rescale

a(z) = u(zo + Rx),w(x) = w(xo + Rz), H(x) = H(zo + Rx) = H'(xo + Rx)dz;.

Then
(3.8) — AW =o(u)|dH|?, in By,
(3.9) w=0; ondBy,

where B; = B(0,1) is the unit ball in R™. Applying the standard elliptic LP-theory
(see [7]) to (3.8)-(3.9), we obtain

1 2/p 1 ~ 2/p
<|B— |V2w|P/? dz) <C <B— |VHI|P da:) ,
1 /B, |B1l Jp,

where C' is a constant independent of R.
Rescaling back, we have

1 2/p 1 2/p
_ |V2w|P/? dz <C| =—— \VH[Pdx |
<|BR($0) Br(w0) |Br(z0)| J B (x0)

where C is a constant independent of R. By the Sobolev inequality and using LP-
estimates, we see

Y 2/p
]l |[Vw|? dx <CR ][ |V2w|P/? da:
BR(I[)) BR(IO)

< CRH/ |VH|? da.
Bar(z0)

Therefore for all p < R < 2R < Ry, we have
/ [Vu|? dx §C(£)"/ [Vu|? dx
B, (z0) R Bar(z0)

(3.10) o
+ CRva(-n) / \VH?dx | .
Bar(z0)
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For any xy € Q2 and r with Ry > r > 0, we denote
O(xzg,r) = r2_"/ |\VH?dz, &(20,7) = rql_"/ |Vu|? dz,
B (z0) Br(z0)

Note that (3.7) and (3.10) also hold for R < p < 2R < Ry. Then for all 7 < 1, we
have ,
Oz, 7R) < Ci[l +w "% (Caf(x0, R))T "7 (a0, R)

and
f(l‘Q,TR) < Cqulf(J]Q, R) + 7@ TN (LL'Q, R)

by using R instead of 2R in (3.7) and (3.10). For any a < 1, choose 7 < 1 such that

20171 = 1.
There exists a small constant g > 0 such that if

&(zo, R) + ®(x0, R) < €0
for some R < Ry, then we have
1 (2o, R) < 7", w'T (Caf(xo, R)) < 7"
provided that R is less than some Ry. Hence
&(xo, TR) 4+ ®(xg, TR) < 72%[¢(20, R) + ®(20, R)).
Therefore by iteration we obtain
(0, T R) + ®(x0, T R) < 72[€(0, R) + ®(z0, R)] < €0
In conclusion, if &(zg, R) + ®(xg, 2R) < g¢ for some R < Ry, then
£(zo, 7" R) + ®(x0, 7" R) < 727,

Hence for any p < Ry, we have
(3.11) §(x0.p) + (w0, p) < C(2)™,

where C' is a constant independent of p and R.

Note that £(zo, R) and ®(xg, R) are continuous functions of xg. There exits
an open Q¢ C Q such that v and H are in C?(;g(ﬂo) for every @ < 1. Moreover,
Q\QO c XU 22, where

Y ={reQ: 11m1nfR2—"/ |VH|? dz > 0},
R—0t Br(z)

Yo={zxeq: liminquﬁ"/ [Vu|? dz > 0}.
R—0+ Br(z)

Moreover, since H € WH2(Q,R") and u € W59 (Q, R") with ¢; = ey for some
p > 2, we have

H= 1 (Q\Qp) = 0

where H"~ % denote (n — ¢1)-Hausdorff measure.
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Next we prove C'1“-regularity inside {0g. We assume that zo € Q with Bag(z¢) C
Q. From the above results, we know that u and H are C%%(Qg) for every a < 1 and

R‘n*”/ |Vu|? de < CR*, RQ*"/ |\VH|? dz < CR**,
BR(:E()) BR(xO)

where C' is a constant independent of R. Note that H; is the solution to equations
(3.3)-(3.4). For any p and R with p < R < Ry, we have

9 p n+2 9
/ (VHy = (VHi)ay pf? do < C (£) / VH, — (VH) )z | da.
BP(LE()) BR(QEO)

Repeating the same proof as before (3.7), we get

/ VW2 de < Cw's” CRqr"/ Vul? da / VH do
By (o) Br(zo) Br(z0)

for some p > 2.
Since w is uniformly Hélder continuous, there exist constants 8 and C with 0 <
B < 1 such that w(t) < Ct?. Therefore

9 p n+2 9
/ IVH — (VH)g, |2 do <C (—) / \VH — (VH),, |? dz
By(zo) R Bar(zo)

4 O RM—2+el2+8752)]

where a2 + BPT?Q] > 2 by letting o be closing to 1. Then the standard procedure
yields that VH is C%7 for some 0 < v < 1. By applying standard PDE theory to

equation (1.2), it is easy to see that Vu is also locally in Cloo’zl (Q) for some ~y; > 0.
This proves our claim. O

4. Partial regularity for the parabolic system. In this section, we prove
the partial regularity of the weak solutions to system (1.5)-(1.6).

Denote Qr = Q2 x (0,T) and let z = (x,t) for x € Q and ¢t € (0,T). We recall
some definitions from [9]. L, ,(Qr) is the Banach space consisting of all measurable
functions on Q7 with a finite norm

T r/p 1/r
||u||p,r,QT=</ (/ |u<x,t>|de) dt> |
0 Q

We denote [|ullp.or = [[ullpp,qr- The space V,10(Qr) is the completion of C'(Qr)
with respect to the norm

1/p
lulpsor = { | up+ |Vu|p>dz} .
Qr

The space Wg’l (Qr) with p > 1 is the Banach space consisting of the elements of
L,(Qr) having generalized derivatives of the form D] D? with any r and s satisfying
the inequality 2r + s < 2. The norm is defined by

2
, 4
ull P, =37 (),
7=0
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with

(s, = 3 1Dy Dullgqn-
2r+s=j

We say that a pair (u,H) is a weak solution to equations (1.6)-(1.7) if u €
V9(Qr) for some ¢ € (1,-25) and H' € V,"%Q7; R™), and the pair (u, H) satisfies
the following;:

(4.1 /Q [(H,0:6) + (o(u)dH, d6)] d= =0,
(4.2) /QT = uthy + V- Vi dZZ/QT o (w)|dH |20 dz

for all ¢ := Y7 | ¢'(z,t)dx; for i = 1,...,n with d*H = 0 in Q7 in the weak sense,
where ¢'(z,t) € C2(Qr;R) and ¥ (z,t) € C3(Qr;R). The existence of weak solutions
of (4.1)-(4.2) with d*H = 0 in Q was obtained by Yin in [13] and [14].

For any R > 0, denote Qr(20) = Br(xo) X (to — R?,to + R?) with 2o = (w0, t0).
We denote for any function u(z,t)

Uzg,R :][ u(z) dz.
Qr(zo0)

Next, we prove partial regularity of weak solutions to the system (4.1)-(4.2) by
modifying the method for elliptic case of Sections 2-3. The first step towards the
proof of Theorem B is to establish a Caccioppoli’s inequality and LP-estimates for
weak solutions to the parabolic system (4.1)-(4.2) by applying the proof of [3] and [6].
More precisely, we have

LEMMA 7. (Caccioppoli’s inequality for parabolic problems) Assume that (u, H)
is a weak solution of (4.1)-(4.2) with the assumptions of Theorem B. Then there exists
a constant C' such that for any xo € Qr and any R with 2R < Ry with Qr,(z0) C Qr
for some Ry > 0,

C -
/ IVH?dz < — / |H — H,, 2r(t)|* dz.
Qr(z0) R Q2r(20)

Proof. Let zg = (x0,t0) € Qr. Let £(x) be a function in C§°(Bz(xzg)) such that
0 <¢<1,¢=11in Bi(xzg) and |VE| < 2. We also denote by £r the function
&r(z) = £(%). As in [6], for a function H'(z,t), we define the weighted means of
Hi(x,t) in Bag(zo) as

i (o) Jpanten H DS o
z0,2R -
0 fBzR(zo) ggR(I) dIZ?

Then we define
Hyyon(t) = Y Hi op(t)de;.
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Let 7 € C*°(R,R) be a function only in ¢ and satisfy 0 < 7 < 1, 7 = 1 on [ty — R?,t0],
7=0ont<ty— (2R)% By the above choice, we note

0o—4R?

o i _ oy 2 qe | 00 Fi o ()72 dt —
(4.3) /t l /B QR(%)(H Hig(t)e d]&tHQR(t) dt = 0.

Let I(_,,) be the characteristic function of the interval (—o0,tg). Testing ¢ =
(H — f[gR(t))ﬁgRﬁ]I(,oo’to) and noting (4.3), we have

(4.4)
/ |H — Hyy2r(t))?€27% do + / o(u)|dH|?€27% dz
B(x0,2R)x {to} Q2r(20)
<9 / H — Hyy () 2€270,7 d
Q2r(z0)
- 2/ o(u)(dH,EdE N (H — Hyy 2r(1)))72 dz.
Q2r(z0)
It follows from (4.4) that
C .
/ |dH|?¢* 1% dz < 7 |H — H,, 2r(t)|* dz.

R Q2r(20)

A similar argument to Lemma 1 yields

to
/ / |dH|2€? dor? dt
t() —R2 BgR(LEo)

to ~ OH' OHY
:/ / \VH?¢% dx — Z/ — ——&%dx | 2 dt
to—R2 Bar(xo) Bar(x0) 8‘Tj Ox;

i,j=1

to " QH' Q¢ . -
= VH|?¢ +2 E=[H) —H? (0] | der?dt
Lol e 3. Gy 0~ a0

/to / S 0] e
+ o’ — o, t T T dt.
to—R> J Bar(0) ;5= 0,2R 0

6$j X

By using d*H = 0, the last term in above identity is zero. This proves our claim. g
We have the following LP-estimate:

LEMMA 8. Let (u, H) be a weak solution to the system (4.1)-(4.2) with the as-
sumptions of Theorem B. Then there exists an exponent p > 2 such that VH €
LY (Qr); moreover for all Qr(z0) C Qar(z0) C Qr we have

]l |[VH|Pdz < C <][ |VH|? dz>
Qr(z0) Qar(20)

and u € Wj/é;loc(QT)'

p
2

For the proof of Lemma 8, the same proof as in [5] gives the desired LP-estimate
for H by using the reverse Holder inequality as in Proposition 3. The fact u €



218 M.-C. HONG, Y. TONEGAWA AND A. YASSIN

Wj/’;_loc(QT) follows from Theorem 9.1 of Chapter IV of [10; pages 341-2].

By a slight modification of arguments in [12] (for the details, see [14]), we have

LEMMA 9. Let (u, H) be a weak solution to the system (4.1)-(4.2) with the as-
sumptions of Theorem B. Then for all Qr(z0) C Q2r(20) C Q1, we have

/ |H — Hg . |*dz < 032/ |VH? dz.
Qr(z0) Q2r(20)

Now we complete the proof of Theorem B.

Proof of Theorem B. For any zyp € Qr, choose Rg with Qgr,(2z0) C Q7. Let
Sr(z0) be the parabolic boundary of Qr(zo) defined by

Sk = BR(LL'Q,tO - Rz) U [aBR(LL'Q) X (fo - Rz,to + R2)]

Let a 1-form H; € V,"°(Qr(z0)) be the weak solution of the following parabolic
problem:

(4.5) O Hy = 0(uzy.r) N Hi, in Qr(z0),

(4.6) H1|5R(ZO) = HlSR(zo)7 on SR(Z()).

For all p < R < Ry, we have

n+2
/ \VH|?dz < C(ﬁ) / IVH|?dz + C VW2 dz
Qp(z0) R Qr(z0) Qr(0)

with W = H — H;. By a similar proof as in Section 3, we have

/ IVW[2dz < Cw’7 OR*"/ U — g r|P/? dz / |VH|? dz.
Qr(z0) Qar(20) Q2r(z0)

Let v € Wi/; (QRr(20)) be a weak solution of
O = Av, in Qr(z),

U|SR(ZO) = u|SR(z0)7 on Sg(zo).

Then for all p < R < Ry, we have

[ parracody [ jurtare [ o
Qp(20) QRr(z20) QRr(20)

and

/ VP2 dz < C(ﬁ)n“/ Va2 ds + C Vw2 dz,
Qp(z0) R Qr(z0) Qr(20)

where w = u — v satisfies
orw = Aw + o(u)|dH|?,  in Qr(20),

w=0 on Sg(z).
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Since |V H|? is locally in LP/2?/2(Qr), we have from Theorem 9.1 of [10; Chapter IV]
and Lemma 8 that

(4.7)

/ (V2’2 + o) dz < © VH dz
Qr(zo0) Qr(20)

p/2
< CR"*? ][ |VH|? dx :
Qar(20)

By the Sobolev inequality and using LP-estimates in (4.7), we know

/ |Vw|P/? dz < CRP/Q/ |V2w|P/? dz
Qr(z0) Qr(z0)

p/2
S CR'anQfg(n‘Fl) / |VH|2 dr )
Qar(20)

By a version of the Sobolev-Poincare inequality, we have

(4.8)
R”/2/ |Vu[P/? dz—i—Rp/ |DpulP/? dz] .
Qr(z0) Qr(z0)

/ lu— .y g|P/?dz < C
Qr(zo0)
For any zp € Qr and r with @,,,» C Qr, we denote

®(20,7) = 7'_”/ |\VH]?dz, &(z0,7) = 7'_"_2+p/2/ |Vu|p/2 dz,
@r(z0) Q@ (

Zo)

n(20,7) = T_"_2+p/ |8,ulP/?. dz.
Qr(20)

Then for all 7 < 1, we have

pP—2
p

®(z0,7R) < C1[1 +w'7 (Ca[€(20, R) + (20, R)))7~ "2 72® (0, R),

£(20,7R) < C17%€(x0, R) + 75~ T2 @5 (20, R)

and
(20, TR) < C17Pn(20, R) + 7P~ "2 0% (29, R).

If there exists a constant €g such that ®(zg,7)+&(20, ) +n(20,7) < €o for some r < Ry,
then a similar iteration step as in Section 3 yields

d(z0, p) + £(20, p) + (20, p) < Cp**

for all @ < 1 and p < r < Ry. Using the Sobolev inequality (4.8) and Lemma 9, we
obtain through the Campanato space that u(x,t) and H(x,t) are Holder continuous
in a locally in Q where Q is an open subset of Q7. A similar argument as in Section
3 yields that u(z,t) and H(z,t) are also in C}27(Q) for some v < 1.

loc

Since w is in W;};;ZOC(QT)v we have Vu € L, 45:00c(Q1), g3 = éfﬁ);; by the

parabolic type Sobolev inequality (see [10; Lemma 3.3, page 80 ]). Moreover, Holder’s
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inequality gives

P
2q3

&(z0,R) < Rq37"72/ [Vul® dz
QzU,R

We have QT\Q C X1 U9 U X3 where

and

Y1 = {20 €Qr: liminfR’”/ |VH|?dz > 0},
R—0% Qzg,R

Yo = {20 € Qr : liminf Rq37”72/ |Vu|® dz > 0},
R—0+ Qzo,R

Y3 ={20 € Qr : liminf Rp7”72/ |8tu|p/2 dz > 0}.
R—0* Qzo,R

Sine VH € Lojioc(Qr, R™) and Osu € Ly, /5(Q7,R™), we have

H*27(Qr\Q) = 0,

where H" 2% denotes (n + 2 — g3)-Hausdorff measure. This proves our claim. |
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