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Abstract. In this paper, we investigate the relationship between the solutions, their 1st and
2nd derivatives of some second order linear differential equations and meromorphic function of finite
order. We obtain some precise estimates.
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1. Introduction and statement of results. Throughout this paper, we as-
sume that the reader is familiar with the fundamental results and the standard no-
tations of the Nevanlinna’s value distribution theory (see [8], [10]). In addition, we
will use A (f) and A (1/f) to denote respectively the exponents of convergence of the
zero-sequence and the pole-sequence of a meromorphic function f, p(f) to denote
the order of growth of f, A(f) and A(1/f) to denote respectively the exponents of
convergence of the sequence of distinct zeros and distinct poles of f.

Consider the second order linear differential equation

f” + A1 (2) eP(z)f/ + Ap (2) eQ(Z)f =0, (1.1)

where P (z),Q (z) are nonconstant polynomials, A; (z), Ao (2) (# 0) are entire func-
tions such that p(A;) < degP(z), p(Ao) < deg@(z). Gundersen showed in
[6, p. 419] that if deg P (z) # degQ (z), then every nonconstant solution of (1.1)
is of infinite order. If deg P (2) = deg @ (2), then (1.1) may have nonconstant solu-
tions of finite order. For instance f(z) = e* + 1 satisfies f +e*f —e*f = 0.

In [2], Z. X. Chen and K. H. Shon have investigated the case when deg P (z) =
deg @ (z) and have proved the following results:

THEOREM A [2]. Let Aj(z)(#0) (j=0,1) be meromorphic functions with
p(A;) <1(j=0,1), a, b be complex numbers such that ab # 0 and arga # argb or
a=cb (0 <c<1). Then every meromorphic solution f(z) % 0 of the equation

F AL () e f + Ay (z) e f =0 (1.2)

has infinite order.
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In the same paper, Z. X. Chen and K. H. Shon have investigated the fixed points
of solutions, their 1st and 2nd derivatives and the differential polynomials and have
obtained:

THEOREM B [2]. Let A;(2) (j=0,1), a,b,c satisfy the additional hypotheses
of Theorem A. Let dy,d1,ds be complex constants that are not all equal to zero.If
f(2) £ 0 is any meromorphic solution of equation (1.2), then:

() £, f . f" all have infinitely many fized points and satisfy

Af—2) :X(f’ fz) :X(f” fz) = 00,
(ii) the differential polynomial

g(z) =dof +dif +dof

has infinitely many fived points and satisfies (g — z) = oc.

The main purpose of this paper is to study the relations between the solutions,
their 1st and 2nd derivatives of the differential equation (1.1) and meromorphic func-
tions of finite order. In fact we will prove the following results:

THEOREM 1.1. Let P(z) = Zalz and Q(z) = Zb 2% be nonconstant poly-

nomials where a;, b; (i =0,1,..., ) are complex numbers an # 0, by # 0 such that
an = cby (¢ > 1) and deg(P — cQ) =m > 1 and A; (), Ao (2) (# 0) be meromorphic
functions with p(A;) < m (j =0,1). Let dy(z),d1(z),d2(2) be polynomials that
are not all equal to zero, ¢ (2) # 0 is a meromorphic function with finite order. If
f(z)£0isa meromorphic solution of (1.1) with A (l/f) < 00, then the differential
polynomials g (z) = dof 4+ dif +dof satisfy \ (g—p) =

REMARK 1.1. In the following Theorem 1.2, we remove the condition A (1/f) <

THEOREM 1.2. Suppose that P (z), Q(z), A1 (2), Ao (z) satisfy the hypotheses
of Theorem 1.1. If ¢ (z)= 0 is a meromorphic function with finite order, then every

meromorphic solution f of (1.1) satisfies X (f — @) = X (f, — <p> =\ (f” — <p) =00

2. Preliminary Lemmas. We need the following lemmas in the proofs of our
theorems.

LEMMA 2.1 [5]. Let f be a transcendental meromorphic function of finite order p,
let T ={(k1,51), (k2,52) .., (km,Jm)} denote a finite set of distinct pairs of integers
that satisfy k; > j; >0 for i =1,....m andlet € >0 be a given constant. Then
the following estimations hold:

(i) There exists a set Ey C [0,2m) that has linear measure zero, such that if ¢ €
[0,27) — Eq, then there is a constant Ry = Ry () > 1 such that for all z satisfying
argz =1 and |z| > Ry and for all (k,j) € T, we have
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® (2)
9 (2)

(17) There exists a set Ea C (1,00) that has finite logarithmic measure Im (E3) =
f+oo XE2 (t)

< |Z|(k*j)(f)*1+€) . (2.1)

1 dt, where X, s the characteristic function of Es, such that for all z
satisfying |z| ¢ Eo U [0,1] and for all (k,j) € T, we have

O (2)
/9 (2)

LEMMA 2.2 [2]. Let f(z) be a transcendental meromorphic function of order
p(f) = p < +o0. Then for any given ¢ > 0, there exists a set Es C [0,27) that
has linear measure zero, such that if 1 € [0,27)\Es, then there is a constant Ry =
Ro (1) > 1 such that for all z satisfying argz =1 and |z| = r > Ra, we have

< |Z|(k*j)(ﬁfl+€) . (2.2)

exp {—r?T} < | (2)] < exp {rPTe}. (2.3)

LEMMA 2.3. Let P(2) = an2™ + ... + ag, (ap =a+i8 #0) be a polynomial
with degree n > 1 and A(z) (£ 0) be a meromorphic function with p(f) < n. Set
f(z) = A(2)eP®) 2 = ret? §(P,0) = acosnb — Bsinnf. Then for any given € >
0, there exists a set Ey C [0,2m) that has linear measure zero, such that if 6 €
[0,27)\ (B4 U E5), where Es = {0 €[0,2m) : 6 (P,0) =0} is a finite set, then for
sufficiently large |z| = r, we have
(1) if 6(P,0) > 0, then

exp{(1—¢)d (P,0)r"} <|f ()] <exp{(1+2)d(P,0)r"}, (2.4)

(ii) if 0 (P, 0) <0, then
exp{(14+2)5(P0)™) < |F ()| <exp{(L—)5(PO)™) . (25)

Proof. Set f (z) = h(z) el@t2" where h () = A (2) ef1(*) P, 1 (2) = P(2)—
(a+1i0)2". Then p(h) = A < n. By Lemma 2.2, for any given ¢ (0 <e<n—A),
there is F4 C [0,2m) that has linear measure zero, such that if 6 € [0,27) \ (E4 U E5),
where E5 = {0 €[0,27) : § (P,0) = 0}, then there is a constant Re = Ra (0) > 1,
such that, for all z satisfying argz = 6 and r > Ry, we have

exp {—’I‘AJF‘S} < |h(2)] < exp {7"\+5} . (2.6)

By ‘e(o‘“ﬁ)(”w)" = PO and (2.6), we have

exp {6 (P,0) r" — 7‘)‘+5} <|f(2)| <exp{d(P,0)r" + r>‘+€} . (2.7)

By 6 ¢ Es5 we see that:
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(i) if 6 (P,0) > 0, then by 0 < A+ < n and (2.7), we know that (2.4) holds for a
sufficiently large 7;
(ii) if § (P,0) < 0, then by 0 < A+ ¢ < n and (2.7), we know that (2.5) holds for a
sufficiently large r.

LEMMA 2.4 [4]. Let Ao, Ay, ..., Ax—1, F= 0 be finite order meromorphic functions.
If f is a meromorphic solution with p (f) = oo of the equation

FB 4 Ay fE D 44 A F + Aof = F, (2.8)
then X (f) =X (f) = p(f) = occ.

LEMMA 2.5 ([7, p. 344)). Let f(z) = > an, 2™ be an entire function, u(r) be the

n=0
mazimum term, i.e., p(r) = max{|a,|r™; n =0,1,...} and let vy (r) be the central

index of f, i.e., vy (r) = max{m, u(r) =|am|r™}. Then

d
vy (r) = (s log 11 (1) < [log i (r)]2 < [log M (r, f)]z, (2.9)
outside a set Eg C (1,+00) of r of finite logarithmic measure.
LEMMA 2.6 (Wiman-Valiron, [7], [11]). Let f(z) be a transcendental entire

function, and let z be a point with |z| = r at which |f (2)] = M (r,f). Then the
estimation

W) () ’ 0 is an integer
= _< ! ) (1+o(1) (k>1 teger), (2.10)

holds for all |z| outside a set E7 of r of finite logarithmic measure.

LEMMA 2.7 ([3]). Suppose that f(z) is a meromorphic function with p(f) =
8 < oo. Then for any given € > 0, there is a set Eg C (1,+00) of finite logarithmic
measure, such that

If (2)] < exp {r’*} (2.11)
holds for |z| =r ¢ [0,1] U Eg, r — +00.
LEMMA 2.8. Let f(z) be a meromorphic function with p(f) = oo and the expo-

nent of convergence of the poles of f(z) is finite, A(1/f) < co. Let d; (2) (j =0,1,2)
be polynomials that are not all equal to zero. Then

9(2)=do(2) " +di (2) f +do(2) f (2.12)

satisfies p (g) = 0.

Proof. We suppose that p (g) = p < co and then we obtain a contradiction. First
we suppose that ds (2)= 0. Set f(2) = w(z) /h(z), where h (z) is canonical product
(or polynomial) formed with the non-zero poles of f(z),A(h) = p(h) = A(1/f) =
p1 < 00, w(z) is an entire function with p (w) = p (f) = co. We have
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N2
/ w'h—h'w " w' wh” _wh (h ) w
_ N _ 2 . 2.1
f(2) 2 and f (2) W W2 2 % + 13 (2.13)
Hence
N2
" " " i h
f Gz w h w h ( )
= — — — —2—+2 2.14
() w h wh TR (2.14)
f/ (Z) w/ h/
= — — —. 2.1
f (= w h (2.15)

By Lemma 2.1 (ii), there exists a set F1 C (1, 00) that has finite logarithmic measure,
such that , for all z satisfying |z| ¢ Eq U [0, 1], we have

'hu)(z)

< glilpr=1te) (5 =1 9), 2.16
| <1 (=12 (2.16)

Substituting (2.16) into (2.14) and (2.15) , we obtain for all z satisfying |z| ¢ E1U[0,1]

1" /

T = e TOEN L O, (2.17)
) _w o
o~ w TOEY, (2.18)

where o (0 < o < 00) is a constant and may be different at different places. Substi-
tuting (2.17) and (2.18) into (2.12), we have

+d, (2) <7;i +0 (za)> +dp (z) = Z=———=. (2.19)

It follows that

FO (Y dy (2) + do (2) = LI E) (2.20)
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Hence,

1" ’

dy () % +0 (=™ % 1O (M) = g(;)(’;)(z) (2.21)

where m (0 < m < 00) is some constant. By Lemma 2.6, there exists a set Ey C
(1,+00) with logarithmic measure Im (E;) < 400 and we can choose z satisfying
|z| =7 ¢ [0,1] U Ey and |w(2)| = M (r,w), such that

w) () <uw (r)

> (I4+0(1) (j=1,2). (2.22)

Since p(g) = p < oo and p(h) = A(1/f) = p1 < oo by Lemma 2.7, there exists a
set F3 that has finite logarithmic measure, such that for all z satisfying |z| = r ¢
[0,1] U E5, we have

19(2)] < exp (P}, [h(2)] < exp {171} (2.23)

By Lemma 2.5, there is a set E4 C (1,+00) that has finite logarithmic measure, such
that for all z satisfying |z| = r ¢ [0, 1] U E4, we have

v ()] < (log M (r,w))?. (2.24)

Since p (w) = lim loevu(r) _ | o there exists {r;} (r;l — +oo> such that

r 400 log r

log vy, (r;)
lim ———~+

= } 2.25
vl —too  logrTy, e ( )

Set the logarithmic measure of £y UFEyUE3UEy, Im (E1 U Ey U E3 U Ey) = < 400,
then there exists a point r,, € [7“;” (v+1) T;Z} — E1UE>;UE3UE,. From

log vy, (r%) log vy, (r/n>
log v (rn) - , (2.26)
log 7, log ((y+1)7),) {1 N ln(’Y+,1):| log 7
log ), n
it follows that
1
im w = 4o0. (2.27)
rn—+oo  logry,
Then for a given arbitrary large 8 > 2(p1 + p+m+3),
Vi (1) > 78 (2.28)

holds for sufficiently large r,,. Now we take point z, satisfying |z,| = r, and w (2,,) =
M (rn,w), by (2.21) and (2.22), we get



SOME PROPERTIES OF SOLUTIONS 301

sl () o 2 (M0 ) 1o

n n

9 (zn) b (2n)
2.29
[l (2.20)
where L > 0 is some constant. By Lemma 2.5 and (2.28), we get
g8
M (rp,w) > exp (rﬁ) . (2.30)
Hence by (2.23), (2.30) as r,, — 400
= =0 2.31
M (rp,w) - (2:31)
holds. By (2.28), (2.29), (2.31), we get
|da (2)] 72 < |do (20)| Ve (1) < 2LK7™HE (2.32)

where K > 0 is some constant. This is a contradiction by 8 > 2(p; + p+ m + 3).
Hence p (g) = 0.

Now suppose d2 = 0, dy = 0. Using a similar reasoning as above we get a
contradiction. Hence p (g) = oo.

Finally, if do =0, d1 =0, do= 0, then we have g (z) = dy (2) f () and by dy is a
polynomial, then we get p (g) = co.

n X n .
LEMMA 2.9. Let P(z) = > a;2" and Q (z) = > b;2" be nonconstant polynomials
i=0 i=0
where a;, b; (i =0,1,...,n) are complex numbers, a, # 0, b, # 0 such that a,, = cb,
(¢ >1). We denote index sets by

Al = {OaQ}a

A22{07Qap72Q7P+Q}

(@) If Hj(j € A1) and Hp=t 0 are all meromorphic functions of orders that are less
than n, setting Wy (2) = Y. H; (2) €7, then ¥y (2) + HpeP= 0;

JEA
(i) If Hj (j € A2) and Hap= 0 are all meromorphic functions of orders that are less
than n, setting Vo (2) = Y. H; (2)e?, then Wy (2) + Hape?P= 0.

JEA2
(#91) Let Wig(2),WU11 (2) have the form of Wa(z) which is defined as in (ii) and
Hsp= 0 are all meromorphic functions of orders that are less than n, ¢ (2)= 0 is a
meromorphic functions with finite order. Then
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7 (Z)‘I’u (2) + +T1g (2) + Hope?* ' 0.
¢ (2)
Proof. The proof of (i) and (i¢) are similar, we prove only (ii).
Suppose a,, = ¢b, (¢ > 1). Set p(Hy) = 8 < n. By Lemma 2.2, for any given ¢
(0 < € < min (05_—61, n— ﬂ)) , there is a set F; that has linear measure zero such that
if argz = 0 € [0,27) \E1, then there is R = R(6) > 1 such that for all z satisfying

arg z =0 and |z| = r > R, we have

|Ho (z)| < exp {r"*<}. (2.33)

By Lemma 2.3, there exists a ray argz = 0 € [0,27) \E1; U Es U Ey, Ea, Ey C [0,27)
being defined as in Lemma 2.3, E5 having linear measure zero, E; being a finite set,
such that 6 (@, 6) >0

5(P,0)=c5(Q,0) >0, &§(2P,0)=2c5(Q,0) >0,

S(P+Q.0) =(1+0)5(Q,0) >0, 5(2Q,0) =25(Q,0) > 0.

And for the above ¢, we have for sufficiently large |z| = r

|Hape®| > exp{(1 —€)2¢6 (Q,0)r"}, (2.34)
|Hpe| < exp{(14¢)cs (Q,0)r"}, (2.35)
|Hpige" 9 <exp{(1+¢)(1+¢c)6(Q,0)r"}, (2.36)
|Haqe??| < exp{(1+¢)26(Q,0)r"}, (2.37)
|Hoe?| < exp{(1+¢)5(Q,0)r"}. (2.38)

If Wy (2) + Hype?P = 0, then by (2.33) — (2.38), we have

exp{(1—€)2¢6(Q,0)r"} < |Hape®”| < exp {rP*e} +exp{(1+¢2)6(Q,0)r"}
+exp{(14+¢)cd(Q,0)r"} +exp{(1+¢)2§(Q,0)r"}
+exp{(1+¢) (1+¢)6(Q,0)r"} < exp {r’*}

+exp{(14+¢e)(14+¢)d(Q,0)r"}. (2.39)
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Byﬂ+5<nand0<5<%,Wehaveasrﬁ—&—oo

exp {r*e} .
exp {(1—¢)2c(Q,0)r"}

0, (2.40)

ep{(1+)(1+)5(@Q.0r"}
exp{(1—)2¢5(Q,0) 7}

By (2.39) — (2.41), we get 1 < 0. This is a contradiction, hence W5 (2) + Hape?r'= 0.
(#41) By p(¢) < 0o and Lemma 2.1, for any given € > 0, there exists a set E C [0, 27)
that has linear measure zero, such that if § € [0,27) — E, then there is a constant
R = R(0) > 1 such that for all z satisfying argz =60 and |z| > R, we have

0. (2.41)

¢ (2)
¢ (2)

< |Z‘(P(¢)—1+5) ) (2_42)

It follows that on the ray argz =6 € [0,27) — E,

2 Cly ) (jeh),

keep the properties of H; (z) e/ (j € A2) which are defined as in (2.33), (2.35) —(2.38) .
By using similar reasoning to that in the proof of (ii), the proof of (iii) can be
completed.

LEMMA 2.10 [1]. Let P; (2) = Y- a; ;%' (j =0, ...,k — 1) be nonconstant polynomi-
i=0

als where ag j,...;an; ( =0,1,....,k — 1) are complex numbers such that a, ja,o # 0
(G=1,..,k—=1), let A;(2)(#0) (j =0,...,k—1) be meromorphic functions. Sup-
pose that an; = cang (c>1) and deg(Pj —cPy) = m > 1 (j=1,...,k—1),
p(4;) <m (j=0,...,k—1). Then every meromorphic solution f(z) # 0 of the
equation

FU A A (2) P @O F T A (2) PO 4 Ay (2) PP =0, (2.43)

where k > 2, is of infinite order.

3. Proof of Theorem 1.1. Suppose that f(z)= 0 is a meromorphic solution
of equation (1.1) with A(1/f) < co. Then by Lemma 2.10, we have p (f) = co. First
we suppose that dy (2)= 0. Set w = dof +dif +dof — ¢, then by Lemma 2.8 we
have p (w) = p(g) = p(f) = oo. In order to prove A (g — ) = co, we need to prove

A (w) = oo. Substituting ' =—A1ePf — ApeQ f into w, we get
w = (dl — dgAleP) f/ + (d() - dQAer) f — P. (31)
Differentiating both sides of equation (3.1) and replacing f” with f” = —AlePf/ —

Ape? f, we obtain



304 B. BELAIDI AND A. EL FARISSI

W' = [do A2 — ((doAr) + P doAy + diAr)e” — dyAge® + do + d)]f

+[d2A0A16P+Q — ((dQAO)/ + Qldng + d1A0> e@ + d;ﬂf — Lp,. (32)
Set
a1 = d1 — d2A1€P, Qo — do - dQA()eQ, (33)
B = dyA2e?P — ((dyAy) + P'dyAr + diAy)e — dyAge® + do + d, (3.4)
Bo = d2AOA1€P+Q — ((dQA())/ + Q/dgAO + dle) e? + d/O (35)

Then we have

arf +aof =w+ e, (3.6)
Bif +Bof=w +¢. (3.7)
Set,
h =160 — aofh-

Case 1: If h(2) =0, then by (3.6), (3.7) we have

alwl — Bw = — (alcp/ — ﬁlcp) =—y (ali — 51> . (3.8)

By Lemma 2.9 (i) — (i) we have a1 0, 1= 0, and by ¢ (2)=£ 0, Lemma 2.9 (4i3), we
obtain

- (alcp/ - 61@) =—¢p (mi - 51> Z0. (3.9)

From (3.8), (3.9) and Lemma 2.4, we get A (w) = p (w) = co. Hence A (g — ¢) = oc0.
Case 2: If h(z)= 0 then by (3.6), (3.7) we obtain

ai (w +<p') — b1 (w+ )

f= - : (3.10)
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Substituting (3.10) into (1.1), we obtain

1" ’

o (W' +¢) = Bi(w+e) ar (W' +¢') =B (w+)

+ A16P

=0. (3.11)

By (3.11), we get

1" /

(me }:ﬁﬂl}) L Agel <a1w ;5110) + Age® (alw ;5110)

__ <O‘“" }:ﬁ“p> + Are” (OW }:ﬁ“p> + Age® (al‘p ;ﬁ“‘j> . (3.12)

By (3.12), we obtain

%w + Pow + Oy + Pow = F

where ®¢ (2), @1 (2) and P (z) are meromorphic functions with p (®g) < n, p (1) <
n, p(P2) <n and

1" ’

Fe_ <W};W> AP (04190;51%0) + A (aw h—ﬁw>

By a1 — B19= 0, p (%W) < o0 and Lemma 2.10 we know that F'= 0. Hence

by h= 0, a;= 0 and Lemma 2.4, we obtain \ (w) = p (w) = oo. Hence A (g — ¢) = .
Now suppose dy = 0, d;= 0. Using a similar reasoning as above we get \ (w) =
p (w) = co. Hence A (g — ¢) = oc.
Finally, if dy = 0, d; = 0, dp= 0, then we have w = dof — ¢, p(w) = oo,
A(w) = X(dof — ). Substituting

Cwoe o (w) (e o (w @
renrn =) @) =) < (5) e

into equation (1.1), we obtain
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By ¢ (z) being a meromorphic function of finite order and dy (2) is a polynomial, then

‘552) has finite order and by Lemma 2.10, we have

1"

@ Pl Q¥
- A — A — . 1
(d0> + Aje (do) + Aoe dOEF/O (3.15)

Hence by Lemma 2.4, we have \ (%) =p (%) = oo ( dp is a polynomial). Then
A(w) =00, ie, A(dof — p) = o0.

4. Proof of Theorem 1.2. Suppose that f (z)= 0 is a meromorphic solution
of equation (1.1). Then by Theorem 2.10 we have p(f) = p (f') =p (f”> = o0.

Since p (¢) < oo, then p(f —¢) =p (f' — gp) =p (f” — go) = 00. By using similar
reasoning to that in the proof of Theorem 1.1, the proof of Theorem 1.2 can be
completed.
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