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Abstract. This work is a continuation of [6]. We study the time-asymptotic behavior of solutions
to the general Navier-Stokes equations in odd multi-dimensions. Through the pointwise estimates of
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1. Introduction. In this paper we derive a detailed description of the asymp-
totic behavior of solutions to the Cauchy problem for the general Navier-Stokes sys-
tems of conservation laws in several space dimensions

pe +div (pv) =0 ‘

(pv?)s +div (pv’v) + P(p, €)s; = eAv? + ndive,,, (j =1, ,n), (1.1)

(pE)¢ + div(pEv + P(p, e)v) = A(kT(e) + elv]?) '
+ediv((Vo)v) + (n — e)div((divv)v),

with smooth initial data close to a constant state. Here p(z,t),v(z,t),e(x,t), P =
P(p,e) and T'(e) represent, respectively, the fluid density, velocity, specific internal
energy, pressure and normalized temperature, and F = e + %|v|2 is the specific total
energy, K > 0 is the heat conductivity, € > 0 and n > 0 are viscosity constants, and div
and A are the usual spatial divergence and Laplace operator. We assume throughout
that the pressure P(p,e) and the temperature T'(e) are smooth in a neighborhood
of (p*,e*) and p, = P,(p*,e*) > 0,p. = Pe(p*,e*) > 0,p = P(p*,e*), and d* =
KT'(p*) > 0.

We are interested in the time-asymptotic behavior of solutions. For the scalar
space variables, Liu and Zeng (see [9]) studied general hyperbolic-parabolic systems
and obtain LP decay rates by integrating pointwise bounds. In several space vari-
ables, Kawashim [5] studied general hyperbolic-parabolic systems, and obtained L>-
estimates. The pointwise bounds for isentropic Navier-Stokes equations with effective
artificial viscosity were obtained in [3]. The asymptotic behavior of solutions to the
Cauchy problem for isentropic Navier-Stokes equations has been studied in [2], [6],
[14] and [13]. Moreover, pointwise estimates have been obtained in [6] for the odd
dimensions, and in [13] and [14] for the even dimensions. This paper is a continuation
of [6]. In this paper we will give a pointwise estimate for the time-asymptotic behavior
of solutions to the general Navier-Stokes equations. Here, the main difficulty is that
we can’t give the explicit expression for the Fourier transform of the Green’s function
to linearized systems of (1.1) as in [6]. Our analysis is based on the estimates for
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the Green’s function of linearized systems about the constant state (p*,v*,e*), par-
ticularly for small and large Fourier variables. For this we introduce a new set-up in
next section which allows us to get the estimate without the matrix for the Fourier
transform of the Green’s function.

It is necessary to mention that Liu and Yu have carried out pointwise estimates
for the Boltzmann equations by using Green’s functions (see [7] and [8]), which is
similar in some features to our present work (also see [6]), but there are the major
differences in the technique because of the richer wave structures of the Boltzmann
equations.

This paper is organized as follows. In section 2, we explore some important
properties of the Fourier transform of the linearized system. In section 3, we list some
lemmas which will be used later. In section 4, we get the estimate of Green’s function
which based on the analysis of section 2. In section 5 we state and prove our main
theorem, we obtain the time-asymptotic behavior of solutions of (1.1).

Throughout this paper we denote the generic constant by C. For multi-indices
a = (ai, -+ ,a,)(a; > 0), denote |a| = a; + -+ a, and D§ = DG} --- Dy, where

Dyl = (—/—1)% 9y = (_\/__1)%%.

2. Linearized system. The linearized system of (1.1) about the constant state
(p*,v*,e*)" = (1,0,e")7, (e* > 0) is

pr +divo =0
vy +p,Vp +p.Ve = eAv+nVdiv v (2.1)
e; + pdive = d?Ae.
Let
(7, §) = V=111 + V—1A(§) + [¢| B(E), (2:2)
where
0 13 0 0 0 0
A = P 0 p&™ |, B =7 0 el¢PI+neme 0
0 p& 0 0 0 el

It is easy to see I(7,¢) is a symbol of the operator in system (2.1). We also write
la,ﬁ(T7 é—) =V _1(TI + Ea,ﬁ(§))7

where E, 5(€) = BA(§) — v—1aB(§).
The eigenvalues of E, g = BA — v/—1aB are

A& = ({*/—(G/2)+ (G207 + (H/3F + i/ —(G/2) — /(G2)? + (H/3)°
IV Ta(e +n+d) el

X7 = (ws{/~(G/2) + VG2 + (HJBP +w-{[~(G/2) — \/{GI2)7 + (]3P
IV Ta(e 40+ d%)

7= (w0 {/~(G/2) + G2 + (]3P +wi {f~(G/2) — \/{CT2) + (H]3F
—LVTa(e +n+ %)) ¢]

2P = —/Taelg],
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where wy = (=1 £ v/—3)/2, and

o

H = (5((c+n)° = d*(c +n) +d") = 8%,

3
G = VI (e n)" —3(e-+) =3 )b+ 20+ S (3, — e ).
Here X3P (€), A7 (€), A3 (€), A\3P (€) are with multiplicity 1,1,1,n — 1 respectively.

If denote E(£) = Ej¢)1 = [£|Ey 1)) = A(E) —V—1[¢| B(£), the eigenvalues of E(&)
are 4;(6) = A1) or 4;(6) = lelA; g,

The following lemma is due to Shizuta and Kawashima (see Theorem 1.1 of [10]).

LEMMA 2.1. The following statements are equivalent

(1) The system (2.1) is said to be dissipative;

(2) Any eigenvector of A(€) is not in the null space of B(&) for any & € Bn\{O}

(3) There exists a constant C > 0, such that Tm(\;(€)) < —C€2/(1 + €2), j =
1,2,3,4 for real .

LEMMA 2.2. There exists a constant C > 0, such that Im(j\j(g)) < —C|§|2/(1 +
1€1?), j =1,2,3,4 for real €.

Proof. If X = (xo, 1, ,Zpn,Tnt1)” is in the null space of B(€), since
el¢PI+ng7¢ 0
0 a?|¢?
is a positive matrix, we know that X = (x0,0,---,0,0)™ and xy # 0. Then for any
p € IR,

A(g)X + /'LX = (Mx07pp§1x07 e 7pp§nx07 O)T # 0.
Thus, we get Lemma 2.2 from Lemma 2.1. 0O

Now we consider the spectral representation of matrices E, g(&).

Let the left and right eigenvectors associated with )\?’ﬁ be lz"f and rﬁi(j =
1727374;i: 17 ij)u

Eo ﬁTJ i = /\Ot o ?zﬁ’ la ﬁE = /\a ﬁl?zﬁv l;lzﬁ ri = 5J'-,j'5i7i" (2.4)
Set
la = (lalﬁa l;lfv ' al;lrg ) ) T?.ﬂ = (T;fiﬁa T;ffv e aT;j;gj)a
a.f _ pafionB . _
P] _] l ) (.] - 1527354)7 (25)

LB — (l?’ﬁ, lg’ﬁ, )\3 a,B la,ﬁ) , RS — (r?’ﬁ, rg,677§,ﬁ77a$76)'

Thus we have

4
&) = > APOP () (2.6)
j=1
4
PJ{I,BP];LB — j,kquﬁa ZPJ{LB =1. (2.7)

j=1
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5ere Pjo"ﬁ is the eigenprojection of E, g(§). Taking o = [¢] and § =1 in (2.6), we
ave

4
E@©) =Y NP (2.8)

j=1

where X; = A (€), Py(€) = P (¢).
On the other hand, taking « =0 and 8 =1 in (2.6), we have

A(©) =D P;(9), (2.9)

where \;(§) = )\?’1(5) are eigenvalues of A(€), P;(§) = Pjp’l(ﬁ) are eigenprojections of
A(E)-
Denoting by ;\j (&) and Pj (€) are the eigenvalues and the eigenprojections of

|€| B(€)(&) respectively, and taking o = |¢], 4 =0 in (2.6), we get

€IB(&) =D X(OF;(©). (2.10)

j=1

Here, X;(€) = v=1A0(6), Py () = P10,

By the above expressions, we see easily that
5‘](5) > V|€|2(] Z 2)5 x1(5) = Oa 151(5) = dZCLg(l,O, e 50)7 (211)

where v is a positive constant.

LEMMA 2.3. For sufficiently small ¢ and || < &, we have

Me(€) = () + €A (€) + O(EP), Aj(6) = (9aA]" (€))a=o, (2.12)

Pi(€) = Pe(§) + O([¢])- (2.13)

Proof. Tf |¢] <1, |a| < 2¢, taking the Taylor expansion at o = 0 for A% (€), we
get

A8 ) = AL + A0 XI(€))amo + Ri(a, ), (214)

where Ry(a,&) ~ o and Ri(a, &) is 1-homogeneous in £. Taking o = [¢] in (2.14),
we get (2.12). Since P'(€) is 0-homogeneous in |¢|, by the similar proof as (2.12),
we see that (2.13) is valid. O

LEMMA 2.4. For R sufficiently large and || > R, we have

X (&) = —V=IX;(€) + i + O(l¢| ™), (2.15)
Pj(€) = Pj(&) + 0(l¢] ™), (2.16)

where \;(€) are eigenvalues of || B(€) and i; are constants.
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Proof. For (3 sufficiently small and 3 < R~*, taking the Taylor expansion at § = 0
for /\;ﬁ({) and le’ﬁ(g), we get

A€ = X(6) + B0 (©)=o) + 502N O)amo +75(5,)  (217)

PP(€) = PO(€) + Ry (8,6). (2.18)

Since E10(§) = —\U/—IB(g), we know that A;’O(g) are eigenvalues —v/—1B(§), thus
|§|)\}’0(§) = —+/—1X;. Moreover, we know that

A ey = X;), 1elP ) = Bie), 1€1PO(e) = Pi(¢).

Since (93H)p=0 = 0, (95G)s=0 = 0, multiplying |¢| and taking 8 = [£|7! in (2.17)
and (2.18) respectively, we obtain (2.15) and (2.16). O

3. Some Lemma. The following lemma is the Kirchoff formulas for solutions of
the standard wave equation (see [1], pp. 70-74, for example).

LEMMA 3.1. Let = (27)~"/?(sin c[¢[t)/(c|€]) and Wy = (2m)~"/2 cos(c|¢[t), then
there are constants aq, by, such that for function f(x) and odd integer n

wx f = Z agtlet / D f(x + cty)y*dSy, (3.1)
0<|al<(n-3)/2 lyl=1

wy x f = Z b t!! D f(z + cty)y“dSy, (3.2)
0<a|<(n-1)/2 lwi=1

The following lemmas were proved in [12], [2] and [6] (see Lemma 3.1 of [12],
Section 4 of [2] and Section 2 of [6]).

LEmMmaA 3.2. If f({,t) has compact support in the variable £, and there exists a
constant b > 0, such that f(£,t) satisfies

DL€ F(. D] < C(Ig| 11 g HRI1/2) (1 (rfg2))me el

for any multi-indexes o, 8 with |B] < 2N, then

ntlol+k

Dz f(z,t)] < Cnt™ 2 By(|z], 1), (3-3)

where m and k are any fized integers, (a)y+ = max(0,a) and

By(jal,t) = (1+ _H t)fN. (3.4)

LEMMA 3.3. (1) For 2N > n, we have

I= ] / Bon(jz + cty|,t)yadsy} <Ot V2B (2| —ct,t).  (3.5)
lyl=1
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(2) Let E¥(z,t) = e |*/nt | then,

I = ‘/ E“(x+cty,t)y°‘d8y < Ot~ (n=1/2o=(I2|=ct)*/3ut (3.6)
ly|=1

LEMMA 3.4. If |y| < M,t > 4M? p > 0, we have

1+ (lz =yl =pt)* /)™ < Cn(1+ (Jz| = pt)*/t) ™. (3.7)

LEMMA 3.5. Assume that suppf(€) C Or = {€,|€| > R}, f(€) € L°NC™ 1 (OR)

and

/(€)1 < Co, IDEFE)] < Colé]” 7, (la] = 1) (3.8)

then f(z) € L' and ||f||» < CCy for some constant C' depending only on n.

LEMMA 3.6. Assume that suppg(£,t) € Or = {&,]€] > R} x (0,00), f(£,t) €
(L N C™"1(OR)) x L™ and

“ _ _ 2
D4, )] < Col¢|"le 6, (ja] > 1) (3.9)
then for all a and all p € [1, ],
IDSG( )|l < Ct= 20757100, (3.10)
4. Pointwise bounds for Green’s function. In this section, we will study the

Green’s function for (2.1), i.e. , we consider the solution matrix for following initial
value problem:

{ (0 + A(Dz) + B(Dy))G(x,t) = 0, (4.1)

G(z,0) = §(x)1,

where the symbols of A(D,) and B(D,) are A(¢) = v—=1A(€), B(€) = |€|B(€), ()
is the Dirac function and I is an N x N identity matrix.
As usual, we apply the Fourier transform to the variable x

fet) = /]Rn fla, t)e VT, (4.2)
From (4.1), we deduce that
Gi(&,1) = —V=TE(©)G(& 1),
{ G(év 0) =1, (43)

where E(&) = A(€) — vV—1B(&)[¢].
From (4.3), we have

4
Gle,t) = e VTN B (¢), (4.4)

j=1
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By direct calculation, we know that

GlEt) = (eVTMEIP o V-TA(O )
+cos(cl¢[t) (e~ V1ROl By 4 o=V =IRa(©)+elet fy)

+Si“§‘05|‘5|t) (vV=Tc|¢|) (e~ VIO =clet P, 4 o= V=TIRa(©)+elet py)

= F1(§7t) + Wt(&t)Fé(gat) + W(§7t)F3(§7t)'

(4.5)

At some time, we also denote

Gl = (6_\/__15\1(5)75]51) + (ijz e_\/—_15\j(£)t]5j)

= G G (e, (46)

LEMMA 4.1. If [€] small enough, there exist a constant b > 0, such that

DL€ F (€, )] < C(Jg]11710s 4 jglelglol/2) (1 4 gfg2)loteteiel™, (4.7)

Proof. For [£| small enough, (2.12) gives
X&) = X(€) + 1612 () + O(1g).
By direct calculation, we know that
AL =0, Ay =cl¢], A3 =—c|{], A4 =0.
Let fi; = v=TI¢ A ()t we have

Fi(&t) = e M (eCUstpy) 4 e (eOU”) py)
= e M (P + O(|§|3t) +0(€)) + e a4 (Py + O(|§|3t) o).

By partial differentiation on both sides of above formula, we obtain (4.7) for j = 1.
For j = 2, we first write,

Fy (&) = (e‘T2t152 — G_T?’tpg),
where 15 = /=T(A(§) — cl¢]), 7 = vV=T(A3(&) + c[¢]). Since
e~ Py = e QU0 (P — O(l¢])) = e (O(Ig )t + O(l€])),
we have
Fa(&,t) = (e + e~ )(0(I€*)t + O(€)).

Again by partial differentiation, we obtain (4.7) from above formula for j = 2. The
proof of the case of j = 3 is the same, and we omit it. 0O

Let
_ L gl <e _J L >R+l
Xl(g) - { 0, |§| > 26, XS(&) - { 0, |§| < }%7
be cut-off functions, where 2e < R. Set x2 =1 — x1 — x3 and

Eii(6,t) = xiFj(6,0), (G=1,2,3;1=1,2,3).
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The decay property is related to the behavior for || < e.

LEMMA 4.2. For sufficiently small e,

ntlal

|DSF; 1| < C(1+t)” 2 Bn(|z],t). (4.8)

Proof. We just need to prove the case of j = 1 for (4.8), since the proofs of the
others are very similar. First, we have

IDZCaE (ED) < Y DI xaDE(E(E)I-
|B1]+182|=|8]
Since |D§1X1| < C and |¢]7172 < |¢|71P1) by (4.7), we also have
|DE (1€ (Fy)] < C([&| 117180+ 4 [g]lelgl1r2) (1 4 (|g2e)) o1 emblele/2,
Using Lemma 3.2, we have

n+

_ ||
|Dg (Fja)| < Ct™ 2 By(|zl, ).

On the other hand
DB <€ [T B < ¢ [ <
Thus, we get (4.8). O
Letting G = x;(€)G(€,t) and G;t = x;(£)G*, we have
G =G ++Go+ Gy +GY,
or

G=G+G+Gf +Gj.

PROPOSITION 4.1. For sufficiently small €, there exist positive constants C, such
that

|DEGa, t)| < C(1+t)~ " HD/2(By (|2, t) + " Y/4BN (2| — ct,t).  (4.9)

Proof. By Lemma 4.2, we know that
|DFj 1 (2, t)] < C(1+t)~FleD/2By (2], 1). (4.10)
By (3.2)
DWWy Fop|=C > avth‘/ (14 t)~ (D212 By (1 + cty|, 1)dS,.
I<(n-1)/2 vi=t

By Lemma 3.3

IDSWy s Faq| <C Y i1 4 )= (nHlel2=0m02 By () — et ). (4.11)
<(n—1)/2
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For the same reason, we have from (3.1) and Lemma 3.3

IDSW s Fyq| <C > DR )= (nHleD 2= (DR By (|2 — et ). (4.12)
[v[<(n—3)/2

Thus, summing up (4.5), (4.10)—(4.12), we obtain (4.9). O

PROPOSITION 4.2. For fixed € and R, there exist positive constants b and C, such
that

|DEGy(x,t)| < C(1 4 )=+l 2=t By (|2, 8). (4.13)

Proof. Note that if |£| € (¢, R + 1), we have ReAy < —26|¢|? for some positive
constant 0. By Theorem 3.2 of [2], it is easy to see that

D262 Ga| < C(1+ €)1 (1 4 t]e)?Ple201E% < (1 4 Je) 12181 (1 4 g 2) 2Pl =20t = 0lel e,

Then

229 D2 Ga(a,1)| = C| figr e/ DE e Gual€, 1)
< Ce 2 n(1+|§|)\a|f|25|(1+t|§|2)2|ﬁ\679\6\2td§
< O (ntla /2efbt(1—|—t)‘5|.

Taking |8 = 0if |z|?> < 1+t and |8| = N if |22 > 1+¢, and noting suppGa (€, -) C [e, R]
and

|z)? 1 |z|2 <1+t
1+2—) <24 =0T
( MY W ) R M L

we know that (4.13) is valid. 0O

Now we consider G3jE for sufficiently large |¢|. First, for G5 and G%, we have

PRrROPOSITION 4.3. For sufficiently large R, there exist positive constants b and
C, such that

|D2G5 (x,t)] < Ot~ (D 2e=bt By (2], 1). (4.14)
Proof. Since e VTINO < CevEPH(j > 2) from (2.11) and (2.15), by the
definition of G, we have
D¢ G5 | < C(1+[g)) 1 —2le7 (1 4 1]g ) Ple0lel™,

Here 6 is a positive constant. Using the same method as in the proofs of Proposition
3.2, we can prove (4.14) for G5 . O

For G, we first take the Taylor expansion for )\}’ﬁ(f) as (2.17),

M (€) = A + BN (gm0 + -+ — 0" OF A (O)gmo +7(8,6), (4.15)
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where r(3,£) = O(B™*1) is 1-homogeneous in &. Multiplying |¢] and taking 8 = [£]~!
in (4.24), we get from (2.11) and (2.15)

_\/—_15\1(5) = _\/—_151 + ZQJ(€)|§|*J + O(|€|*(m+l)),

where a;(§) is 0-homogeneous in &.
By Lemma 2.1 we know that Im(A;(€)) < —c|€]?/(1 + [€]?). So Im(i) < 0. If
U =a—+/—1b, a,b are two real constants, and b > 0. Thus we can write

— /=1 — —v/—1a o —j 1 G —j\ymym

eTVIRMOt = T VIR (1 (B Tl 4 (Y aglé )M+ Rt 6),
j=1 j=1

where Ry (t,€) < C(14 )™+ (1 + [¢])~ ™+, Then we have

GH(E ) = V@O Py = b= VTlat(pg - 57 pF(1)g;(€) + R(L,€)),
where pg = diag(1,0,---,0),p;(t),q;(§) and R(t, &) are matrices, and
p; (1) < CL+1), 1g;(€)] < CUL+ €))7, |R(E O] < C(L+ )™ (1 4 [¢))~ 0D
Let
Lo = e_\/jl“tdiag(l, 0,---,0),L;(t, D) = e_\/?l“tpj(t)qj(Dw),

where ¢;(D,) is pseudo-differential operator with symbol g;(&).
By the definitions of G and L;, it is easy to see that

PROPOSITION 4.4. For R sufficiently large, there exist distributions

n+4l
Ki(x,t) = (ZLjé(x)>e_bt,
§=0
such that for |a| =1

|D3(GY = x3(D)Ki(x,1))| < Ce™"/? By (|l t). (4.16)

THEOREM 4.1. For z € IR",t > 1 and |a| =1, we have

|D3(G(x,1) = x3(D)Ki(x,1))]

< Ot~ 2(=(=V/AB (2| — et, t) + B (|2], 1)), (4.17)

Proof. We can write

(G(z,1) — x3(D)Ki(,1))
= Gi+Ga+ G5 +(Gf — x3(D)K)).

By Propositions 4.1 to 4.4, we thus have that (4.17) is valid. 0O
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5. Pointwise bounds for the non-linear system. We denote by u = (p —
po—ve—e*) = (p—1,v,e—e€*)",up = (po — 1,v0, €0 — €*)7 and rewrite (1.1) as

dyu+ A(Dy)u + B(Dy)u = Q(u). (5.

ot
[y
~

For |u| small enough, we may write

Qu)=Q1+ Q2= ZijQj(U) +Y " Dy Dyygja(u), (5.2)

Jil

where g;(u) = O([uf?), g;1(u) = O(|ul?).
In this section, we consider the Cauchy problem of (5.1)

{ dru+ A(Dy)u+ B(Dy)u = Q(u), (5.3)

’U,lt:o = Up-.

As in [6], we have

THEOREM 5.1. Suppose that ug € H*Y(IR™),s = [n/2] + 1, | is a nonnegative
integer, and that ||ugll s+t is sufficiently small. Then there exist a unique, global,
classical solution u € H** of (1.1), satisfying

[ Deul|r2(t), 0< ol <s+1
(S ID2ul2.()dt) /2, 1< ]l <s+1 p =O(1)|uollgs+- (5.4)
| Dgul|z=, 0<]a] <I.

Let E =max{||uol|| gs+t, ||wollw1.t}, by Theorem 5.1 we have |ug| e < CE.
Using interpolation we know that ||ug||yw»: < CE (1 <p < o).

Now we will give a pointwise estimate for the solution u of (5.3). Taking DS on
(5.1) and applying the Duhamel’s principle, we obtain

Deu = DG(t) *ug+ [ G(t — s) * D2Q(s)ds = Rf + Rg. (5.5)

By the same method as in [6] and [12], we can give pointwise estimates and proved
the main result in this paper.

THEOREM 5.2. Suppose that ug € H¥(IR™),s > [n/2] + 1,1 > 2 with E is small
enough and |a] <1 —2. Then the solution u(x,t) of (5.3) satisfies

D3z, )] < C(L4 1)~ HD2((L 4 1) = DAB, o (|2] = ct,t) + Byya(l],t)). (5.6)
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