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Abstract. In this paper, we investigate the relationship between the solutions, their 1st and
2nd derivatives of some second order linear differential equations and meromorphic function of finite
order. We obtain some precise estimates.
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1. Introduction and statement of results. Throughout this paper, we as-
sume that the reader is familiar with the fundamental results and the standard no-
tations of the Nevanlinna’s value distribution theory (see [8] , [10]). In addition, we
will use λ (f) and λ (1/f) to denote respectively the exponents of convergence of the
zero-sequence and the pole-sequence of a meromorphic function f , ρ (f) to denote
the order of growth of f , λ (f) and λ (1/f) to denote respectively the exponents of
convergence of the sequence of distinct zeros and distinct poles of f .

Consider the second order linear differential equation

f
′′

+A1 (z) eP (z)f
′
+A0 (z) eQ(z)f = 0, (1.1)

where P (z) , Q (z) are nonconstant polynomials, A1 (z) , A0 (z) (6≡ 0) are entire func-
tions such that ρ (A1) < degP (z) , ρ (A0) < degQ (z). Gundersen showed in
[6, p. 419] that if degP (z) 6= degQ (z) , then every nonconstant solution of (1.1)
is of infinite order. If degP (z) = degQ (z) , then (1.1) may have nonconstant solu-
tions of finite order. For instance f (z) = ez + 1 satisfies f

′′
+ ezf

′ − ezf = 0.

In [2], Z. X. Chen and K. H. Shon have investigated the case when degP (z) =
degQ (z) and have proved the following results:

Theorem A [2] . Let Aj (z) (6≡ 0) (j = 0, 1) be meromorphic functions with
ρ (Aj) < 1 (j = 0, 1) , a, b be complex numbers such that ab 6= 0 and arg a 6= arg b or
a = cb (0 < c < 1) . Then every meromorphic solution f (z) 6≡ 0 of the equation

f
′′

+A1 (z) eazf
′
+A0 (z) ebzf = 0 (1.2)

has infinite order.
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In the same paper, Z. X. Chen and K. H. Shon have investigated the fixed points
of solutions, their 1st and 2nd derivatives and the differential polynomials and have
obtained:

Theorem B [2] . Let Aj (z) (j = 0, 1) , a, b, c satisfy the additional hypotheses
of Theorem A. Let d0, d1, d2 be complex constants that are not all equal to zero.If
f (z) 6≡ 0 is any meromorphic solution of equation (1.2), then:
(i) f, f

′
, f

′′
all have infinitely many fixed points and satisfy

λ (f − z) = λ
(
f
′
− z
)

= λ
(
f
′′
− z
)

= ∞,

(ii) the differential polynomial

g (z) = d2f
′′

+ d1f
′
+ d0f

has infinitely many fixed points and satisfies λ (g − z) = ∞.

The main purpose of this paper is to study the relations between the solutions,
their 1st and 2nd derivatives of the differential equation (1.1) and meromorphic func-
tions of finite order. In fact we will prove the following results:

Theorem 1.1. Let P (z) =
n∑

i=0

aiz
i and Q (z) =

n∑
i=0

biz
i be nonconstant poly-

nomials where ai, bi (i = 0, 1, ..., n) are complex numbers, an 6= 0, bn 6= 0 such that
an = cbn (c > 1) and deg(P − cQ) = m ≥ 1 and A1 (z) , A0 (z) (6≡ 0) be meromorphic
functions with ρ (Aj) < m (j = 0, 1). Let d0 (z) , d1 (z) , d2 (z) be polynomials that
are not all equal to zero, ϕ (z) 6≡ 0 is a meromorphic function with finite order. If
f (z) 6≡ 0 is a meromorphic solution of (1.1) with λ (1/f) < ∞, then the differential
polynomials g (z) = d2f

′′
+ d1f

′
+ d0f satisfy λ (g − ϕ) = ∞.

Remark 1.1. In the following Theorem 1.2, we remove the condition λ (1/f) <
∞.

Theorem 1.2. Suppose that P (z) , Q (z) , A1 (z) , A0 (z) satisfy the hypotheses
of Theorem 1.1. If ϕ (z) /≡ 0 is a meromorphic function with finite order, then every
meromorphic solution f of (1.1) satisfies λ (f − ϕ) = λ

(
f
′ − ϕ

)
= λ

(
f
′′ − ϕ

)
= ∞.

2. Preliminary Lemmas. We need the following lemmas in the proofs of our
theorems.

Lemma 2.1 [5] . Let f be a transcendental meromorphic function of finite order ρ,
let Γ = {(k1, j1) , (k2, j2) , ..., (km, jm)} denote a finite set of distinct pairs of integers
that satisfy ki > ji ≥ 0 for i = 1, ...,m and let ε > 0 be a given constant. Then
the following estimations hold:

(i) There exists a set E1 ⊂ [0, 2π) that has linear measure zero, such that if ψ ∈
[0, 2π)−E1, then there is a constant R1 = R1 (ψ) > 1 such that for all z satisfying
arg z = ψ and |z| ≥ R1 and for all (k, j) ∈ Γ, we have
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∣∣∣∣f (k) (z)
f (j) (z)

∣∣∣∣ ≤ |z|(k−j)(ρ−1+ε)
. (2.1)

(ii) There exists a set E2 ⊂ (1,∞) that has finite logarithmic measure lm (E2) =∫ +∞
1

χ
E2

(t)

t dt, where χ
E2

is the characteristic function of E2, such that for all z
satisfying |z| /∈ E2 ∪ [0, 1] and for all (k, j) ∈ Γ, we have

∣∣∣∣f (k) (z)
f (j) (z)

∣∣∣∣ ≤ |z|(k−j)(ρ−1+ε)
. (2.2)

Lemma 2.2 [2] . Let f (z) be a transcendental meromorphic function of order
ρ (f) = ρ < +∞. Then for any given ε > 0, there exists a set E3 ⊂ [0, 2π) that
has linear measure zero, such that if ψ1 ∈ [0, 2π)\E3, then there is a constant R2 =
R2 (ψ1) > 1 such that for all z satisfying arg z = ψ1 and |z| = r ≥ R2, we have

exp
{
−rρ+ε

}
≤ |f (z)| ≤ exp

{
rρ+ε

}
. (2.3)

Lemma 2.3. Let P (z) = anz
n + ... + a0, (an = α+ iβ 6= 0) be a polynomial

with degree n ≥ 1 and A (z) (6≡ 0) be a meromorphic function with ρ (f) < n. Set
f (z) = A (z) eP (z), z = reiθ, δ (P, θ) = α cosnθ − β sinnθ. Then for any given ε >
0, there exists a set E4 ⊂ [0, 2π) that has linear measure zero, such that if θ ∈
[0, 2π) \ (E4 ∪ E5) , where E5 = {θ ∈ [0, 2π) : δ (P, θ) = 0} is a finite set, then for
sufficiently large |z| = r, we have
(i) if δ (P, θ) > 0, then

exp {(1− ε) δ (P, θ) rn} ≤ |f (z)| ≤ exp {(1 + ε) δ (P, θ) rn} , (2.4)

(ii) if δ (P, θ) < 0, then

exp {(1 + ε) δ (P, θ) rn} ≤ |f (z)| ≤ exp {(1− ε) δ (P, θ) rn} . (2.5)

Proof. Set f (z) = h (z) e(α+iβ)zn

, where h (z) = A (z) ePn−1(z), Pn−1 (z) = P (z)−
(α+ iβ) zn. Then ρ (h) = λ < n. By Lemma 2.2, for any given ε (0 < ε < n− λ) ,
there is E4 ⊂ [0, 2π) that has linear measure zero, such that if θ ∈ [0, 2π) \ (E4 ∪ E5) ,
where E5 = {θ ∈ [0, 2π) : δ (P, θ) = 0} , then there is a constant R2 = R2 (θ) > 1,
such that, for all z satisfying arg z = θ and r ≥ R2, we have

exp
{
−rλ+ε

}
≤ |h (z)| ≤ exp

{
rλ+ε

}
. (2.6)

By
∣∣∣e(α+iβ)(reiθ)n

∣∣∣ = eδ(P,θ)rn

and (2.6) , we have

exp
{
δ (P, θ) rn − rλ+ε

}
≤ |f (z)| ≤ exp

{
δ (P, θ) rn + rλ+ε

}
. (2.7)

By θ /∈ E5 we see that:
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(i) if δ (P, θ) > 0, then by 0 < λ + ε < n and (2.7) , we know that (2.4) holds for a
sufficiently large r;
(ii) if δ (P, θ) < 0, then by 0 < λ + ε < n and (2.7) , we know that (2.5) holds for a
sufficiently large r.

Lemma 2.4 [4] . Let A0, A1, ..., Ak−1, F /≡ 0 be finite order meromorphic functions.
If f is a meromorphic solution with ρ (f) = ∞ of the equation

f (k) +Ak−1f
(k−1) + ...+A1f

′
+A0f = F, (2.8)

then λ (f) = λ (f) = ρ (f) = ∞.

Lemma 2.5 ([7, p. 344]) . Let f (z) =
∞∑

n=0
an z

n be an entire function, µ (r) be the

maximum term, i.e., µ (r) = max{|an| rn; n = 0, 1, ...} and let νf (r) be the central
index of f , i.e., νf (r) = max{m, µ (r) = |am| rm}. Then

νf (r) = r
d

dr
logµ (r) < [logµ (r)]2 ≤ [logM (r, f)]2 , (2.9)

outside a set E6 ⊂ (1,+∞) of r of finite logarithmic measure.

Lemma 2.6 (Wiman-Valiron, [7] , [11]) . Let f (z) be a transcendental entire
function, and let z be a point with |z| = r at which |f (z)| = M (r, f). Then the
estimation

f (k) (z)
f (z)

=
(
νf (r)
z

)k

(1 + o (1)) (k ≥ 1 is an integer), (2.10)

holds for all |z| outside a set E7 of r of finite logarithmic measure.

Lemma 2.7 ([3]) . Suppose that f (z) is a meromorphic function with ρ (f) =
β < ∞. Then for any given ε > 0, there is a set E8 ⊂ (1,+∞) of finite logarithmic
measure, such that

|f (z)| ≤ exp
{
rβ+ε

}
(2.11)

holds for |z| = r /∈ [0, 1] ∪ E8, r → +∞.

Lemma 2.8. Let f (z) be a meromorphic function with ρ (f) = ∞ and the expo-
nent of convergence of the poles of f (z) is finite, λ (1/f) <∞. Let dj (z) (j = 0, 1, 2)
be polynomials that are not all equal to zero. Then

g (z) = d2 (z) f
′′

+ d1 (z) f
′
+ d0 (z) f (2.12)

satisfies ρ (g) = ∞.

Proof. We suppose that ρ (g) = ρ <∞ and then we obtain a contradiction. First
we suppose that d2 (z) /≡ 0. Set f (z) = w (z) /h (z), where h (z) is canonical product
(or polynomial) formed with the non-zero poles of f (z) , λ (h) = ρ (h) = λ (1/f) =
ρ1 <∞, w (z) is an entire function with ρ (w) = ρ (f) = ∞. We have
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f
′
(z) =

w
′
h− h

′
w

h2
and f

′′
(z) =

w
′′

h
− wh

′′

h2
− 2

w
′
h
′

h2
+ 2

(
h
′
)2

w

h3
. (2.13)

Hence

f
′′

(z)
f (z)

=
w
′′

w
− h

′′

h
− 2

w
′
h
′

wh
+ 2

(
h
′
)2

h2
, (2.14)

f
′
(z)

f (z)
=
w
′

w
− h

′

h
. (2.15)

By Lemma 2.1 (ii), there exists a set E1 ⊂ (1,∞) that has finite logarithmic measure,
such that , for all z satisfying |z| /∈ E1 ∪ [0, 1], we have

∣∣∣∣h(j)(z)
h(z)

∣∣∣∣ ≤ |z|j (ρ1−1+ε) (j = 1, 2) . (2.16)

Substituting (2.16) into (2.14) and (2.15) , we obtain for all z satisfying |z| /∈ E1∪[0, 1]

f
′′

(z)
f (z)

=
w
′′

w
+O (zα)

w
′

w
+O (zα) , (2.17)

f
′
(z)

f (z)
=
w
′

w
+O (zα) , (2.18)

where α (0 < α <∞) is a constant and may be different at different places. Substi-
tuting (2.17) and (2.18) into (2.12) , we have

d2 (z)

(
w
′′

w
+O (zα)

w
′

w
+O (zα)

)

+d1 (z)

(
w
′

w
+O (zα)

)
+ d0 (z) =

g (z)h (z)
w (z)

. (2.19)

It follows that

d2 (z)
w
′′

w
+ (O (zα) d2 (z) + d1 (z))

w
′

w
+O (zα) d2 (z)

+O (zα) d1 (z) + d0 (z) =
g (z)h (z)
w (z)

. (2.20)
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Hence,

d2 (z)
w
′′

w
+O (zm)

w
′

w
+O (zm) =

g (z)h (z)
w (z)

, (2.21)

where m (0 < m <∞) is some constant. By Lemma 2.6, there exists a set E2 ⊂
(1,+∞) with logarithmic measure lm (E2) < +∞ and we can choose z satisfying
|z| = r /∈ [0, 1] ∪ E2 and |w (z)| = M (r, w), such that

w(j) (z)
w (z)

=
(
νw (r)
z

)j

(1 + o (1)) (j = 1, 2). (2.22)

Since ρ (g) = ρ < ∞ and ρ (h) = λ (1/f) = ρ1 < ∞ by Lemma 2.7, there exists a
set E3 that has finite logarithmic measure, such that for all z satisfying |z| = r /∈
[0, 1] ∪ E3, we have

|g (z)| ≤ exp
{
rρ+1

}
, |h (z)| ≤ exp

{
rρ1+1

}
. (2.23)

By Lemma 2.5, there is a set E4 ⊂ (1,+∞) that has finite logarithmic measure, such
that for all z satisfying |z| = r /∈ [0, 1] ∪ E4, we have

|νw (r)| < (logM (r, w))2 . (2.24)

Since ρ (w) = lim
r→+∞

log νw(r)
log r = +∞, there exists

{
r
′

n

} (
r
′

n → +∞
)

such that

lim
r′n→+∞

log νw

(
r
′

n

)
log r′n

= +∞. (2.25)

Set the logarithmic measure of E1∪E2∪E3∪E4, lm (E1 ∪ E2 ∪ E3 ∪ E4) = γ < +∞,
then there exists a point rn ∈

[
r
′

n, (γ + 1) r
′

n

]
− E1 ∪ E2 ∪ E3 ∪ E4. From

log νw (rn)
log rn

≥
log νw

(
r
′

n

)
log ((γ + 1) r′n)

=
log νw

(
r
′

n

)
[
1 + ln(γ+1)

log r′n

]
log r′n

, (2.26)

it follows that

lim
rn→+∞

log νw (rn)
log rn

= +∞. (2.27)

Then for a given arbitrary large β > 2 (ρ1 + ρ+m+ 3) ,

νw (rn) ≥ rβ
n (2.28)

holds for sufficiently large rn. Now we take point zn satisfying |zn| = rn and w (zn) =
M (rn, w) , by (2.21) and (2.22) , we get
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|d2 (zn)|
(
νw (rn)
rn

)2

|1 + o (1)| ≤ 2Lrm
n

(
νw (rn)
rn

)
|1 + o (1)|

+
∣∣∣∣g (zn)h (zn)

w (zn)

∣∣∣∣ , (2.29)

where L > 0 is some constant. By Lemma 2.5 and (2.28) , we get

M (rn, w) > exp
(
r

β
2
n

)
. (2.30)

Hence by (2.23) , (2.30) as rn → +∞

|g (zn)h (zn)|
M (rn, w)

→ 0 (2.31)

holds. By (2.28), (2.29), (2.31), we get

|d2 (zn)| rβ
n ≤ |d2 (zn)| νw (rn) ≤ 2LKrm+1

n , (2.32)

where K > 0 is some constant. This is a contradiction by β > 2 (ρ1 + ρ+m+ 3).
Hence ρ (g) = ∞.

Now suppose d2 ≡ 0, d1 /≡ 0. Using a similar reasoning as above we get a
contradiction. Hence ρ (g) = ∞.

Finally, if d2 ≡ 0, d1 ≡ 0, d0 /≡ 0, then we have g (z) = d0 (z) f (z) and by d0 is a
polynomial, then we get ρ (g) = ∞.

Lemma 2.9. Let P (z) =
n∑

i=0

aiz
i and Q (z) =

n∑
i=0

biz
i be nonconstant polynomials

where ai, bi (i = 0, 1, ..., n) are complex numbers, an 6= 0, bn 6= 0 such that an = cbn
(c > 1). We denote index sets by

Λ1 = {0, Q} ,

Λ2 = {0, Q, P, 2Q,P +Q} .

(i) If Hj (j ∈ Λ1) and HP /≡ 0 are all meromorphic functions of orders that are less
than n, setting Ψ1 (z) =

∑
j∈Λ1

Hj (z) ej , then Ψ1 (z) +HP e
P /≡ 0;

(ii) If Hj (j ∈ Λ2) and H2P /≡ 0 are all meromorphic functions of orders that are less
than n, setting Ψ2 (z) =

∑
j∈Λ2

Hj (z) ej , then Ψ2 (z) +H2P e
2P /≡ 0.

(iii) Let Ψ10 (z) ,Ψ11 (z) have the form of Ψ2 (z) which is defined as in (ii) and
H2P /≡ 0 are all meromorphic functions of orders that are less than n, ϕ (z) /≡ 0 is a
meromorphic functions with finite order. Then
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ϕ
′
(z)

ϕ (z)
Ψ11 (z) + +Ψ10 (z) +H2P e

2P /≡ 0.

Proof. The proof of (i) and (ii) are similar, we prove only (ii).
Suppose an = cbn (c > 1) . Set ρ (H0) = β < n. By Lemma 2.2, for any given ε(

0 < ε < min
(

c−1
5c , n− β

))
, there is a set E1 that has linear measure zero such that

if arg z = θ ∈ [0, 2π) \E1, then there is R = R (θ) > 1 such that for all z satisfying
arg z = θ and |z| = r > R, we have

|H0 (z)| ≤ exp
{
rβ+ε

}
. (2.33)

By Lemma 2.3, there exists a ray arg z = θ ∈ [0, 2π) \E1 ∪ E2 ∪ E0, E2, E0 ⊂ [0, 2π)
being defined as in Lemma 2.3, E2 having linear measure zero, E0 being a finite set,
such that δ (Q, θ) > 0

δ (P, θ) = cδ (Q, θ) > 0, δ (2P, θ) = 2cδ (Q, θ) > 0,

δ (P +Q, θ) = (1 + c) δ (Q, θ) > 0, δ (2Q, θ) = 2δ (Q, θ) > 0.

And for the above ε, we have for sufficiently large |z| = r

∣∣H2P e
2P
∣∣ ≥ exp {(1− ε) 2cδ (Q, θ) rn} , (2.34)

∣∣HP e
P
∣∣ ≤ exp {(1 + ε) cδ (Q, θ) rn} , (2.35)

∣∣HP+Qe
P+Q

∣∣ ≤ exp {(1 + ε) (1 + c) δ (Q, θ) rn} , (2.36)

∣∣H2Qe
2Q
∣∣ ≤ exp {(1 + ε) 2δ (Q, θ) rn} , (2.37)

∣∣HQe
Q
∣∣ ≤ exp {(1 + ε) δ (Q, θ) rn} . (2.38)

If Ψ2 (z) +H2P e
2P ≡ 0, then by (2.33)− (2.38) , we have

exp {(1− ε) 2cδ (Q, θ) rn} ≤
∣∣H2P e

2P
∣∣ ≤ exp

{
rβ+ε

}
+ exp {(1 + ε) δ (Q, θ) rn}

+exp {(1 + ε) cδ (Q, θ) rn}+ exp {(1 + ε) 2δ (Q, θ) rn}

+exp {(1 + ε) (1 + c) δ (Q, θ) rn} ≤ exp
{
rβ+ε

}
+4 exp {(1 + ε) (1 + c) δ (Q, θ) rn} . (2.39)
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By β + ε < n and 0 < ε < c−1
5c , we have as r → +∞

exp
{
rβ+ε

}
exp {(1− ε) 2cδ (Q, θ) rn}

→ 0, (2.40)

exp {(1 + ε) (1 + c) δ (Q, θ) rn}
exp {(1− ε) 2cδ (Q, θ) rn}

→ 0. (2.41)

By (2.39)− (2.41) , we get 1 ≤ 0. This is a contradiction, hence Ψ2 (z) +H2P e
2P /≡ 0.

(iii) By ρ (ϕ) <∞ and Lemma 2.1, for any given ε > 0, there exists a set E ⊂ [0, 2π)
that has linear measure zero, such that if θ ∈ [0, 2π) − E, then there is a constant
R = R (θ) > 1 such that for all z satisfying arg z = θ and |z| ≥ R, we have

∣∣∣∣∣ϕ
′
(z)

ϕ (z)

∣∣∣∣∣ ≤ |z|(ρ(ϕ)−1+ε)
. (2.42)

It follows that on the ray arg z = θ ∈ [0, 2π)− E,

ϕ
′
(z)

ϕ (z)
Hj (z) ej (j ∈ Λ2) ,

keep the properties of Hj (z) ej (j ∈ Λ2) which are defined as in (2.33) , (2.35)−(2.38) .
By using similar reasoning to that in the proof of (ii) , the proof of (iii) can be
completed.

Lemma 2.10 [1] . Let Pj (z) =
n∑

i=0

ai,jz
i (j = 0, ..., k − 1) be nonconstant polynomi-

als where a0,j , ..., an,j (j = 0, 1, ..., k − 1) are complex numbers such that an,jan,0 6= 0
(j = 1, ..., k − 1) , let Aj (z) (6≡ 0) (j = 0, ..., k − 1) be meromorphic functions. Sup-
pose that an,j = can,0 (c > 1) and deg(Pj − cP0) = m ≥ 1 (j = 1, ..., k − 1),
ρ (Aj) < m (j = 0, ..., k − 1) . Then every meromorphic solution f (z) 6≡ 0 of the
equation

f
(k)

+Ak−1 (z) ePk−1(z)f
(k−1)

+ ...+A1 (z) eP1(z)f
′
+A0 (z) eP0(z)f = 0, (2.43)

where k ≥ 2, is of infinite order.

3. Proof of Theorem 1.1. Suppose that f (z) /≡ 0 is a meromorphic solution
of equation (1.1) with λ (1/f) <∞. Then by Lemma 2.10, we have ρ (f) = ∞. First
we suppose that d2 (z) /≡ 0. Set w = d2f

′′
+ d1f

′
+ d0f − ϕ, then by Lemma 2.8 we

have ρ (w) = ρ (g) = ρ (f) = ∞. In order to prove λ (g − ϕ) = ∞, we need to prove
λ (w) = ∞. Substituting f

′′
= −A1e

P f
′ −A0e

Qf into w, we get

w =
(
d1 − d2A1e

P
)
f
′
+
(
d0 − d2A0e

Q
)
f − ϕ. (3.1)

Differentiating both sides of equation (3.1) and replacing f
′′

with f
′′

= −A1e
P f

′ −
A0e

Qf, we obtain
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w
′
= [d2A

2
1e

2P − ((d2A1)
′
+ P

′
d2A1 + d1A1)eP − d2A0e

Q + d0 + d
′

1]f
′

+[d2A0A1e
P+Q −

(
(d2A0)

′
+Q

′
d2A0 + d1A0

)
eQ + d

′

0]f − ϕ
′
. (3.2)

Set

α1 = d1 − d2A1e
P , α0 = d0 − d2A0e

Q, (3.3)

β1 = d2A
2
1e

2P − ((d2A1)
′
+ P

′
d2A1 + d1A1)eP − d2A0e

Q + d0 + d
′

1, (3.4)

β0 = d2A0A1e
P+Q −

(
(d2A0)

′
+Q

′
d2A0 + d1A0

)
eQ + d

′

0. (3.5)

Then we have

α1f
′
+ α0f = w + ϕ, (3.6)

β1f
′
+ β0f = w

′
+ ϕ

′
. (3.7)

Set

h = α1β0 − α0β1.

Case 1: If h (z) ≡ 0, then by (3.6) , (3.7) we have

α1w
′
− β1w = −

(
α1ϕ

′
− β1ϕ

)
= −ϕ

(
α1
ϕ
′

ϕ
− β1

)
. (3.8)

By Lemma 2.9 (i)− (ii) we have α1 /≡ 0, β1 /≡ 0, and by ϕ (z) /≡ 0, Lemma 2.9 (iii), we
obtain

−
(
α1ϕ

′
− β1ϕ

)
= −ϕ

(
α1
ϕ
′

ϕ
− β1

)
/≡ 0. (3.9)

From (3.8) , (3.9) and Lemma 2.4, we get λ (w) = ρ (w) = ∞. Hence λ (g − ϕ) = ∞.

Case 2: If h (z) /≡ 0 then by (3.6), (3.7) we obtain

f =
α1

(
w
′
+ ϕ

′
)
− β1 (w + ϕ)

h
. (3.10)
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Substituting (3.10) into (1.1), we obtain

α1

(
w
′
+ ϕ

′
)
− β1 (w + ϕ)

h


′′

+A1e
P

α1

(
w
′
+ ϕ

′
)
− β1 (w + ϕ)

h


′

+A0e
Q

α1

(
w
′
+ ϕ

′
)
− β1 (w + ϕ)

h

 = 0. (3.11)

By (3.11), we get

(
α1w

′ − β1w

h

)′′

+A1e
P

(
α1w

′ − β1w

h

)′

+A0e
Q

(
α1w

′ − β1w

h

)

= −

(α1ϕ
′ − β1ϕ

h

)′′

+A1e
P

(
α1ϕ

′ − β1ϕ

h

)′

+A0e
Q

(
α1ϕ

′ − β1ϕ

h

) . (3.12)

By (3.12) , we obtain

α1

h
w
′′′

+ Φ2w
′′

+ Φ1w
′
+ Φ0w = F

where Φ0 (z) , Φ1 (z) and Φ2 (z) are meromorphic functions with ρ (Φ0) ≤ n, ρ (Φ1) ≤
n, ρ (Φ2) ≤ n and

F = −

(α1ϕ
′ − β1ϕ

h

)′′

+A1e
P

(
α1ϕ

′ − β1ϕ

h

)′

+A0e
Q

(
α1ϕ

′ − β1ϕ

h

) .
By α1ϕ

′ − β1ϕ /≡ 0, ρ
(

α1ϕ
′
−β1ϕ
h

)
<∞ and Lemma 2.10 we know that F /≡ 0. Hence

by h /≡ 0, α1 /≡ 0 and Lemma 2.4, we obtain λ (w) = ρ (w) = ∞. Hence λ (g − ϕ) = ∞.
Now suppose d2 ≡ 0, d1 /≡ 0. Using a similar reasoning as above we get λ (w) =

ρ (w) = ∞. Hence λ (g − ϕ) = ∞.
Finally, if d2 ≡ 0, d1 ≡ 0, d0 /≡ 0, then we have w = d0f − ϕ, ρ (w) = ∞,

λ (w) = λ (d0f − ϕ). Substituting

f =
w

d0
+
ϕ

d0
, f

′
=
(
w

d0

)′

+
(
ϕ

d0

)′

, f
′′

=
(
w

d0

)′′

+
(
ϕ

d0

)′′

(3.13)

into equation (1.1) , we obtain

(
w

d0

)′′

+A1e
P

(
w

d0

)′

+A0e
Q w

d0
= −

((
ϕ

d0

)′′

+A1e
P

(
ϕ

d0

)′

+A0e
Qϕ

d0

)
. (3.14)
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By ϕ (z) being a meromorphic function of finite order and d0 (z) is a polynomial, then
ϕ(z)
d0(z) has finite order and by Lemma 2.10, we have

(
ϕ

d0

)′′

+A1e
P

(
ϕ

d0

)′

+A0e
Qϕ

d0
/≡ 0. (3.15)

Hence by Lemma 2.4, we have λ
(

w
d0

)
= ρ

(
w
d0

)
= ∞ ( d0 is a polynomial). Then

λ (w) = ∞ , i.e., λ (d0f − ϕ) = ∞.

4. Proof of Theorem 1.2. Suppose that f (z) /≡ 0 is a meromorphic solution
of equation (1.1). Then by Theorem 2.10 we have ρ (f) = ρ

(
f
′
)

= ρ
(
f
′′
)

= ∞.

Since ρ (ϕ) < ∞, then ρ (f − ϕ) = ρ
(
f
′ − ϕ

)
= ρ

(
f
′′ − ϕ

)
= ∞. By using similar

reasoning to that in the proof of Theorem 1.1, the proof of Theorem 1.2 can be
completed.
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