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ESTIMATES FOR THE QUENCHING TIME OF A PARABOLIC

EQUATION MODELING ELECTROSTATIC MEMS∗

NASSIF GHOUSSOUB† AND YUJIN GUO‡

Abstract. The singular parabolic problem ut = ∆u −

λf(x)

(1+u)2
on a bounded domain Ω of

R
N with Dirichlet boundary conditions, models the dynamic deflection of an elastic membrane in a

simple electrostatic Micro-Electromechanical System (MEMS) device. In this paper, we analyze and
estimate the quenching time of the elastic membrane in terms of the applied voltage —represented
here by λ. As a byproduct, we prove that for sufficiently large λ, finite-time quenching must occur
near the maximum point of the varying dielectric permittivity profile f(x).

Key words. Electrostatic MEMS; quenching time; quenching set.

AMS subject classifications. 35K05, 35K55

1. Introduction. Micro-Electromechanical Systems (MEMS) are often used to
combine electronics with micro-size mechanical devices in the design of various types
of microscopic machinery. An overview of the physical phenomena of the mathemati-
cal models associated with the rapidly developing field of MEMS technology is given in
[13]. The key component of many modern MEMS is the simple idealized electrostatic
device shown in Figure 1. The upper part of this device consists of a thin and de-
formable elastic membrane that is held fixed along its boundary and which lies above
a rigid grounded plate. This elastic membrane is modeled as a dielectric with a small
but finite thickness. The upper surface of the membrane is coated with a negligibly
thin metallic conducting film. When a voltage V is applied to the conducting film, the
thin dielectric membrane deflects towards the bottom plate, and when V is increased
beyond a certain critical value V ∗ –known as pull-in voltage– the steady-state of the
elastic membrane is lost, and proceeds to quenching, i.e. snap through, at a finite
time creating the so-called pull-in instability.
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Fig. 1. The simple electrostatic MEMS device.
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A mathematical model of the physical phenomena, leading to a partial differential
equation for the dimensionless dynamic deflection of the membrane, was derived and
analyzed in [3, 8]. In the damping-dominated limit, and using a narrow-gap asymp-
totic analysis, the dimensionless dynamic deflection u = u(x, t) of the membrane on
a bounded domain Ω in R

2, is found to satisfy the following parabolic problem

ut − ∆u =
λf(x)

(1 − u)2
for x ∈ Ω ,

u(x, t) = 0 for x ∈ ∂Ω ,
u(x, 0) = 0 for x ∈ Ω.

(P )λ

The initial condition in (P )λ assumes that the membrane is initially undeflected and
the voltage is suddenly applied to the upper surface of the membrane at time t = 0.
The parameter λ > 0 in (P )λ characterizes the relative strength of the electrostatic
and mechanical forces in the system, and is given in terms of the applied voltage

V by λ = ε0V
2L2

2Ted3
, where d is the undeflected gap size, L is the length scale of the

membrane, Te is the tension of the membrane, and ε0 is the permittivity of free space
in the gap between the membrane and the bottom plate. We shall use from now on
the parameter λ and λ∗ to represent the applied voltage V and pull-in voltage V ∗,
respectively. Referred to as the permittivity profile, f(x) in (P )λ is defined by the
ratio f(x) = ε0

ε2(x) , where ε2(x) is the dielectric permittivity of the thin membrane.

Consider first the steady-state solutions of (P )λ

−∆w =
λf(x)

(1 − w)2
x ∈ Ω,

w(x) = 0 x ∈ ∂Ω
(S)λ

with 0 < w < 1 on Ω ⊂ R
N , and f(x) is assumed to satisfy

f ∈ Cα(Ω̄) for some α ∈ (0, 1], 0 ≤ f ≤ 1 and
f > 0 on a subset of Ω with positive measure.

(1.1)

One can then easily show (e.g., Theorem 1.1 in [5]) that there exists a finite pull-in
voltage λ∗ := λ∗(Ω, f) > 0 such that:
• If 0 ≤ λ < λ∗, there exists at least one solution for (S)λ.
• If λ > λ∗, there is no solution for (S)λ.
Upper and lower bounds on the pull-in voltage λ∗ were also given in Theorem 1.1 of [5].
Fine properties of steady states –such as regularity, stability, uniqueness, multiplicity,
energy estimates and comparison results– were shown in [4] and [5] to depend on the
dimension of the ambient space and on the permittivity profile.

For the dynamic problem (P )λ, we first define the following notions.

Definition 1.1. (1) A solution u(x, t) of (P )λ is said to be quenching at a –
possibly infinite– time T = T (λ, f,Ω), if the maximal value of u reaches 1 at time
T .

(2) A point x0 ∈ Ω̄ is said to be a quenching point for a solution u(x, t) of (P )λ,
if for some T ∈ (0,+∞], we have lim

tn→T
u(x0, tn) = 1.

In [6] we dealt with issues of global convergence as well as quenching in finite or infinite
time of the solutions of (P )λ. One of the main results was the following relationship
between the voltage λ and the nature of the dynamic solution u of (P )λ.

Theorem A (Theorem 1.1 in [6]). Assuming f satisfies (1.1) on a bounded
domain Ω, then the followings hold:
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1. If λ ≤ λ∗, then there exists a unique solution u(x, t) for (P )λ which globally
converges pointwise as t→ +∞ to its unique minimal steady-state.

2. If λ > λ∗ and infΩ f > 0, then the unique solution u(x, t) of (P )λ must be
quenching at a finite time.

A refined description of finite-time quenching behavior for u was given in [7], where
some quenching estimates, quenching rates, as well as some information on the prop-
erties of quenching set –such as compactness, location and shape, were obtained.

The first purpose of this paper is to prove –in Theorem 2.1– that quenching in
finite-time occurs as soon as λ > λ∗, which means that Theorem A. 2. above holds
without the restriction infΩ f > 0. On the other hand, we continue our search for
optimal estimates on quenching times at voltages λ > λ∗, since the latter translate into
useful information on the operation speed of MEMS devices. Indeed, we established
in Theorem 1.3 of [6], that if infx∈Ω f(x) > 0, then the following upper estimate for
the quenching time holds for any λ > λ∗:

Tλ(Ω, f) ≤ 8(λ+ λ∗)2

3 infx∈Ω f(x)(λ − λ∗)2(λ + 3λ∗)

[
1 +

( λ+ 3λ∗

2λ+ 2λ∗

)1/2]
. (1.2)

In this paper, we shall improve this estimate –at least in dimensions less than 8– by
proving that

Tλ(Ω, f) ∼ C
(
λ− λ∗

)− 1
2 as λց λ∗,

while

T ∼ 1

3λ supx∈Ω̄ f(x)
as λր ∞.

To be more precise, we first recall the following notions and results from [5].
For any solution w of (S)λ, we consider the linearized operator at w defined by

Lw,λ = −∆ − 2λf(x)
(1−w)3 , and its corresponding eigenvalues {µk,λ(w); k = 1, 2, ...}. Say

that a solution wλ of (S)λ is minimal, if wλ(x) ≤ w(x) in Ω whenever w is any solution
of (S)λ. We recall the following

Theorem B (Theorem 1.2 in [5]). Assume f satisfies (1.1) on a bounded
domain Ω ⊂ R

N . Then,
1. For any 0 ≤ λ < λ∗, there exists a unique minimal solution wλ of (S)λ such that
µ1,λ(wλ) > 0. Moreover for each x ∈ Ω, the function λ→ wλ(x) is strictly increasing
and differentiable on (0, λ∗).
2. If 1 ≤ N ≤ 7, then w∗ = lim

λ↑λ∗

wλ exists in C1,β(Ω̄) which is then a solution for

(S)λ∗ such that µ1,λ∗(w∗) = 0. In particular, w∗ –often referred to as the extremal
solution of problem (S)λ– is unique.

3. On the other hand, if N ≥ 8, f(x) = |x|α with 0 ≤ α ≤ α∗∗(N) := 4−6N+3
√

6(N−2)
4

and Ω is the unit ball, then the extremal solution is necessarily w∗(x) = 1 − |x| 2+α
3

and is therefore singular.

We remark that in general, the function w∗ exists in any dimension, does solve (S)λ∗

in a suitable weak sense and is the unique solution in an appropriate class. The above
theorem says that it is however a classical solution in dimensions 1 ≤ N ≤ 7, that is

−∆w∗ =
λ∗f(x)

(1 − w∗)2
in Ω , w∗ > 0 in Ω , w∗ = 0 on ∂Ω , (1.3)
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and there exists an eigenfunction φ∗ of Lw∗,λ∗ satisfying

∆φ∗ +
2λ∗φ∗f(x)

(1 − w∗)3
= 0 in Ω , φ∗ > 0 in Ω , φ∗ = 0 on ∂Ω . (1.4)

We denote by φ∗ (resp., ψ∗) the corresponding unique L2-normalized (resp., L1-
normalized) positive eigenfunction of Lw∗,λ∗ .

We shall then prove in section 2 the following upper and lower estimates on the
quenching time T = T (λ, f,Ω) of a solution u for (P )λ at voltage λ > λ∗: Under the
condition that the unique extremal solution w∗ of (S)λ is regular, then

• For λ sufficiently close to λ∗, we have the lower bound estimate

T (λ, f,Ω) ≥
( supx∈Ω φ

∗(x)

12λ∗ supx∈Ω
f(x)

(1−w∗(x))4

∫
Ω

φ∗

(1−w∗)2 dx

) 1
2 (
λ− λ∗

)− 1
2 . (1.5)

• If
∫
Ω
ψ∗(x)
f(x) dx <∞, then for any λ > λ∗, we have the upper bound estimate

T (λ, f,Ω) ≤
√

3π

4

( ∫
Ω
ψ∗(x)
f(x) dx

λ∗
∫
Ω
ψ∗(x)f(x)dx

) 1
2 (
λ− λ∗

)− 1
2 . (1.6)

Note that the above situation typically happens when f ≡ |x|β and N ≤ 7, or for any
N > 8 provided β is large. It would be interesting to establish similar estimates in
the case where w∗ is singular. In the general case, we only have the following estimate
established in section 3.

• There exist a constant C = C(f,Ω) > 0 and a sufficiently large λ0 =
λ0(f,Ω) > λ∗ such that for any λ > λ0, we have the estimates

1

3λ supx∈Ω̄ f(x)
≤ T (λ, f,Ω) ≤ 1

3λ supx∈Ω̄ f(x)
+

C

λ
2+2α
2+α

, (1.7)

where α ∈ (0, 1] is as in (1.1).
As a byproduct of the estimate (1.7), we shall analyze and compute in section 3

that in several situations, and at least for sufficiently large λ, quenching in finite-time
must occur near the maximum point of the varying dielectric permittivity profile f .
More precisely, if the quenching set K of a solution u for (P )λ is compact in Ω, and
if we are in one of the following two situations:
1) N = 1; or
2) N ≥ 2, Ω is a ball BR(0), K = {0} and f(r) is radially symmetric,
then for any a ∈ K, there exists C > 0 such that for λ large enough, we have

(
sup
x∈Ω̄

f
) 1

3 −
(
f(a)

) 1
3 ≤ C

λ
α

2+α

, (1.8)

We note that the compactness of the quenching set has been established in [7] (Propo-
sition 2.1) in the case where the domain Ω is convex and f satisfies both (1.1) and
the additional condition

∂f
∂ν ≤ 0 on Ωcδ := {x ∈ Ω : dist(x, ∂Ω) ≤ δ} for some δ > 0. (1.9)

Here ν is the outward unit norm vector to ∂Ω. The above result can be seen as
a refinement of Theorem 1.1 of [7] where it is proved that under the compactness
assumption on the quenching set, the latter set cannot contain any zero of the profile
f (see also Lemma 3.2 below).
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2. Quenching time for λ > λ∗. In this section, we establish the estimates on
the quenching time of (P )λ. First we borrow ideas from [1] to prove that we have
quenching in finite time as soon as λ > λ∗, without the assumption used in [6] that f
is bounded away from zero.

Theorem 2.1. If λ > λ∗(Ω, f), then the unique solution u(x, t) of (P )λ must
quench in finite time.

Proof. The uniqueness of solutions for (P )λ in Ω × (0, τ), where τ > 0 is the
maximal existence time, was already noted in Proposition 2.1 of [6]. Let now λ > λ∗,
and assume that u = u(x, t) of (P )λ exists in Ω × (0,∞).

Given any 0 < ε < λ − λ∗, we first claim that (P )λ−ε has a global solution uε
that is uniformly bounded in Ω × (0,∞) by some constant Cε < 1. Indeed, set

g(u) =
1

(1 − u)2
, h(u) =

∫ u

0

ds

g(s)
, 0 ≤ u ≤ 1 , (2.1)

g̃(u) =
λ− ε

λ(1 − u)2
, h̃(u) =

∫ u

0

ds

g̃(s)
, 0 ≤ u ≤ 1 , (2.2)

and let Φε(u) := h̃−1
(
h(u)

)
. Direct calculations show that

Φε(u) = 1 −
[ ε
λ

+
λ− ε

λ
(1 − u)3

] 1
3 ≤ Cε < 1 for 0 ≤ u ≤ 1 ,

where Cε = 1−
(
ε
λ

) 1
3 . Moreover, it is easy to check that Φε(0) = 0, with 0 ≤ Φε(s) < s

for s ≥ 0, and that Φε(s) is increasing and concave with

Φ′
ε(s) =

g̃(Φε(s))

g(s)
> 0 .

Setting vε = Φε(u), we have

−∆vε = −Φ′′
ε (u)|∇u|2 − Φ′

ε(u)∆u

≥ Φ′
ε(u)

( λf(x)

(1 − u)2
− ut

)
= λf(x)Φ′

ε(u)g(u) − (vε)t

= λf(x)g̃(Φε(u)) − (vε)t =
(λ− ε)f(x)

(1 − vε)2
− (vε)t ,

and hence, vε = Φε(u) ≤ Cε is therefore a supersolution of (P )λ−ε. Since now zero is
a subsolution of (P )λ−ε, we deduce that there exists a unique global solution uε for
(P )λ−ε satisfying 0 ≤ uε ≤ vε ≤ Cε < 1 uniformly in Ω× (0,∞), which gives our first
claim.

Note that (P )λ−ε admits a Liapunov functional

V (uε) =
1

2

∫

Ω

|∇uε|2dx − (λ− ε)

∫

Ω

f(x)

1 − uε
dx, V̇ (uε) = −

∫

Ω

(uε)
2
tdx. (2.3)

Since now 1
1−uε

is uniformly bounded in Ω × (0,∞), we obtain that for β < 1,

‖ut‖C0,β , ‖utt‖C0,β < C uniformly bounded in Ω × (0,∞) . (2.4)
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Moreover, (2.3) gives that
∫ ∞
0

∫
Ω
(uε)

2
tdx < ∞, which means that

∫
Ω
(uε)

2
tdx is a

uniformly continuous function on [0,∞), and therefore

∫

Ω

(uε)
2
tdx→ 0 as t→ ∞ .

Further, we deduce from (2.4) that (uε)t → 0 as t→ ∞, which shows that there exists
a function 0 ≤ wε(x) < Cε < 1 on Ω such that uε(x, t) → wε(x) as t → ∞, where wε
satisfies

−∆wε =
(λ − ε)f(x)

(1 − wε)2
in Ω, wε = 0 on ∂Ω .

Therefore, there exists a classical solution wε of (S)λ−ε with λ − ε > λ∗, which
contradicts the definition of λ∗, and completes the proof of Theorem 2.1.

2.1. Analytic estimates of quenching time. We now focus on estimating the
quenching time T when λ > λ∗, and in the case where the unique extremal solution
w∗ of (S)λ is regular. This implies that w∗ satisfies

−∆w∗ =
λ∗f(x)

(1 − w∗)2
in Ω , w∗ > 0 in Ω , w∗ = 0 on ∂Ω , (2.5)

and there exists an eigenfunction φ∗ satisfying

∆φ∗ +
2λ∗φ∗f(x)

(1 − w∗)3
= 0 in Ω , φ∗ > 0 in Ω , φ∗ = 0 on ∂Ω . (2.6)

We shall adapt and improve some of the arguments in [11]. Our first estimate is a
lower bound for T as stated in (1.5).

Theorem 2.2. Suppose that the unique extremal solution w∗ of (S)λ is regular.
Then for λ sufficiently close to λ∗, the finite quenching time T (λ, f,Ω) of the unique
solution u for (P )λ satisfies

T (λ, f,Ω) ≥
( supx∈Ω φ

∗

12λ∗ supx∈Ω
f(x)

(1−w∗)4

∫
Ω

φ∗

(1−w∗)2 dx

) 1
2 (
λ− λ∗

)− 1
2 , (2.7)

where φ∗ > 0 is the L2(Ω)-normalized eigenfunction satisfying (2.6).

Proof. Let u∗ be the unique solution of (P )λ∗ . First, we seek a bound on the
rate at which u∗ approaches the corresponding steady-state w∗. For that, we set
u∗(x, t) = w∗(x) − û(x, t). Then û(x, 0) = w∗(x) in Ω and û = w∗ on ∂Ω. Moreover,
we have

∂û

∂t
= ∆û− ∆w∗ − λ∗f(x)

(1 − w∗ + û)2

= ∆û+ λ∗f(x)
[ 1

(1 − w∗)2
− 1

(1 − w∗ + û)2

]

≥ ∆û+
2λ∗ûf(x)

(1 − w∗)3
− 3λ∗û2f(x)

(1 − w∗)4

≥ ∆û+
2λ∗ûf(x)

(1 − w∗)3
−K1û

2 ,

(2.8)
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where K1 = 3λ∗ supx∈Ω
f(x)

(1−w∗)4 . Define

ψ =
K2φ

∗

t+ t0
, K2 =

supx∈Ω φ
∗

K1
, (2.9)

where t0 is chosen in such a way that

ψ(x, 0) =
K2φ

∗

t0
≤ w∗(x) = û(x, 0) in Ω.

Note that (2.9) gives

∆ψ +
2λ∗ψf(x)

(1 − w∗)3
−K1ψ

2 = − K1K
2
2

(t+ t0)2
(φ∗)2 ≥ − K2φ

∗

(t+ t0)2
=
∂ψ

∂t
,

and hence 0 ≤ ψ ≤ û = w∗ − u∗ in Ω × (0,∞).
We now set u = u∗ + u1, then u1 satisfies

∂u1

∂t
= ∆u1 +

(λ− λ∗)f(x)

(1 − u)2
+ λ∗f(x)

[ 1

(1 − u)2
− 1

(1 − u∗)2

]

≤ ∆u1 +
(λ− λ∗)f(x)

(1 − w∗)2
+

2λ∗u1f(x)

(1 − w∗)3
,

(2.10)

as long as u = u∗ + u1 ≤ w∗. We also define

I1 =

∫

Ω

φ∗

(1 − w∗)2
dx , F (x) =

f(x)

max{1, supx∈Ω f(x)} ≤ f(x),

and consider Φ∗(x) ≥ 0 to be a nonnegative solution of the problem

∆Φ∗ +
2λ∗f(x)

(1 − w∗)3
Φ∗ +

f(x)

(1 − w∗)2
− I1φ

∗(x)F (x) = 0 x ∈ Ω,

Φ∗(x) = 0 x ∈ ∂Ω .
(2.11)

Consider also the function

ψ1 = (λ− λ∗)(I1φ
∗t+ Φ∗) in Ω × (0, τ), (2.12)

where τ > 0 is arbitrary. Then ψ1(x, 0) = (λ − λ∗)Φ∗ ≥ 0 = u1(x, 0) in Ω, and
ψ1(x, t) = 0 = u1(x, 0) on ∂Ω. Moreover, since F (x) ≤ 1 in Ω, we obtain from (2.10)
and (2.11) that

(ψ1 − u1)t − ∆(ψ1 − u1)

= (λ− λ∗)I1φ∗ − (λ− λ∗)I1t∆φ∗ − (λ− λ∗)∆Φ∗ − (u1)t + ∆u1

≥ (λ− λ∗)I1φ∗(x) − (λ− λ∗)I1φ∗(x)F (x) +
2λ∗f(x)

(1 − w∗)3
(ψ1 − u1)

≥ 2λ∗f(x)

(1 − w∗)3
(ψ1 − u1)

in Ω× (0, τ), as long as u = u∗ + u1 ≤ w∗. Therefore, the maximum principle implies
that ψ1 ≥ u1 as long as u = u∗ + u1 ≤ w∗.
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We now obtain that

u = u∗ + u1 ≤ w∗ − ψ + ψ1 = w∗ − K2φ
∗

t+ t0
+ (λ− λ∗)(I1φ

∗t+ Φ∗). (2.13)

But the right-hand side of (2.13) is no larger than w∗, provided that

K2φ
∗

t+ t0
≥ (λ− λ∗)(I1φ

∗t+ Φ∗) in Ω ,

which is equivalent to

K2 ≥ (λ− λ∗)(t+ t0)(I1t+A) , where A = sup
x∈Ω

Φ∗(x)

φ∗(x)
.

It requires

(λ− λ∗)I1t
2 + (λ− λ∗)(I1t0 +A)t−K2 +A(λ− λ∗)t0 ≤ 0,

which is

t ≤ −(λ− λ∗)(I1t0 +A) +
√

∆

2I1(λ − λ∗)
, (2.14)

where

∆ := (λ− λ∗)2(I1t0 +A)2 + 4I1(λ− λ∗)
(
K2 −At0(λ− λ∗)

)
.

For λ sufficiently close to λ∗, (2.14) can be satisfied if

t ≤ 1

2

√
K2

I1
(λ− λ∗)−

1
2 := TL.

Note that TL is given by

TL =
( supx∈Ω φ

∗(x)

12λ∗ supx∈Ω
f(x)

(1−w∗)4

∫
Ω

φ∗

(1−w∗)2 dx

) 1
2 (
λ− λ∗

)− 1
2 .

Therefore, we conclude from (2.13) that u ≤ w∗ in Ω × (0, TL]. This implies that the
finite quenching time T of u satisfies T ≥ TL, and the proof is complete.

We now establish the upper bound on T as stated in (1.6).

Theorem 2.3. Suppose that the unique extremal solution w∗ of (S)λ is regular,

and that
∫
Ω
ψ∗(x)
f(x) dx < ∞, where ψ∗ > 0 is the L1(Ω)-normalized eigenfunction sat-

isfying (2.6). Then for any λ > λ∗, the finite quenching time T = T (λ, f,Ω) of the
unique solution u for (P )λ satisfies

T (λ, f,Ω) ≤
√

3π

4

( ∫
Ω
ψ∗(x)
f(x) dx

λ∗
∫
Ω ψ

∗(x)f(x)dx

) 1
2 (
λ− λ∗

)− 1
2 . (2.15)

Proof. Setting u = w∗ + v, then we have

∂v

∂t
= ∆w∗ + ∆v +

(λ− λ∗)f(x)

(1 − u)2
+

λ∗f(x)

[1 − (w∗ + v)]2

= ∆v +
2λ∗vf(x)

(1 − w∗)3
+

(λ− λ∗)f(x)

(1 − u)2

+λ∗f(x)
[ 1

[1 − (w∗ + v)]2
− 1

(1 − w∗)2
− 2v

(1 − w∗)3

]
.

(2.16)
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Multiplying (2.16) by ψ∗ and integrating over Ω, we obtain

d

dt

∫

Ω

ψ∗vdx = (λ− λ∗)

∫

Ω

ψ∗f(x)

(1 − u)2
dx

+λ∗
∫

Ω

ψ∗f(x)
[ 1

[1 − (w∗ + v)]2
− 1

(1 − w∗)2
− 2v

(1 − w∗)3

]
dx,

where (2.6) is applied. We next define

E(t) =

∫

Ω

ψ∗vdx , E(0) = −
∫

Ω

ψ∗w∗dx = −E0 ∈ (−1, 0);

I1 =

∫

Ω

ψ∗(x)f(x)dx ≤
∫

Ω

ψ∗(x)f(x)

(1 − u)2
dx , I2 =

3λ∗
∫
Ω
ψ∗(x)
f(x) dx

.

Using the inequalities

1

[1 − (w∗ + v)]2
− 1

(1 − w∗)2
− 2v

(1 − w∗)3
≥

{
3v2

(1−w∗)4 , if v ≥ 0;

3v2

(1−u)4 , if v ≤ 0;

the Hölder inequality yields that

λ∗
∫

Ω

ψ∗f(x)
[ 1

[1 − (w∗ + v)]2
− 1

(1 − w∗)2
− 2v

(1 − w∗)3

]
dx

≥ 3λ∗
∫

Ω

v2ψ∗(x)f(x)dx ≥ 3λ∗
∫
Ω
ψ∗(x)
f(x) dx

(∫

Ω

ψ∗vdx
)2

= I2E
2(t) .

It follows from the above that

dE

dt
≥ (λ− λ∗)I1 + I2E

2 , E(0) = −E0 ∈ (−1, 0). (2.17)

We now compare E(t) with the solution F (t) of

dF

dt
= (λ− λ∗)I1 + I2F

2 , F (0) = −E0 ∈ (−1, 0). (2.18)

Standard comparison principle yields that E(t) ≥ F (t) on their domains of existence.
Therefore,

sup
Ω
v ≥ E(t) ≥ F (t) . (2.19)

It is easy to see from (2.18) that the quenching time T̄1 for F (t) is given by

T̄1 ≡
(π

4
+ arctan

√
I2

(λ− λ∗)I1

)(
(λ− λ∗)I1I2

)− 1
2

≤
√

3π

4

( ∫
Ω
ψ∗(x)
f(x) dx

λ∗
∫
Ω ψ

∗(x)f(x)dx

) 1
2 (
λ− λ∗

)− 1
2 .

Therefore, for any λ > λ∗ the unique solution u of (P )λ must quench at a finite time
T = T (λ, f,Ω) ≤ T̄1, and we are done.
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3. Quenching behavior for sufficiently large λ. In this section we discuss
the quenching behavior of solutions of (P )λ for λ large enough. We begin with the
following refined estimates for the quenching time as stated in (1.7).

Lemma 3.1. Assume f satisfies (1.1) on a bounded domain Ω, and suppose
u is a quenching solution of (P )λ at finite time T . Then, there exist a constant
C = C(f,Ω) > 0 and a sufficiently large λ0 = λ0(f,Ω) > 0 such that for any λ > λ0,
we have

1

3λ supx∈Ω̄ f(x)
≤ T ≤ 1

3λ supx∈Ω̄ f
+

C

λ
2+2α
2+α

, (3.1)

where α ∈ (0, 1] is as in (1.1).

Proof. In order to obtain the lower bound of finite time T , we consider the initial
value problem:

dη(t)

dt
=

λM

(1 − η(t))2
,

η(0) = 0 ,
(3.2)

where M = supx∈Ω̄ f(x). From (3.2) one has 1
λM

∫ η(t)
0

(1− s)2ds = t . If T∗ is the time

where limt→T∗
η(t) = 1, then we have T∗ = 1

λM

∫ 1

0 (1 − s)2ds = 1
3λM . Obviously, η(t)

is now a super-solution of u(x, t) near quenching, and thus we have

T ≥ T∗ =
1

3λM
=

1

3λ supx∈Ω̄ f(x)
,

which is true for any λ > 0.
We next prove the upper bound in (3.1). Let ā ∈ Ω̄ be such that f(ā) =

supx∈Ω̄ f(x), and suppose K = K(f,Ω) is the Hölder constant of f . Since f ∈ Cα(Ω̄)

for some α ∈ (0, 1], then for any sufficiently small ε > 0, there exists δ =
(
ε

2K

)1/α

such that

f(x) ≥ f(ā) − ε

2
, ∀x ∈ Q := B(ā, δ) ∩ Ω ,

where B(ā, δ) is a ball centered at ā with radius δ. Let v be the solution of

vt − ∆v =
λ
(
f(ā) − ε

2

)

(1 − v)2
in Q× (0, Tv) ,

v(x, 0) = 0 in Q , v(x, t) = 0 on ∂Q× (0, Tv) ,

(3.3)

where Tv is the maximal existence time of (3.3). The comparison argument shows
that u ≥ v in Q× (0, Tm), where Tm = min{T, Tv}. Therefore, we have T ≤ Tv.

Our goal now is to estimate Tv for sufficiently large values of λ. Let µ1(δ) be the
first eigenvalue of −∆ in B(ā, δ), and let φ be the corresponding positive eigenfunction
normalized such that

∫
Q
φdx = 1. Multiplying (3.3) by φ and integrating over Q, we

obtain

d

dt

∫

Q

φv dx =

∫

Q

φ∆v dx+ λ
(
f(ā) − ε

2

) ∫

Q

φ

(1 − v)2
dx

= −µ1(δ)

∫

Q

φv dx+ λ
(
f(ā) − ε

2

) ∫

Q

φ

(1 − v)2
dx .

(3.4)
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Next, we define an energy-like quantity by E(t) =
∫
Q
φ

Ω
v dx so that E(0) = 0 and

E(t) =

∫

Q

φ
Ω
v dx ≤ sup

Q
v

∫

Q

φdx = sup
Q
v . (3.5)

Then, using Jensen’s inequality on the right-hand side of (3.4), we obtain

dE

dt
+ µ1(δ)E ≥ λ

(
f(ā) − ε

2

)

(1 − E)2
, E(0) = 0 .

Recall that there exists a constant D = D(N) > 0, depending only on N , such that
µ1(δ) = Dδ−2. We now choose ε = ε(λ, f,Ω) > 0 such that

µ1(δ) = Dδ−2 = D
( ε

2K

)− 2
α =

λ

2
ε , i.e., ε =

2D
α

2+αK
2

2+α

λ
α

2+α

. (3.6)

Then there exists a sufficiently large λ0 = λ0(f,Ω) > λ∗ such that for any λ > λ0, we
have f(ā) − ε > 0 and

dE

dt
≥ λ

(
f(ā) − ε

)

(1 − E)2
+

λε

2(1 − E)2
− µ1(δ)E

≥ λ
(
f(ā) − ε

)

(1 − E)2
+
λε

2
− µ1(δ) =

λ
(
f(ā) − ε

)

(1 − E)2
.

This implies a finite quenching time TE of E satisfying

TE ≤ 1

3λ
(
f(ā) − ε

) ≤ 1

3λf(ā)
+

C

λ
2+2α
2+α

,

where C = C(f,Ω) is independent of λ in view of (3.6). Therefore, we conclude from
(3.5) that

T ≤ Tv ≤ TE ≤ 1

3λf(ā)
+

C

λ
2+2α
2+α

,

and the lemma is proved.
We now recall the following result proved in Theorem 1.1 of [7].

Lemma 3.2. Assume f satisfies (1.1) for some α ∈ (0, 1] on a bounded domain
Ω ⊂ R

N , and let u be a quenching solution of (P )λ at finite time T . Assuming the
quenching set of u is compact in Ω, then

1. No point a ∈ Ω̄ satisfying f(a) = 0 can be a quenching point of u;
2. There exists a constant M > 0 such that

M(T − t)
1
3 ≤ 1 − u(x, t) in Ω × (0, T ). (3.7)

The following result can now be seen as a converse of Lemma 3.2: for sufficiently
large λ, finite-time quenching must occur near the maximum point of the varying
dielectric permittivity profile f .

Theorem 3.3. Assume f satisfies (1.1) for some α ∈ (0, 1] on a bounded domain
Ω ⊂ R

N , and suppose that u is a quenching solution of (P )λ at finite time T , in such
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a way that the quenching set K of u is compact in Ω. Then, for any a ∈ K, there
exists C > 0 such that for λ large enough, we have

(
sup
x∈Ω̄

f
) 1

3 −
(
f(a)

) 1
3 ≤ C

λ
α

2+α

, (3.8)

provided we are in one of the following two situations:
1) N = 1; or
2) N ≥ 2 and a = 0, Ω is a ball BR(0) and f(r) is radially symmetric.

Proof. The idea of the proof –inspired by [2]– is to combine the estimates on
quenching time given by Lemma 3.1, with the local energy estimates near any quench-
ing point established in [7]. Given a quenching point a of u and its corresponding
quenching time T , we define

y =
x− a√
T − t

, s = − log(1 − t

T
) , 1 − u(x, t) = (T − t)

1
3w(y, s),

then w satisfies

ρws = ∇ · (ρ∇w) +
1

3
ρw − λρf(a+ yT

1
2 e−

s
2 )

w2
in Ω(s) × (0,∞) ,

where ρ(y) = e−|y|2/4 and Ω(s) = {y : a+yT
1
2 e−

s
2 ∈ Ω}. The compactness assumption

on the quenching set implies that there exists a sufficiently large s0 > 0 such that
Bs(a) ⊂ Ω(s) for any s ≥ s0.

Consider now the “frozen” energy functional

E(w) =
1

2

∫

Bs

ρ|∇w|2dy − 1

6

∫

Bs

ρw2dy −
∫

Bs

λρf(a)

w
dy ,

which is defined in the compact set Bs of Ωa(s) for s ≥ s0. Note from Lemma 3.2
that f(a) > 0. Using the same argument of Lemma 2.10 in [7], one can obtain

∫

Bs

ρ|ws|2dy ≤ −dE
ds

+

∫

∂Bs

ρws
∂w

∂ν
dS +

1

2s

∫

∂Bs

ρ|∇w|2(y · ν)dS

+

∫

Bs

λρws[f(a) − f(a+ yT
1
2 e−

s
2 )]

w2
dy

:= −dE
ds

+ I1 + I2 + I3 ,

(3.9)

where

I1 ≤ C1s
Ne−

s2

4
+ s

3 , I2 ≤ C3s
N−1e−

s2

4 .

To estimate I3, we use Lemma 3.2 to infer that w has a lower bound, and since
f ∈ Cα(Ω̄), we apply Hölder’s inequality to deduce that

I3 ≤ CT
α
2 e−

α
2
s

∫

Bs

ρ|y|αwsdy ≤ CT
α
2 e−

α
2
s
(∫

Bs

ρ|ws|2dy
) 1

2

.

Therefore, (3.9) gives for s≫ 1,

dE

ds
≤ −

∫

Bs

ρ|ws|2dy + CT
α
2 e−

α
2
s
( ∫

Bs

ρ|ws|2dy
) 1

2

+ CsNe−
s2

4
+ s

3 . (3.10)
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Maximizing now the right hand side of (3.10) with respect to

∫

Bs

ρ|ws|2dy, it yields

that for s≫ 1

dE

ds
≤ CTαe−αs + CsNe−

s2

4
+ s

3 ≤ CTαe−αs.

This leads to

E(w) ≤ E
(
w(y, 0)

)
+
CTα

α
= E(T− 1

3 ) +
CTα

α
.

Under the compactness assumption on the quenching set, a proof similar to Theorem
1.3 in [7] (see also [9, 10]) gives that

lim
s→∞

w(y, s) =
(
3λf(a)

) 1
3 := k(a)

uniformly on |y| ≤ C for any bounded constant C, and E(w(·, s)) → E(k(a)) as
s→ ∞, provided one of the following conditions holds:
1) N = 1; or
2) N ≥ 2 and a = 0, Ω = BR(0) is a bounded ball and f(r) = f(|x|) is radially
symmetric.
Therefore, under the assumption of Theorem 3.3, we have the following upper bound

E(k(a)) ≤ E(T− 1
3 ) +

CTα

α
. (3.11)

Observe that if b is a constant then the energyE can be rewritten asE(b) = ΓF (b),
where Γ =

∫
ρ(y)dy and F is the function

F (z) = −1

6
z2 − λf(a)

z
, z > 0 .

Since F attains a unique maximum at k(a) and F ′′(k(a)) = −1, there exist γ and
β such that if |z − k(a)| ≤ γ then F ′′(z) ≤ − 1

2 , and if |F (z) − F (k(a))| ≤ β then
|z − k(a)| ≤ γ. So we obtain from (3.11) that

F (k(a)) ≤ F (T− 1
3 ) +

CTα

α
.

Choose λ1 such that CTα

α = β. Then for λ > max{λ0, λ1}, where λ0 is as in Lemma
3.1, we have

β ≥ CTα

α
≥ F (k(a)) − F (T− 1

3 ) .

Hence from the properties of F , we have k(a) − T− 1
3 ≤ γ, which implies F ′′(k(a)) ≤

− 1
2 . It now deduces from (3.11) that

C

αλα
≥ CTα

α
≥ F (k(a)) − F (T− 1

3 ) ≥ 1

4
[T− 1

3 − k(a)]2,

where Lemma 3.1 is applied in the first inequality. This further gives that

T− 1
3 −

(
3λf(a)

) 1
3 ≤ C

λ
α
2

. (3.12)
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On the other hand, since Lemma 3.1 gives

T ≤ 1

3λ supx∈Ω̄ f
+

C

λ
2+2α
2+α

≤ 1

3λ supx∈Ω̄ f

(
1 +

C

λ
α

2+α

)
,

we have

T− 1
3 ≥

(
3λ sup

x∈Ω̄

f(x)
) 1

3

(
1 − C

λ
α

2+α

)
.

Therefore, we finally conclude that

(
sup
x∈Ω̄

f(x)
) 1

3 −
(
f(a)

) 1
3 ≤ C

λ
1
3
+α

2

+
C

λ
α

2+α

≤ C

λ
α

2+α

.

This completes the proof of Theorem 3.3.
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(a)  1 − u versus x at λ = 10
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(b) 1 − u versus x at λ = 100

Fig. 2. Upper figure (a): plots of 1− u versus x at different times, where λ = 10. Lower figure

(b): plots of 1 − u versus x at different times, where λ = 100.

Before ending this section, we now present a few numerical simulations on Lemma
3.1 and Theorem 3.3. Here we apply the implicit Crank-Nicholson scheme (see §3.2 of
[8] for details), with the meshpoints N = 6000, to (P )λ in the symmetric slab domain
−1/2 ≤ x ≤ 1/2. We choose the varying dielectric permittivity profile f(x) satisfying

f [α](x) =






1 − 16(x+ 1/4)2 , if x < −1/4 ;
| sin(2πx)| , if |x| ≤ 1/4 ;
1 − 16(x− 1/4)2 , if x > 1/4 .

(3.13)

Note that x = ±0.25 are two maximum points of f(x), and all assumptions of Lemma
3.1 and Theorem 3.3 are satisfied in view of (1.9).
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(a)  1−u versus x at λ = 105
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Fig. 3. Upper figure (a): plots of 1 − u versus x at different times. Lower figure (b): local

amplified plots of (a).

Simulation 1. Quenching behavior for small λ > λ∗:
In Fig. 2(a): 1−u versus x is plotted at different times for (P )λ at λ = 10, where the
quenching time is T = 0.05174132. The quenching is observed at x = ±0.204, a bit far
away from the maximum points of profile f(x). In Fig. 2(b): 1−u versus x is plotted
at different times for (P )λ at λ = 100, where the quenching time is T = 0.003523908.
In this case, the quenching is observed at x = ±0.2535, very close to the maximum
points of profile f(x). This simulation shows the necessary of the assumption that
Lemma 3.1 and Theorem 3.3 hold only for sufficiently large λ.

Simulation 2: Quenching behavior for sufficiently large λ:
In Fig. 3(a), 1 − u versus x is plotted at different times for (P )λ at λ = 105, where
the quenching time is T = 0.000003332783. In this case, two quenching points are
observed at x = ±0.250165, more close to the maximum points of profile f(x). In
Fig. 3(b) we show the local amplified plots of (a) near the maximum point x = 0.25 of
f(x). By further increasing the value of λ, we observe that quenching points become
further close to the maximum points of f(x).
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