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NONEXISTENCE OF SOLUTION FOR HIGHER ORDER
EVOLUTION EQUATIONS AND INEQUALITIES*

HIRBOD ASSAT AND MAHMOUD HESAARAKI'

Abstract. Many authors have established results for existence and nonexistence of nonlinear

evolution P.D.Es in the form ak—k — 81 Au+62A%u = f(x, Vu,u) where 81,62 € {0,1}. In this paper

we will prove the nonexistence results for the general form that contains this forms for f(z, Vu,u) =
lz| =7 |u|? or |u|? or |[Vul|P.
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1. Introduction. Consider the following family of inequalities in a domain Q C
RN
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where F(u) = |z|~7|ul|? or |u]? or [Vu?[? for v > 0, p,q > 1, mq > 0 are real numbers.
Here a;(t, x), bs(t, x) and ¢(t, z) are real valued functions and D* = aglll "'afN—ZN' In
the present paper we will to investigate nonexistence of solution in bounded domain
for finite interval of time and nonexistence of global solution in RY with suitable
initial data on [0,+00) and as a result of these, nonexistence of nonnegative solution

for nonevolution P.D.Es.

Suppose that u(0,2) = ug(x), ..., %u(o, x) = up—1(z) are initial data for (1.1).
By initial data in this paper we mean:

o~ i~ )l on
O w0 = Y I 0 sy @)

A
li4la=i—j 162t

for all 1 < j <i <k, when a;(t,x) is considered to be i — 1 time t—differentiable at
t=0(0<i<k-1).

For F(u) = |u|?, we shall prove the nonexistence of nontrivial global solution if
the value of initial data are large. In this case our result is independent on boundary
condition. For F(u) = |Vu?|? we will consider of the nonexistence of nonnegative
nontrivial global solution for the Dirichlet boundary condition when p —1 > n+1
and large initial data.

Now consider the following problem:

*Received February 4, 2004; accepted for publication January 19, 2005.

TDepartment of Mathematics, Sharif University of Technology, P.O. Box 11365-9415, Tehran, Iran
(asa@mehr.sharif.edu; hesaraki@sina.sharif.ac.ir). Current address of the first author: Département
de Mathématiques et de Statistique, Université de Montréal, CP 6128 succ Centre-Ville, Montréal
QC H3C 3J7, Canada (assa@dms.umontreal.ca).



2 H. ASSA AND M. HESAARAKI

i ﬁ (ai(t, x)ult, x)) + i A® (bs (t, x)u™(t, :C)) ,
> cft, :C)F(u(t, x))
u™(t,x) = A(um(t,x)) =...=A"1 (um(t, a:)) =0,

where the boundary conditions is in the mean of trace.

Notice that this inequality is a special case of the above inequality. For the
problem (1.2) we prove the nonexistence of nonnegative nontrivial global solutions
for F(u) = |Vu?” when p > 2 which is a better result with respect to the problem

(1.1).

Here, we describe the literature of the problems for the following problems:

(1.3) — — Au = |[Vul|P,u >0,
(1.4) — — A" = u|?u >0,

(1.5) — + N*u= VUi u >0,

2
% — Au = |z|ul?u >0,
These problems are special cases of (1.1) or (1.2).

For problem (1.3) Andreucci in [1] has proved the existence of local solution in
RYN for pg>m,m>1,0<p<2 and N > 1. In his work the initial data are
measures.He proved the local solution for (1.4) in the supercritical case ¢ > m +2/N
and k = 1. He discovered some useful inequalities for solutions in the paper.

Here we should mention that Souplet in [16] had proved existence of global solu-
tion for (1.4) when k = m = 1 before Andreucci[l].

Problem (1.4) considered by Laptev in [8,9]. He has proved the nonexistence of
nontrivial global solution for this problem whenever §2 is a cone or is a ball complement
and nonnegative initial data.

Problem (1.5) with ¢ = 1 has considered by Bellout, Benachour and Titi in [2].
They used the Galerkin method to prove the short-time existence of weak and strong
solutions for this initial boundary value problem.

Problem (1.6) has investigated by Pohozaev and Tesei in [14] when 2 is a smooth
boundary domain such that 0 € Q. They show the instantaneous blow-up for this
problem when the initial data has a critical point in 0. They employ the Test Function
method in their investigation.

For more information about the existence and nonexistence of solutions of non-
trivial global solution for these problems the reader is refereed to [3, 4, 5, 6, 7, 10, 11,
12, 13, 16, 17].

(1.6)
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2. General type inequalities. Consider Q C R is a domain with smooth
boundary. Let a;(t,x),bs(t,z) be real measurable functions with upper bounds
Aj, By € R for all, 1 < i <k, |a] < n,respectively.As we mentioned before a;(t, ) is
1 — 1 time differentiable at ¢ = 0, and let ¢(¢, z) be a real measurable function which
has a lower bound C > 0.Finally, let A = (A1,...,Ay) and B = {Ba}|a|<n-

Here we are interested to show that the following inequality has no nontrivial
global solution on (0,7") ,T" € (0, 4+oc],for large values of initial data:

(2.1) zk:‘?—t(a £, )t 33)) + Y p° (ba(t,:zr)umﬂ (t,a:)) > c(t,x)F(u(t,a:)).

i=1 lal<n

Here F(u) = |u]? or |z|7|u|? or |Vu?|P and p,q > 1 are real numbers.For F(u) =
|z|~7|u|? we consider that Q — {0} = Q.
In the following we give the concept of solution.

DEFINITION 2.1. Let T € (0,4+o00] and € RY be an open set. By a global
solution on (0,T),we mean a function u such that:
i) For F(u) = |u]? or F(u) = |z|”7|u|?,

we O(0.1: L, @) N ( N e(10.1):Liz @)

ol <n
ii) For F(u) = |Vul?, u? belongs to C([O,T);Hé(ﬂ)) mC([O,T);Wol’p(Q))
and u € m C([O,T) Lma(Q)).

loc
|| <n
Moreover,for every nonnegative function (¢, z) € Cmm{" o ([O, T] x Q) and ((t,.) €
) 8k 1
Cr(Q) and ¢(.,z) € C*[0,T] with ((T,.) = = H= 57— ¢(T,.) = 0 we have:

09 (a; (0, 2)u(0,z)) 87=1(0, )
2; / oti—i g1
//ajtzzr ta:a%(t )ddt

\al / / (t,z)u™ (t,r) D2 (C(t,x))d:cdt

o] <n

2/OT/Qc(t,x)F(u(t,a:))((t,:z:)d:z:dt,

where all the integrals are exist. Let ¢ be the first eigenvector of —A in H}(Q) such

that ¢ > 0,and | ¢ =1 and:
Q

P(z) = ¢ (),

where o > n is a real number.
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On the other hand let 8 = k¢’ + 1 and define cg; as follow:

65,0 = 1,

cpr=PBB-1)..(6-1+1),

for I < g.
We have the following theorem related to inequality (2.1).

THEOREM 2.2. Let © be a bounded smooth domain in RN and q > me for all
la] <mn,and 7> 0.
a) Let F(u) = |ul? and

q
q—Mq

o = [max|qj<ni lal —1,n}] + 1.

Then, there exists a positive number My = M; (Q,T,X,B,C,k,n,N) such
that (2.2) has no nontrivial global solution on (0,7) when:

. 0" 7 (a; (0, 2)u(0, x
> epart o [ SR By >
i=1 j=1 2
b) Let Flu) = |[VuiP, p—1>n+1landp—1>o0 >n+1 a real fizred
—
number. Then, there exists a positive number My = Ma(Q, 7, A,B,C,k,n, N)
such that (2.2) has no nonnegative nontrivial global solution on(0,7) when:

k

D) / O @O0

Q 0=t

i=1 j=1

In order to prove this theorem, we need the following lemma from[15].
LEMMA 2.3. Suppose that Q@ C RY is a bounded and C? domain and ¢ is the
first eigenvector of the operator —A in H (). Then

C(9,Q) := /Q ¢—1a < o0, Va € (—o0,1).

Proof of Theorem 2.2. For 0 < 7 < T set

. Y -
(2.3) ¢(t):={(() 2 YIS

from the definition of 8 we know that:
iy B—i¢d +1>1foralll <i<k,
W) B> k+1,

where ¢’ is the conjugate of q. Let

(2.4) ((t,2) == P(t) ().
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By using this ((¢,«) in Definition 2.1, and by considering definition of ¢ and 8 we
get:

E 4 » b L] (ai (O, ;[;)’U,(O, LL‘))
_ TB itle j—1
ZZ B3 /Q

— P(x)dx
i=1 j=1 ot

ko1
+> cp.i(T — )P lag(t, 2)u(t, z)(z)dedt
(2.5) i=1 /0 /Q

+ ) (=) /OT/Q(T—t)ﬁba(t,x)uma(t,x)Daw(x)dxdt

la|<n

> /0 ’ /Q c(t,x)(r_t)ﬁF(u(t,x))¢(x)d;cdt.

Proof of part (a). Consider u(t,z) as a solution.Let K > 0 be a positive real

number. By Holder’s and Young’s inequalities on (0,7) x  from |a;(¢,2)| < A;,1 <
1 < k we get:

/ / cp,i(T — 1) ai(t, x)u(t, x)y () dwdt

/ /KT—t§ S (@)ult, 2) | K~ Avcy o(r — )7~ (2)dadt
(2.6)
/ / (1 — t)P|u(t, )| % (z)dxdt
cﬁl TB8—iq '+1

q¢K? ( B—ig +1’
where C(¢) := / Y(z)de.

Q
On the other hand, let K, be a positive number and 7, = -L-. By applying
Holder’s and Young’s inequalities on § from [b, (¢, 2)| < By we get

/T / (r— t)ﬁba(t, x)u™e (t, x) D% (x)dx
0 Q

. —Buxma%x_l 7%330‘3350
s/o/ﬂv 0P Kolu(t, )| 7 (2) K Botp™ 7= (2) D29 (2)d

Kr [T [, s . re g+l 1Dy (a
<[ o+ T | e

Now we will show that the last integral exists. We know

0= [max|a\<n{

Note that |D%/}(3:)|’”a = |P(I)|TQ¢(U*IM o (1

(x) when P is a polynomial of ¢ and its
partial derivations. A simple calculation shows that:

Ial —Lnjl+

ro /
o= — (o —|al)r, <1.
r

[0}
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Therefore, \Dawf/z)v‘a = — [P()|" is integrable, by Lemma 2.3; indeed:
wi Cbiof(of\a\)'r&
DO( T‘;
Co(h) = ﬂ < 0.
Q 1/1%
It is notable that by ¢ = —AA¢ and Relich’s Theorem ¢ and its derivations are

bounded on 2. (1/A is the eigenvalue due to —A )
By using (2.6) and (2.7) in (2.5) for F'(u) = |u|? from the assumption (¢, z) > C,
we get:

b =7 (a; r)u(U,x
_chﬁ,jflTﬁijJrl/ 9 (15901;_]1 (O’ ))1/)(I)ddf

1= 13 1 Q2
C ﬁ iq’ +1 BT:;L TﬁJrl
ﬁz z
2.8 —Oa
(2.8) +Z 7 CW 3T |Z e Ol 5
kK4 K’ T
> (C'— — g = )/ lu(t, z)|%(z) (1 — t)Pdadt.
q la|<n Ta 0 Ja
kK1 K«
Now K > 0 and K, > 0, |a| < n, can be chosen so that C — —— — > 0.
q Ta
o] <n
Let:
q —ig'+1 T B+1
Cﬁ zA 7—[5 q+ B T
M, = C ——C, .
1 ; Tl +$<: Ko W5

k [ ) i—j )
If ZZCB)j_lTﬁ7J+1/ 0 (aZ(Q, x,)u(o’x))w(:v)d:v > M, then the left hand

Qi—it
i=1 j=1 2
side of (2.8) will be negative which is contradiction. This complete the proof of part
(a). O

Proof of part (b). The proof of this part is similar. Since the estimations in
the proof are crucial we give the details of the proof. Let u(t,2) be a nonnegative
solution. For every K > 0, by Holder’s and Young’s inequalities on (0,7) x Q and
la;(t, )| < A;;1 <@ < k we get:

/OT /Q c.i(T — )P ta;(t, o)u(t, v)(x)dedt

R

(2.9) < /OT /Q K(r - t)gqﬁ (z)u(t,z)K e, iAiqr%( Yr—t) up(x)d:cdt

Ko B G AL poid g ()
B /o ~/Q(T P utlt, m)o(e) + ¢K? f—ig +1 Q¢%(:c)dx'

Note that by % —o0q¢' <1, for all ¢ > 1, and Lemma (2.3) we have

wa’ (z)
2 ¢ (z)

Dy (¢) = < oo
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Now assume that A > 0 is a positive number such that 1/\ is the eigenvalue
corresponding to ¢. Then by condition wu(t, x)‘ém = 0, Holder’s and Young’s inequality

on {2 we get:

/ ul(t,z)p(x) = )\/ Vul(t,x) - Vo(x)dz
Q Q

(2.10) < / Vut(t,2) [} ()} (2)| V() |de
/|qu (t, z)|P(x)dz —I— Mdz.
Vo gt ()

Note that by conditions of part (b) of the theorem we have p —1 > n + 1. We know
o > 0 is such that n +1 < ¢ < p — 1. Therfore, by Lemma 2.3 we obtain:

|V¢( )
Q q/;?(gg)

———dx < .

Ds(¢) ==

Now (2.10) and (2.9) imply:

/ T / coi(r — )7 ai(t, x)ult, x)y (x)dadt

q a\rB+1
(2.11) < K )\/ / (1 — t)P|Vul(t, z)|Py(x)dx K(2+1)D (¢)

cﬁqu FB—ig' +1
¢KY 3—iqg +1

D1 (9).

On the other hand, for any positive number K, and r, = -, by Holder’s and Young’s
inequality on 2 we get:

/ T / (T = 1)%ba(t, )u™ (£, 2) D*(x)dz

(2.12) / / (r — )P Kqu™ (t,2)¢7 (2)¢~ 7 (2) K, ' Bo D*(x)dadt

K 8 B a7-6+1 |Da¢
< T /0 /Q(T—t) u%t,x)qﬁ(x)d:z:dt—k G /

w5

’
)"
.
A

S\*

Note that from o > n + 1 we have o > |a| + 1 for all |a| < n. Morover, from g > mq
we get o > 2de + |a| — 1. This implies the inequality :—Z — (o = |a)rl, < 1. So we
have:

/|D¢ dx<oo
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Again from condition u(t,x)‘ = 0,and by Holder’s and Young’s inequalities on (2
a0
and the definition of ¢ we get:

/OT /Q(T —t)Pul(t, z)p(z) = )\/OT /Q(T —t)? (qu(t,x)) . (v¢($))d$dt

(213) < A/T/(T—t)ﬁ|W(t,x)|¢(x)%¢(x)*%|v¢(x)|dxdt

A TP / [Vo(x)[”'
P+l 4 (@)

/nh/ 7 — 1) |Vul(t, z)|Pp(x)drdt + =

/
o
Note that we have chosen o so that o <p—1 or L < 1, we must have:
p

’

|V¢(:17)!p dx < oo.
2 Ya)

Dsy(¢) =

Substitute (2.13) into (2.12) to get:

/T /Q(T - t)ﬁba(t, x)u™e (t,2) DY (x)dx

_ Ko
rap.

Krearf+t

2.14
. apP'(B+1)

/ /QT—t )P I9ut ()P () + T Dy(9)

Tﬁ+1

BT Do),
Yo kEgen e

By using (2.11) in (2.5) for F(u) = |Vu9|P we get:

P , &= (a; (0, z)u(0,
_ZZTB—JHCBJ_I/Q (a E{%iﬂfzw ) () da

1= 1] 1
AL ppid 1 kK IATAH

cﬁz
+Z ¢KY 5—iq’+1Dl(¢ + qp’(5+1)D2(¢)
(2.15) K o o
—O‘,D 7 T
+2§( ey o6
kKX Ko\ (2P (a)dad
<c s g )//|Vut:z:)|1/)()a:t

Notice that by choosing K and K, (Ja| < n), very small positive number we have:

KK\ 5 Ko\
ap Tap

> 0.

lal<n
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Now let:

cl Aq FB—iq +1 ERKINO+1
My = § b D — D
2 ,Kq ﬁ—lq/‘f'l 1(¢)+ qp'(ﬁ—i—l) 2(¢)

i=1

A+
B+1

Ko B
+ > ( () + mDs(éf’,Q))

[e3
|| <n atta

koo -

. 0" (aq; 0, 0,

Therefore, if E E Tﬁ_”lc&j_l/ﬂ (a E?tjgu( x))w(x)dx > Moy; then, the
i=1 j=i

left hand side of (2.15) will be negative. This is a contradiction. O

We now want to discuss about solution in RY. Let Q4 := B(0,d). Now we apply
the argument of part (a) for Q = Q4. Similar to(2.8), we have:

_ZZCBJ - g+1/ az—J(aig)ifiiu(O,:c))wd(x)dx

=1 j= 1 Qa
Cﬁ i Tﬁ_iq +1 B a TB+1
q To
(C’—kK —Z Ko )/ / u(t, z)| g (x) (1 — t)Pdzdt,
laf<n

where ¢4(x) := ¢(z/d) and Y4(z) = Y(z/d), x € Qq and ¢ > 0 is the first eigenvector
of —A in H}(B1(£2)). We can easily see that

Oa(d,d):/ wda;:dfla\réﬂrN/ wd(gj/d%
% pa(w) % 7 (x/d)
(2.17) =d eIt N Q)

where L(Q, o) = [,/ [P g

7 (@)
On the other hand, we have:

(2.18) C(vg) = i Ya(x)dz = dV L(Q),
where
L(Q)= | ¢(z)dz,
Q
and

ot o, 97t

019 /Q O (@O0 2u0.) / O (0, deyu(0,dw)
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Now we deduce from (2.16), (2.17), (2.18) and (2.19)

_chﬁ 17—5 J+1dN/ 81_](a1(0’{x)u(07dz))d)(;p)d;c

1= lj 1 9=t
Aqu FB—iq'+1 Bie B+l
(220) | b L(© + 5 gl +N—L 0
; sk X5 I;ﬂ oy (0 W)z

> 0.

0'791 (a;(0,dz)u(0,dx
00 )1

Consider that ji := min{j < k;3i > j s.t.limsup,_ . fo,
> 0}. Divide (2.20) by dV and then let d — 0o so we get

. i—J1 i d d
—cg.j, 177 lim sup 97" (a (O,’ @)u((), :C))U)(a:)da:
It d—oo JQ o=t
(2.21) J oo
B L(Q) L
T2 R G—igd+1°

=1

Now if ¢’ > ji, by letting 7 — oo, the left hand side of (2.21) will be negative which
is a contradiction.

On the other hand, let iy = min{i; a;(t, z) # 0} and e = min{|a|rl; ba(t, z) # 0}.
Divide (2.16) with 77; then, by (2.17) and (2.18) we obtain:

P =i (q; x)u(U,x
I TR / P00 )

i=1 j=1 Qa
ko d ad
ch A7 —ig'+1 B
(222)  4Y AN L@+ Y AT L0, Q)
=1 q’c7 T + lal<n /K o +

o /2
> 4y 5(1/2)° <C T K—) /0 /Q lu(t, )| dadt.
a/2

where vy /5 = 1(1/2,0,...,0). Now suppose that e > N and ﬁ < il"];fl and initial
data are nonnegative. Assume A > 0 is a number such that g < A < “q —1. Let
d=714. Since —i1¢’+1+NA <0 and (—e+ N)A+1 < 0 by letting 7 — oo in (2.22)
we get [;° fan |ul? < 0. Then u = 0.

We have the following theorem:

THEOREM 2.4. Let Q =RY, iy, and j; be as above. Suppose that the initial data
are positive. Then if ¢ > j1 or e > N and —x < “q ; then, we have no global
solution on [0, +00).
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Now consider the following problem.

ko a6
Z gﬂ (az(t z)u (t,I)) + Z D“ (ba(t,x)um“(t,x)),
(2.23) =l ‘“'Sj
> |z |ul?
z €\ {0}

where v > 0 is a real number and other things as above. In this case some of the

initial data have critical in zero.
Let z. = (0, ...,0,2¢) and Q. = B.(z¢) and consider for € < ¢, B.(zc) C Q.
Let u be a solution for (2.23) then, it is easy to see that u is a solution of

i 57 (aZ (t, z)u(t a:)) + Z Do‘(ba(t,x)uma(t,:zr)),

laf<n

2.24
(2.24) Sp——

x € Q.

By the same argument of above we have:

koo i
. 0" 7 (a; (0, z)u(0,x
ZZ B m/g ( Eai—ji ( ))1/;6(1:)611:
Bt A9 B—iq' +1 Ble B+1
B,i l T T
2.25 p e - €
22 gq BT |z<:n o
kK1 K’
> (e'y - = ) / lu(t, z)| e (x) (T — t)P dadt.
q lal<n Ta 0 JQ.

where ¢ is the first eigenvector of —A in Hi(B1(0)) and ¢.(z) = ¢((1/€)(z — z.)).
Now we let K9 = K" = de~ " where d is so small that such that:
L > L

T,
laj<n @

We have:
C(d}e) = eNL(Q),
and
Coltbe) = eN71a L, Q),
and

Y(y)dy.

Ye(x)de =

/ 09 (a; (0, 2)u(0,x))
Q

— GN/ 8i7j(ai(07€y+Ié)u(oa€y+xé))

0=t
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So there is a constant D(8,7) > 0 such that

ki o
. 0" 7(a; (0, ey + x)u(0, ey + .
_chﬁ,j—lTﬁ J+16N/ ( ( yaiiji ( Y ))Q/J(y)dy
(2.26) =14=1 .

DY Ny ) 5

jal<n

Now if ¢ < ymq/|al, for all || < n, then, we have N —|—*y:—; — |a|r!, > N; so, if we
divide (2.27)by €V and letting ¢ — 0 then from Fatou lemma we get:

ki ) 61’7]'(@,(0 O)U(O O))
— - B—j+1 T .7 ! ) d
(2.27) ;;% 7 /Ql it Y(y)dy

> 0.

But if one of thew be positive then we have a contradiction.

On the other hand, suppose that one of the initial data have a critical at zero and
the other are positive. For example, suppose that for some & > 0 there is an ¢y such

that |z| < € then W > |z|7%. So we get:

(2.28)

—cp N0 / [y + (0,...,0,2)| () + D(B,7)( Y NFrrEloln L Ny > g,
|95

laj<n
Let n' = min{|al; bo(t, z) # 0}.

THEOREM 2.5. 1-Suppose q < vymy/|a| and for some 1 < i < j < k,
9’7 (a;(0,2)u(0,x))
It
lution. o

=7 .
2-Suppose for some 1 <1i < j <k, % > |z|7% and we have one of
the following items
(@) 6 >nandy<n ord<n’ andd>n
B)d<~vyandn<-~vyory<dandd <n'
then we have no nontrivial solution.

is continue and positive in origin. Then we have no nontrivial so-

Proof. 1 is proved. For 2; in each item (a) or (b) we have N —¢ < min(N—i—v% -

lafre, N+ L)+, Let € — 0in (2.29) then the left hand side will be negative which
is a contradiction.

COROLLARY 2.6. 1-With the conditions of Theorem 2.4 we have no positive
solution on RYN for the following problem:

(2.29) Z D~ (ba(x)uma (:v)) > c(x)|u(x)]?

lal<n
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2-With the conditions of part (1) Theorem (2.5) we have no positive continue solution
on Q — {0} (which Q contains origin) for the following inequality:

(2.30) > D% (bala)u™ (@) = fal 7 ful)"

la|<n

Proof. In contrary, suppose that (2.30) have a solution. Let u(t,z) = u(x).
Then the problem (2.1) for F(u) = |u|? have a positive solution on RY; which is a
contradiction. The proof of 2 is similar. O

REMARK 2.7. In (2.1) we can substitute Zf 1 gﬂ (al(t x)u (t,x)) by [4]

Zf 1 gﬂ (al(t x)u’ (t,:v)) where 0 < 0; < ¢ and in Theorem2.3 we can use the

estimates similar to what we done in (2.7) and (2.14). Moreover, we must have some
additional conditions.

REMARK 2.8. In the proof of Theorem (2.2) (a) we could choose any positive
function in C§°(2) instead of ¢, by choosing large o.

3. Laplacian type inequalities. In this section we consider the following prob-
lem

i%(aztx tx) +ZAS( (t,x))7

(3.1) . > ot x)F(u(t,:z:))
um(t,x)|ag ( ) =...= A1 (um(t, x)) |(’9Q =0,

u>0

where |po = 0 is in the mean of trace and 2 is a bounded smooth domain.

Here we shall show the global solution does not exist. Note that this inequality

is a special case of the inequality (2.1), but here we can substitute p —1 > n 4+ 1 with
of p> 2.
Assume that a;(t, ), bs(t, ), c(t,),A;, are as before and b(t,.) € C*'=1(Q). Let Bj
be the upper bound for b,(t,z) and B = (Bi, ..., By), and suppose a;(t,z) > 0 In
order to avoid ambiguty in this section we change the definition of the solution as
follows.

DEFINITION 3.1. By a solution u of the problem (3.1) we mean a function
u € C((0,T),C?~(Q)), which for any test function ¢, which is given in the definition
2.1, the function u satisfies the folowing inequality:

I(a; (0, 2)u(0,z)) &7 =1(0,x
ZZ—“/ t”( ) atj(_1 ) dot

=1 j=1
//a]t:v 6%& )ddt—i—
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_zl:/OT/QVAS_l(bs(tafc)um(f,w))-V(C(t,w))d:vdt

Z/OT/QC(t,I)F(u(t,x))g‘(t,x)da:dt.

THEOREM 3.2. Let ¢, A be as in the proof of Theorem 2.3, and i be defined by:

(3.2) Y= po,
where
l
(3.3) > b
s=1

a') Let F(u) =u?. Then there is a positive number M| = M{(, T, X, E), C) such
that problem (3.1) has no nonnegative nontrivial global solution on (0,7) when

. 0" 7(a;(0, 2)u(0, x
ZZC@J;N’B ]H/ ( E?i*j)t ( ))1/)(3:)d:c>M{
i=1 j=1 Q
b') Let F(u) = |Vul|P and p > 2. Then there is a positive number M} =

— =
My (Q,7, A, B,C) such that (3.1) has no nonnegative nontrivial global so-
lution on (0,7) when:

chﬁ,jfﬂ’ﬁ*ﬁrl /Q 9 J(al(o’x)u(o’x))d)(x)d:c > Mj.

9=t
=1j=1

<.

Proof. Now let as in the proof of Theorem 2.2

N _ )8
i { 0 051

and 3 —i¢' +1>1,1<4¢<kand,
C(t,2) := Py ().
By using the above ¢ in the definition 3.1 and v™ = --- = Al=14™ = 0 on 9Q and

concidering the Green’s theorem, we get

9" (a; (0, 2)u(0,))

ki
— B—j+1., .
ZZT 067]_1/9 8t17~7 w(‘r)d‘r

i=1 j=1

k T
cs (T — )P (¢, 2)ult, o) (z)dz
+;/0 /Q 5,4(T — )7 a;(t, z)u(t, )¢ (z)dedt

l T
T—t)° x)u™(t, ) A% Y(x)dx
+2;/0 /Q( )b (t, 2)u™ (t, 2) A% (x)dadt

> /0 ’ /Q elt,)(r = 1) F (u(t, ) ) (a) .
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Case 1: part (a’). Similar to what we have done in the inequality (2.6) we can write:

/T/ cpi(T — )P Cai(t, x)u(t, x)o(x)dxdt
0 Q

(3.5) S/T/K(T—tg Wi (@)ult, 2)| K Asep i(r — )7 "7 (z)dzdt

, ¢l AL Bid
Bu (t, z)¥(x)dxdt + L .
<[ [e- pelaldodt +

WhGYGC(’(/J):/ x)dr = /¢ Ydz =

Again similar to inequality (2.7) we get:

/OT /Q(T = 1)7bs(t, 2)u"™ (t, 2)9(x)dx

K¢ 7 Bgliﬁ ' |AS¢($)|T/
3.6 T p +
(3.6) < . /O /( )7 u(t, )| (x) TR / 7 dz.

s (5 +1) P
B (6+ 1)
where r = g and
m
|A‘S ( ) — 8T Q/JT —ST‘/ —ST‘/
———dr =\ =A dr =\
o )2 / 77 /w@) x p

By using (3.5) and (3.6) in (3.4) let F(u) = u? we get:

b =3 (q; x)u(U,x
_ZZTﬁj+lcﬁ7jl/Qa ( 1(07._) (07 ))U)(I)dI

oti—i
1= 1] 1
Ad B—iq'+1 AT Br’ B+1
S Bl 7 A
¢dK? B—iq +1 —~ 1K} B+1)
l
kK1 K 4
(C——— 5)/ /(T—t)ﬁuq(t,x)z/}(x)dxdt.
q — T 0 Ja

Now choose K > 0, K; > 0 small, 1 <s </, and let

cl 1Aq FB—iqd'+1 ! A5 BT B+
= Z“ ﬁ/ T + Z 7 '[f ; :
P K7 3—i¢ +1 rKI'(B+1)

s=1
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Case 2: part (b’). Similar to (2.11) we can write:

/ / cp,i(T — 1) a(t, x)u(t, 2)y (x)dwdt

Kq)\/ / Ka)\A+1
< Vul(t,x)|P de + ——D
VIV (.2) P(e)ds + s Da(0)
Aq B—iq’ +1
(3.7) ﬁ“ i T
YUK B—ig + 7 D1(9)
K‘I/\ K rP+1

(7 — t)P|Vui(t, )| x 2
< [0t ap e + Do)

CglAq Tﬁ iq'+1 q
¢dK? B—iq it

q ,
where K > 0 is a real number and D;(¢) = v (f,) dr = p?. Also from p > 2 by
2 ¢(z) T
Lemma (2.3) we get:
Vo (z)[F V()P
Dyfg) = [ VAL _ 2 [ VAR

0 (a) u% o ()
Similar to (2.14)

/T /Q(T - t)ﬁbs(t, x)u™ (t, 2) ASY(x)dx

Kr B+1
(r = )°|Vu (t,2) i (w)de + AT

G 1)D2(¢)

Q
r +1
Bs Tﬁ

Wl%((bvs)

(1 — )P |Vui(t, z)|Py(z)dz

Q
KT/\ B+1 B’I’" B+1 , ,

_,_/8771)2 ¢) + /Sl;/\ﬂp P
rp'(B+1) rKI'(B+1)

Where D3(¢,S) — / |AS (I |p
0 oa)%
By using (3.7) and (3.8) in (3.4) we get

_iimﬂ / /a 0O ),

i=1 j=1

———dx = )fSplupl.

’ ’ .
k c%A;_I FB—id +1 4 LkKINBTH!

— (K7 B—iq + " TG D:(9)

l

KI\ B A
B+1 s D s M
S (GOt G D)

> (o K—”—;KT //T—t IVl (¢, @) [P () dadt.
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Now we choose K and K, 1 < s < k small and we let

k ql ql i l R ’
c iAi 7_5 iq +1 25 BT TﬁJrl

My=Yplit T 1 it
¢dK? 8—iq +1 rKI'(B+1)

i=1 s=1
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