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Abstract. This work is a continuation of [6]. We study the time-asymptotic behavior of solutions
to the general Navier-Stokes equations in odd multi-dimensions. Through the pointwise estimates of
the Green’s function of the linearized system, we obtain explicit expressions of the time-asymptotic
behavior of the solutions and exhibit the weak Huygen’s principle.
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1. Introduction. In this paper we derive a detailed description of the asymp-
totic behavior of solutions to the Cauchy problem for the general Navier-Stokes sys-
tems of conservation laws in several space dimensions















ρt + div (ρv) = 0
(ρvj)t + div (ρvjv) + P (ρ, e)xj

= ε△vj + ηdivvxj
, (j = 1, · · · , n),

(ρE)t + div(ρEv + P (ρ, e)v) = △(κT (e) + 1
2ε|v|2)

+εdiv((∇v)v) + (η − ε)div((divv)v),

(1.1)

with smooth initial data close to a constant state. Here ρ(x, t), v(x, t), e(x, t), P =
P (ρ, e) and T (e) represent, respectively, the fluid density, velocity, specific internal
energy, pressure and normalized temperature, and E = e + 1

2 |v|2 is the specific total
energy, κ > 0 is the heat conductivity, ε > 0 and η ≥ 0 are viscosity constants, and div
and △ are the usual spatial divergence and Laplace operator. We assume throughout
that the pressure P (ρ, e) and the temperature T (e) are smooth in a neighborhood
of (ρ∗, e∗) and pρ = Pρ(ρ

∗, e∗) > 0, pe = Pe(ρ
∗, e∗) > 0, p = P (ρ∗, e∗), and d2 =

κT ′(ρ∗) > 0.
We are interested in the time-asymptotic behavior of solutions. For the scalar

space variables, Liu and Zeng (see [9]) studied general hyperbolic-parabolic systems
and obtain Lp decay rates by integrating pointwise bounds. In several space vari-
ables, Kawashim [5] studied general hyperbolic-parabolic systems, and obtained L2-
estimates. The pointwise bounds for isentropic Navier-Stokes equations with effective
artificial viscosity were obtained in [3]. The asymptotic behavior of solutions to the
Cauchy problem for isentropic Navier-Stokes equations has been studied in [2], [6],
[14] and [13]. Moreover, pointwise estimates have been obtained in [6] for the odd
dimensions, and in [13] and [14] for the even dimensions. This paper is a continuation
of [6]. In this paper we will give a pointwise estimate for the time-asymptotic behavior
of solutions to the general Navier-Stokes equations. Here, the main difficulty is that
we can’t give the explicit expression for the Fourier transform of the Green’s function
to linearized systems of (1.1) as in [6]. Our analysis is based on the estimates for

∗Received June 29, 2005; accepted for publication November 7, 2005.
†Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China (wkwang@

sjtu.edu.cn). The author is supported by National Natural Science Foundation of China (10531020).

279



280 W. WANG

the Green’s function of linearized systems about the constant state (ρ∗, v∗, e∗), par-
ticularly for small and large Fourier variables. For this we introduce a new set-up in
next section which allows us to get the estimate without the matrix for the Fourier
transform of the Green’s function.

It is necessary to mention that Liu and Yu have carried out pointwise estimates
for the Boltzmann equations by using Green’s functions (see [7] and [8]), which is
similar in some features to our present work (also see [6]), but there are the major
differences in the technique because of the richer wave structures of the Boltzmann
equations.

This paper is organized as follows. In section 2, we explore some important
properties of the Fourier transform of the linearized system. In section 3, we list some
lemmas which will be used later. In section 4, we get the estimate of Green’s function
which based on the analysis of section 2. In section 5 we state and prove our main
theorem, we obtain the time-asymptotic behavior of solutions of (1.1).

Throughout this paper we denote the generic constant by C. For multi-indices
α = (α1, · · · , αn)(αj ≥ 0), denote |α| = α1 + · · · + αn and Dα

x = Dα1
x1

· · ·Dαn
xn

, where

D
αj

xj = (−
√
−1)αj ∂

αj

xj = (−
√
−1)αj ∂αj

∂xj

.

2. Linearized system. The linearized system of (1.1) about the constant state
(ρ∗, v∗, e∗)τ = (1, 0, e∗)τ , (e∗ > 0) is







ρt + div v = 0
vt + pρ∇ρ + pe∇e = ε△v + η∇div v
et + pdivv = d2△e.

(2.1)

Let

l(τ, ξ) =
√
−1τI +

√
−1A(ξ) + |ξ|B(ξ), (2.2)

where

A(ξ) =





0 ξ 0
pρξ

τ 0 peξ
τ

0 pξ 0



 , B(ξ) = |ξ|−1





0 0 0
0 ε|ξ|2I + ηξτξ 0
0 0 d2|ξ|2



 .

It is easy to see l(τ, ξ) is a symbol of the operator in system (2.1). We also write

lα,β(τ, ξ) =
√
−1(τI + Eα,β(ξ)),

where Eα,β(ξ) = βA(ξ) −
√
−1αB(ξ).

The eigenvalues of Eα,β = βA −
√
−1αB are

λα,β
1 =

�
3

q
−(G/2) +

p
(G/2)2 + (H/3)3 + 3

q
−(G/2) −

p
(G/2)2 + (H/3)3

− 1
3

√
−1α(ε + η + d2)

�
|ξ|

λα,β
2 =

�
ω+

3

q
−(G/2) +

p
(G/2)2 + (H/3)3 + ω−

3

q
−(G/2) −

p
(G/2)2 + (H/3)3

− 1
3

√
−1α(ε + η + d2)

�
|ξ|

λα,β
3 =

�
ω−

3

q
−(G/2) +

p
(G/2)2 + (H/3)3 + ω+

3

q
−(G/2) −

p
(G/2)2 + (H/3)3

− 1
3

√
−1α(ε + η + d2)

�
|ξ|

λα,β
4 = −

√
−1αε|ξ|,
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where ω± = (−1 ±
√
−3)/2, and

H = (
α2

3
((ε + η)2 − d2(ε + η) + d4) − c2β2),

G = −
√
−1(

α3

27
(2(ε+η)3−3(ε+η)2d2−3(ε+η)d4+2d6)+

αβ2

3
(3d2pρ−c2(ε+η+d2))).

Here λα,β
1 (ξ), λα,β

2 (ξ), λα,β
3 (ξ), λα,β

4 (ξ) are with multiplicity 1, 1, 1, n− 1 respectively.
If denote E(ξ) = E|ξ|,1 = |ξ|E1,1/|ξ| = A(ξ)−

√
−1|ξ|B(ξ), the eigenvalues of E(ξ)

are λ̃j(ξ) = λ
|ξ|,1
j (ξ) or λ̃j(ξ) = |ξ|λ1,1/|ξ|

j (ξ).
The following lemma is due to Shizuta and Kawashima (see Theorem 1.1 of [10]).

Lemma 2.1. The following statements are equivalent
(1) The system (2.1) is said to be dissipative;
(2) Any eigenvector of A(ξ) is not in the null space of B(ξ) for any ξ ∈ IRn \ {0};
(3) There exists a constant C > 0, such that Im(λ̃j(ξ)) ≤ −Cξ2/(1 + ξ2), j =

1, 2, 3, 4 for real ξ.

Lemma 2.2. There exists a constant C > 0, such that Im(λ̃j(ξ)) ≤ −C|ξ|2/(1 +
|ξ|2), j = 1, 2, 3, 4 for real ξ.

Proof. If X = (x0, x1, · · · , xn, xn+1)
τ is in the null space of B(ξ), since

(

ε|ξ|2I + ηξτ ξ 0
0 d2|ξ|2

)

is a positive matrix, we know that X = (x0, 0, · · · , 0, 0)τ and x0 6= 0. Then for any
µ ∈ IR,

A(ξ)X + µX = (µx0, pρξ1x0, · · · , pρξnx0, 0)τ 6= 0.

Thus, we get Lemma 2.2 from Lemma 2.1.

Now we consider the spectral representation of matrices Eα,β(ξ).

Let the left and right eigenvectors associated with λα,β
j be lα,β

j,i and rα
j,i(j =

1, 2, 3, 4; i = 1, · · · , mj),

Eα,βrα,β
j,i = λα,β

j rα,β
j,i , lα,β

j,i Eα,β = λα,β
j lα,β

j,i , lα,β
j,i rα,β

j′,i′ = δj,j′δi,i′ . (2.4)

Set

lα,β
j = (lα,β

j,1 , lα,β
j,2 , · · · , lα,β

j,mj
)τ , rα,β

j = (rα,β
j,1 , rα,β

j,2 , · · · , rα,β
j,mj

),

Pα,β
j = rα,β

j lα,β
j , (j = 1, 2, 3, 4),

Lα,β = (lα,β
1 , lα,β

2 , λα,β
3 , lα,β

4 )τ , Rα,β = (rα,β
1 , rα,β

2 , γα,β
3 , rα,β

4 ).

(2.5)

Thus we have

Eα,β(ξ) =

4
∑

j=1

λα,β
j (ξ)Pα,β

j (ξ) (2.6)

Pα,β
j Pα,β

k = δj,kPα,β
j ,

4
∑

j=1

Pα,β
j = I. (2.7)
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Here Pα,β
j is the eigenprojection of Eα,β(ξ). Taking α = |ξ| and β = 1 in (2.6), we

have

E(ξ) =

4
∑

j=1

λ̃j(ξ)P̃j(ξ) (2.8)

where λ̃j = λ
|ξ|,1
j (ξ), P̃j(ξ) = P

|ξ|,1
j (ξ).

On the other hand, taking α = 0 and β = 1 in (2.6), we have

A(ξ) =

4
∑

j=1

λj(ξ)Pj(ξ), (2.9)

where λj(ξ) = λ0,1
j (ξ) are eigenvalues of A(ξ), Pj(ξ) = P 0,1

j (ξ) are eigenprojections of
A(ξ).

Denoting by λ̆j(ξ) and P̆j(ξ) are the eigenvalues and the eigenprojections of
|ξ|B(ξ)(ξ) respectively, and taking α = |ξ|, β = 0 in (2.6), we get

|ξ|B(ξ) =
4

∑

j=1

λ̆j(ξ)P̆j(ξ). (2.10)

Here, λ̆j(ξ) =
√
−1λ

|ξ|,0
j (ξ), P̆j(ξ) = P

|ξ|,0
j (ξ).

By the above expressions, we see easily that

λ̆j(ξ) > ν|ξ|2(j ≥ 2), λ̆1(ξ) = 0, P̆1(ξ) = diag(1, 0, · · · , 0), (2.11)

where ν is a positive constant.

Lemma 2.3. For sufficiently small ε and |ξ| < ε, we have

λ̃k(ξ) = λk(ξ) + |ξ|λ̄k(ξ) + O(|ξ|3), λ̄j(ξ) = (∂αλα,1
j (ξ))α=0, (2.12)

P̃k(ξ) = Pk(ξ) + O(|ξ|). (2.13)

Proof. If |ξ| ≤ 1, |α| < 2ε, taking the Taylor expansion at α = 0 for λα,1
k (ξ), we

get

λα,1
k (ξ) = λ0,1

k (ξ) + α(∂αλα,1
k (ξ))α=0 + Rk(α, ξ), (2.14)

where Rk(α, ξ) ∼ α2 and Rk(α, ξ) is 1-homogeneous in ξ. Taking α = |ξ| in (2.14),
we get (2.12). Since Pα,1

k (ξ) is 0-homogeneous in |ξ|, by the similar proof as (2.12),
we see that (2.13) is valid.

Lemma 2.4. For R sufficiently large and |ξ| > R, we have

λ̃j(ξ) = −
√
−1λ̆j(ξ) + ν̆j + O(|ξ|−1), (2.15)

P̃j(ξ) = P̆j(ξ) + O(|ξ|−1), (2.16)

where λ̆j(ξ) are eigenvalues of |ξ|B(ξ) and ν̆j are constants.
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Proof. For β sufficiently small and β ≤ R−1, taking the Taylor expansion at β = 0
for λ1,β

j (ξ) and P 1,β
j (ξ), we get

λ1,β
j (ξ) = λ1,0

j (ξ) + β((∂βλ1,β
j (ξ))β=0) +

1

2
β2(∂2

βλ1,β
j (ξ))β=0 + rj(β, ξ) (2.17)

P 1,β
j (ξ) = P 1,0

j (ξ) + Rj(β, ξ). (2.18)

Since E1,0(ξ) = −
√
−1B(ξ), we know that λ1,0

j (ξ) are eigenvalues −
√
−1B(ξ), thus

|ξ|λ1,0
j (ξ) = −

√
−1λ̆j . Moreover, we know that

|ξ|λ1,1/|ξ|
j (ξ) = λ̃j(ξ), |ξ|P 1,1/|ξ|

j (ξ) = P̃j(ξ), |ξ|P 1,0
j (ξ) = P̆j(ξ).

Since (∂βH)β=0 = 0, (∂βG)β=0 = 0, multiplying |ξ| and taking β = |ξ|−1 in (2.17)
and (2.18) respectively, we obtain (2.15) and (2.16).

3. Some Lemma. The following lemma is the Kirchoff formulas for solutions of
the standard wave equation (see [1], pp. 70-74, for example).

Lemma 3.1. Let ŵ = (2π)−n/2(sin c|ξ|t)/(c|ξ|) and ŵt = (2π)−n/2 cos(c|ξ|t), then
there are constants aα, bα, such that for function f(x) and odd integer n

w ∗ f =
∑

0≤|α|≤(n−3)/2

aαt|α|+1

∫

|y|=1

Dαf(x + cty)yαdSy, (3.1)

wt ∗ f =
∑

0≤|α|≤(n−1)/2

bαt|α|
∫

|y|=1

Dαf(x + cty)yαdSy, (3.2)

The following lemmas were proved in [12], [2] and [6] (see Lemma 3.1 of [12],
Section 4 of [2] and Section 2 of [6]).

Lemma 3.2. If f̂(ξ, t) has compact support in the variable ξ, and there exists a

constant b > 0, such that f̂(ξ, t) satisfies

|Dβ
ξ (ξαf̂(ξ, t))| ≤ C(|ξ|(|α|+k−|β|)+ + |ξ||α|+kt|β|/2)(1 + (t|ξ|2))me−b|ξ|2t/2,

for any multi-indexes α, β with |β| ≤ 2N , then

|Dα
xf(x, t)| ≤ CN t−

n+|α|+k

2 BN (|x|, t), (3.3)

where m and k are any fixed integers, (a)+ = max(0, a) and

BN (|x|, t) =
(

1 +
|x|2
1 + t

)−N

. (3.4)

Lemma 3.3. (1) For 2N > n, we have

I =
∣

∣

∣

∫

|y|=1

B2N (|x + cty|, t)yαdSy

∣

∣

∣ ≤ Ct−(n−1)/2BN(|x| − ct, t). (3.5)
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(2) Let Ẽµ(x, t) = e−|x|2/µt, then

I =
∣

∣

∣

∫

|y|=1

Ẽµ(x + cty, t)yαdSy

∣

∣

∣ ≤ Ct−(n−1)/2e−(|x|−ct)2/3µt. (3.6)

Lemma 3.4. If |y| ≤ M, t > 4M2, p ≥ 0, we have

(1 + (|x − y| − pt)2/t)−N ≤ CN (1 + (|x| − pt)2/t)−N . (3.7)

Lemma 3.5. Assume that suppf̂(ξ) ⊂ OR = {ξ, |ξ| > R}, f̂(ξ) ∈ L∞∩Cn+1(OR)
and

|f̂(ξ)| ≤ C0, |Dα
ξ (f̂(ξ))| ≤ C0|ξ|−|α|−1, (|α| ≥ 1) (3.8)

then f(x) ∈ L1 and ‖f‖L1 ≤ CC0 for some constant C depending only on n.

Lemma 3.6. Assume that suppĝ(ξ, t) ⊂ OR = {ξ, |ξ| > R} × (0,∞), f̂(ξ, t) ∈
(L∞ ∩ Cn+1(OR)) × L∞ and

|Dβ
ξ ĝ(ξ, t)| ≤ C0|ξ|−|β|e−θ|ξ|2t, (|α| ≥ 1) (3.9)

then for all α and all p ∈ [1,∞],

‖Dα
xG(·, t)‖Lp ≤ Ct−

n
2
(1− 1

p
−|α|). (3.10)

4. Pointwise bounds for Green’s function. In this section, we will study the
Green’s function for (2.1), i.e. , we consider the solution matrix for following initial
value problem:

{

(∂t + Ã(Dx) + B̃(Dx))G(x, t) = 0,
G(x, 0) = δ(x)I,

(4.1)

where the symbols of Ã(Dx) and B̃(Dx) are Ã(ξ) =
√
−1A(ξ), B̃(ξ) = |ξ|B(ξ), δ(x)

is the Dirac function and I is an N × N identity matrix.
As usual, we apply the Fourier transform to the variable x

f̂(ξ, t) =

∫

IRn
f(x, t)e−

√
−1xξdx. (4.2)

From (4.1), we deduce that

{

Ĝt(ξ, t) = −
√
−1E(ξ)Ĝ(ξ, t),

Ĝ(ξ, 0) = I,
(4.3)

where E(ξ) = A(ξ) −
√
−1B(ξ)|ξ|.

From (4.3), we have

Ĝ(ξ, t) =

4
∑

j=1

e−
√
−1λ̃j(ξ)tP̃j(ξ). (4.4)
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By direct calculation, we know that

Ĝ(ξ, t) = (e−
√
−1λ̃1(ξ)tP̃1 + e−

√
−1λ̃4(ξ)tP̃4)

+ cos(c|ξ|t)(e−
√
−1(λ̃2(ξ)−c|ξ|)tP̃2 + e−

√
−1(λ̃3(ξ)+c|ξ|)tP̃3)

+ sin(c|ξ|t)
c|ξ| (

√
−1c|ξ|)(e−

√
−1(λ̃2(ξ)−c|ξ|)tP̃2 + e−

√
−1(λ̃3(ξ)+c|ξ|)tP̃3)

≡ F1(ξ, t) + Ŵt(ξ, t)F2(ξ, t) + Ŵ (ξ, t)F3(ξ, t).

(4.5)

At some time, we also denote

Ĝ(ξ, t) = (e−
√
−1λ̃1(ξ)tP̃1) + (

∑4
j=2 e−

√
−1λ̃j(ξ)tP̃j)

≡ Ĝ+(ξ, t) + Ĝ−(ξ, t).
(4.6)

Lemma 4.1. If |ξ| small enough, there exist a constant b > 0, such that

|Dβ
ξ (ξαFj(ξ, t))| ≤ C(|ξ|(|α|−|β|)+ + |ξ||α|t|β|/2)(1 + t|ξ|2)|β|+1e−b|ξ|2t. (4.7)

Proof. For |ξ| small enough, (2.12) gives

λ̃j(ξ) = λj(ξ) + |ξ|λ̄j(ξ) + O(|ξ|3).

By direct calculation, we know that

λ1 = 0, λ2 = c|ξ|, λ3 = −c|ξ|, λ4 = 0.

Let µ̄j =
√
−1|ξ|λ̄j(ξ)t, we have

F1(ξ, t) = e−µ̄1(eO(|ξ|3)tP̃1) + e−µ̄4(eO(|ξ|3)tP̃4)
= e−µ̄1(P1 + O(|ξ|3t) + O(|ξ|)) + e−µ̄4(P4 + O(|ξ|3t) + O(|ξ|)).

By partial differentiation on both sides of above formula, we obtain (4.7) for j = 1.
For j = 2, we first write,

F2(ξ, t) = (e−τ2tP̃2 − e−τ3tP̃3),

where τ2 =
√
−1(λ̃2(ξ) − c|ξ|), τ3 =

√
−1(λ̃3(ξ) + c|ξ|). Since

e−τjtP̃j = e−µ̄j eO(|ξ|3)t(Pj − O(|ξ|)) = e−µ̄j (O(|ξ|3)t + O(|ξ|)),

we have

F2(ξ, t) = (e−µ̄2 + e−µ̄3)(O(|ξ|3)t + O(|ξ|).

Again by partial differentiation, we obtain (4.7) from above formula for j = 2. The
proof of the case of j = 3 is the same, and we omit it.

Let

χ1(ξ) =

{

1, |ξ| < ǫ
0, |ξ| > 2ǫ,

χ3(ξ) =

{

1, |ξ| > R + 1
0, |ξ| < R,

be cut-off functions, where 2ǫ < R. Set χ2 = 1 − χ1 − χ3 and

F̂j,i(ξ, t) = χiF̂j(ξ, t), (j = 1, 2, 3; i = 1, 2, 3).
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The decay property is related to the behavior for |ξ| < ǫ.

Lemma 4.2. For sufficiently small ǫ,

|Dα
x Fj,1| ≤ C(1 + t)−

n+|α|
2 BN (|x|, t). (4.8)

Proof. We just need to prove the case of j = 1 for (4.8), since the proofs of the
others are very similar. First, we have

|Dβ
ξ (χ1ξ

α(F̂j))| ≤
∑

|β1|+|β2|=|β|
|Dβ1

ξ χ1D
β2

ξ (ξα(F̂j))|.

Since |Dβ1

ξ χ1| ≤ C and |ξ|−|β2| ≤ |ξ|−|β|, by (4.7), we also have

|Dβ
ξ (χ1ξ

α(F̂j)| ≤ C(|ξ|(|α|−|β|)+ + |ξ||α|t|β|/2)(1 + (|ξ|2t))|β|+1e−b|ξ|2t/2.

Using Lemma 3.2, we have

|Dα
x (Fj,1)| ≤ Ct−

n+|α|
2 BN (|x|, t).

On the other hand

|Dα
x (Fj,1)| ≤ C|

∫

e
√
−1xξχ1(ξ)(ξ

α(F̂j))dξ| ≤ C

∫

χ1(ξ)dξ ≤ C.

Thus, we get (4.8).

Letting Ĝj = χj(ξ)Ĝ(ξ, t) and Ĝ±
j = χj(ξ)Ĝ

±, we have

Ĝ = Ĝ1 + +Ĝ2 + Ĝ−
3 + Ĝ+

3 ,

or

G = G1 + G2 + G+
3 + G−

3 .

Proposition 4.1. For sufficiently small ǫ, there exist positive constants C, such
that

|Dα
xG1x, t)| ≤ C(1 + t)−(n+|α|)/2(BN (|x|, t) + t−(n−1)/4BN (|x| − ct, t)). (4.9)

Proof. By Lemma 4.2, we know that

|Dα
xFj,1(x, t)| ≤ C(1 + t)−(n+|α|)/2B3N (|x|, t). (4.10)

By (3.2)

|Dα
x Wt ∗ F2,1| = C

∑

|γ|≤(n−1)/2

aγt|γ|
∫

|y|=1

(1 + t)−(n+|α|)/2t|γ|/2B2N (|x + cty|, t)dSy.

By Lemma 3.3

|Dα
xWt ∗ F2,1| ≤ C

∑

|γ|≤(n−1)/2

t|γ|/2(1 + t)−(n+|α|)/2t−(n−1)/2BN (|x| − ct, t). (4.11)
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For the same reason, we have from (3.1) and Lemma 3.3

|Dα
xW ∗F3,1| ≤ C

∑

|γ|≤(n−3)/2

t(|γ|+1)/2(1+ t)−(n+|α|)/2t−(n−1)/2BN (|x|−ct, t). (4.12)

Thus, summing up (4.5), (4.10)—(4.12), we obtain (4.9).

Proposition 4.2. For fixed ǫ and R, there exist positive constants b and C, such
that

|Dα
x G2(x, t)| ≤ C(1 + t)−(n+|α|)/2e−btBN (|x|, t). (4.13)

Proof. Note that if |ξ| ∈ (ǫ, R + 1), we have Reλ± ≤ −2θ|ξ|2 for some positive
constant θ. By Theorem 3.2 of [2], it is easy to see that

|D2β

ξ ξαĜ2| ≤ C(1 + |ξ|)|α|(1 + t|ξ|)2|β|e−2θ|ξ|2t ≤ C(1 + |ξ|)|α|−2|β|(1 + t|ξ|2)2|β|e−2bte−θ|ξ|2t.

Then

|x2βDα
xG2(x, t)| = C|

∫

IRn e
√
−1xξD2β

ξ ξαĜ2(ξ, t)dξ|
≤ Ce−2b

∫

IRn(1 + |ξ|)|α|−|2β|(1 + t|ξ|2)2|β|e−θ|ξ|2tdξ

≤ Ct−(n+|α|)/2e−bt(1 + t)|β|.

Taking |β| = 0 if |x|2 ≤ 1+t and |β| = N if |x|2 > 1+t, and noting suppĜ2(ξ, ·) ⊂ [ǫ, R]
and

(

1 +
|x|2
1 + t

)

≤ 2

{

1, |x|2 ≤ 1 + t,
|x|2/(1 + t), |x|2 > 1 + t,

we know that (4.13) is valid.

Now we consider G±
3 for sufficiently large |ξ|. First, for G−

3 and G∗
3, we have

Proposition 4.3. For sufficiently large R, there exist positive constants b and
C, such that

|Dα
xG−

3 (x, t)| ≤ Ct−(n+|α|)/2e−btBN (|x|, t). (4.14)

Proof. Since e−
√
−1λ̃j(ξ)t ≤ Ce−ν|ξ|2t(j ≥ 2) from (2.11) and (2.15), by the

definition of Ĝ−, we have

|D2β
ξ ξαĜ−

3 | ≤ C(1 + |ξ|)|α|−2|β|e−bt(1 + t|ξ|2)2|β|e−θ|ξ|2t.

Here θ is a positive constant. Using the same method as in the proofs of Proposition
3.2, we can prove (4.14) for G−

3 .

For G+
3 , we first take the Taylor expansion for λ1,β

1 (ξ) as (2.17),

λ1,β
1 (ξ) = λ1,0

1 (ξ) + β(∂βλ1,β
1 (ξ))β=0 + · · · + 1

m!
βm(∂m

β λ1,β
1 (ξ))β=0 + r(β, ξ), (4.15)
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where r(β, ξ) = O(βm+1) is 1-homogeneous in ξ. Multiplying |ξ| and taking β = |ξ|−1

in (4.24), we get from (2.11) and (2.15)

−
√
−1λ̃1(ξ) = −

√
−1ν̆1 +

m
∑

j=1

aj(ξ)|ξ|−j + O(|ξ|−(m+1)),

where aj(ξ) is 0-homogeneous in ξ.

By Lemma 2.1 we know that Im(λ̃1(ξ)) ≤ −c|ξ|2/(1 + |ξ|2). So Im(ν̆1) < 0. If
ν̆ = a −

√
−1b, a, b are two real constants, and b > 0. Thus we can write

e−
√
−1λ̃1(ξ)t = e−bte−

√
−1at

(

1 + (

m
∑

j=1

aj |ξ|−j)t + · · ·+ 1

m!
(

m
∑

j=1

aj |ξ|−j)mtm + R1(t, ξ)
)

,

where R1(t, ξ) ≤ C(1 + t)m+1(1 + |ξ|)−(m+1). Then we have

Ĝ+(ξ, t) = e
√
−1λ̃1(ξ)tP̃1 = e−bte−

√
−1at

(

p0 +
∑m

j=1 p+
j (t)qj(ξ) + R(t, ξ)

)

,

where p0 = diag(1, 0, · · · , 0), pj(t), qj(ξ) and R(t, ξ) are matrices, and

|pj(t)| ≤ C(1 + t)j , |qj(ξ)| ≤ C(1 + |ξ|)−j , |R(t, ξ)| ≤ C(1 + t)m+1(1 + |ξ|)−(m+1).

Let

L0 = e−
√
−1atdiag(1, 0, · · · , 0), Lj(t, Dx) = e−

√
−1atpj(t)qj(Dx),

where qj(Dx) is pseudo-differential operator with symbol qj(ξ).
By the definitions of G+

3 and Lj , it is easy to see that

Proposition 4.4. For R sufficiently large, there exist distributions

Kl(x, t) =
(

n+l
∑

j=0

Ljδ(x)
)

e−bt,

such that for |α| = l

|Dα
x (G+

3 − χ3(D)Kl(x, t))| ≤ Ce−bt/2BN (|x|, t). (4.16)

Theorem 4.1. For x ∈ IRn, t > 1 and |α| = l, we have

|Dα
x (G(x, t) − χ3(D)Kl(x, t))|

≤ Cαt−(n+|α|)/2(t−(n−1)/4BN (|x| − ct, t) + BN (|x|, t)). (4.17)

Proof. We can write

(G(x, t) − χ3(D)Kl(x, t))
= G1 + G2 + G−

3 + (G+
3 − χ3(D)Kl).

By Propositions 4.1 to 4.4, we thus have that (4.17) is valid.
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5. Pointwise bounds for the non-linear system. We denote by u = (ρ −
ρ∗, v − v∗, e− e∗)τ = (ρ− 1, v, e− e∗)τ , u0 = (ρ0 − 1, v0, e0 − e∗)τ and rewrite (1.1) as

∂tu + Ã(Dx)u + B̃(Dx)u = Q(u). (5.1)

For |u| small enough, we may write

Q(u) = Q1 + Q2 =
∑

j

Dxj
qj(u) +

∑

j,l

Dxj
Dxl

qj,l(u)), (5.2)

where qj(u) = O(|u|2), qj,l(u) = O(|u|2).
In this section, we consider the Cauchy problem of (5.1)

{

∂tu + Ã(Dx)u + B̃(Dx)u = Q(u),
u|t=0 = u0.

(5.3)

As in [6], we have

Theorem 5.1. Suppose that u0 ∈ Hs+l(IRn), s = [n/2] + 1, l is a nonnegative
integer, and that ‖u0‖Hs+l is sufficiently small. Then there exist a unique, global,
classical solution u ∈ Hs+l of (1.1), satisfying

‖Dα
xu‖L2(t), 0 ≤ |α| ≤ s + l

(
∫ ∞
0

‖Dα
xu‖2

L2(t)dt)1/2, 1 ≤ |α| ≤ s + l
‖Dα

xu‖L∞, 0 ≤ |α| ≤ l.







= O(1)‖u0‖Hs+l . (5.4)

Let E ≡max{‖u0‖Hs+l , ‖u0‖W 1,l}, by Theorem 5.1 we have ‖u0‖W∞,l ≤ CE.
Using interpolation we know that ‖u0‖W p,l ≤ CE (1 ≤ p ≤ ∞).

Now we will give a pointwise estimate for the solution u of (5.3). Taking Dα
x on

(5.1) and applying the Duhamel’s principle, we obtain

Dα
xu = Dα

x G(t) ∗ u0 +
∫ t

0
G(t − s) ∗ Dα

x Q(s)ds = Rα
1 + Rα

2 . (5.5)

By the same method as in [6] and [12], we can give pointwise estimates and proved
the main result in this paper.

Theorem 5.2. Suppose that u0 ∈ Hs+l(IRn), s > [n/2]+ 1, l > 2 with E is small
enough and |α| ≤ l − 2. Then the solution u(x, t) of (5.3) satisfies

|Dα
xu(x, t)| ≤ C(1 + t)−(n+|α|)/2((1 + t)−(n−1)/4Bn/2(|x| − ct, t) + Bn/2(|x|, t)). (5.6)
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