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1. Introduction. The oldest theorems of Fourier analysis give sufficient condi-
tions under which

lim
M→∞

SMf(x) =
1

2
[f(x + 0) + f(x − 0)]. (1)

Here f is an integrable function on the circle and SMf is the associated Fourier partial
sum. This can be viewed as an inverse problem, namely to determine the local average
of a function, given the knowledge of its Fourier partial sums. These conditions can be
substantially relaxed if the Fourier partial sum is replaced by a suitable summability
method.

One can also ask to obtain the jump from the Fourier partial sums, for example
by studying the derivative (SMf)′(x). This inverse problem is more delicate, since the
localization principle of Riemann is not valid for the derivatives of the partial sums.
Nevertheless in 1913 Fejér [F] found that, assuming suitable regularity

lim
M→∞

(SMf)′(x)

M
= C1[f(x + 0) − f(x − 0)] (2)

where C1 is a universal constant, whose value depends on the convention used to
define SMf . Results of this type also hold for various summability procedures and
were studied by Lukács [L], Zygmund [Z] and others. In all of these works the jump in
(2) may be replaced by a suitable local average jump whose precise definition depends
on the regularity of the summability method.

Instead of using the derivative to retrieve the jump, one may also use the conjugate
partial sum S̃Mf . In this case one obtains a logarithmic behavior, leading to a result
of the form

lim
M→∞

(S̃Mf)(x)

log M
= C2[f(x + 0) − f(x − 0)] (3)

for another universal constant. Results of this type were obtained by Fejér [F] and
Lukács [L] for the Fourier partial sum and by Móricz[M2] for Abel summability of
Fourier series on the circle.

The purpose of this paper is to give a unified treatment of these results for func-
tions on the line. The corresponding results on the circle can be obtained by periodiza-
tion techniques. When we come to the analysis of the conjugate function, it is most ef-
ficient to use the definition of the conjugate Poisson integral formulated by Koosis[Ko],
which is simultaneously defined on all of the Lebesgue spaces Lp(R), 1 ≤ p ≤ ∞.
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2. Analysis of the Fourier partial sum. The simplest instance of (2) occurs
when we consider a function on the real line. Let f ∈ L1(R) and define the Fourier
transform and Fourier partial sum by

f̂(u) =

∫

R

e−2πiuyf(y) dy, SMf(x) =

∫ M

−M

e2πiuxf̂(u) du. (4)

Theorem 2.1. Suppose that f ∈ L1(R) ∩ BV (R). Then for all x ∈ R,

M−1 d

dx
(SMf)(x) → 2 (f(x + 0) − f(x − 0)) , M ↑ ∞.

First we state and prove an elementary fact:

Lemma 2.2. For any f ∈ L1(R) ∩ BV (R), limx→±∞ f(x) = 0.

Proof. For any a < b, we have

f(b) − f(a) =

∫

(a,b]

df

|f(b) − f(a)| ≤

∫

(a,b]

|df |

which tends to zero when a, b → ∞ or a, b → −∞, by the dominated convergence
theorem. This proves that the limits limx→±∞ f(x) exist. But f ∈ L1(R) implies
that both limits are zero.

Proof of the theorem. Computing directly, we have

SMf(x) =

∫ M

−M

(
∫

R

e2πiu(x−y)f(y) dy

)

du

= 2

∫ M

0

(
∫

R

cos 2πu(x − y)f(y) dy

)

du

d

dx
SMf(x) = −2

∫ M

0

2πu

(
∫

R

sin 2πu(x − y) f(y) dy

)

du

= −2

∫ M

0

(
∫

R

d

dy
(cos 2πu(x − y)) f(y) dy

)

du

= +2

∫ M

0

(
∫

R

cos 2πu(x − y) df(y)

)

du

= 2

∫

R

sin 2πM(x − y)

2π(x − y)
df(y)

where we have used the lemma to discard the terms at ±∞ in the partial integration.
Now the measure df has finite total mass, while the integrand is bounded and has the
value M when y = x. Dividing both sides by M , we obtain

lim
M

M−1 d

dx
(SMf)(x) := 2 df({x}) = 2[f(x + 0) − f(x − 0)]

which was to be proved.
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2.1. A refined result. If the jump df({x}) is zero, we can obtained a more
refined asymptotic formula for SMf ′(0) in terms of jumps at other points. This is
closely related to the Pinsky phenomenon [Ka] which was first studied in the context
of multi-dimensional Fourier analysis [P].

Theorem 2.3. Suppose that y → fx(y) := f(x + y) − f(x − y) is piecewise
absolutely continuous with f ′

x ∈ L1(R) and fx(0+) = 0. Assume in addition that
y → f ′

x(y) satisfies a Dini condition at y = 0. Then

(SMf)′(x) =

K
∑

j=1

sin 2πMtj
πtj

∆j +
1

2
[f ′(x + 0) + f ′(x − 0)] + o(1), M → ∞ (5)

where (tj)1≤j≤K are the non-zero jump points of y → fx(y) and
∆j = fx(tj + 0) − fx(tj − 0), 1 ≤ j ≤ K.

This result gives an explicit expression of the failure of Riemann localization for
the derivative of the partial sums.

Proof. It is no loss of generality to do the case x = 0, since we can always replace
f(t) by f(t ± x). From the previous computation, we have

(SMf)′(0) = −

∫

R

f(y)
d

dy

(

sin 2πMy

πy

)

dy

= −

∫ ∞

0

[f(y) − f(−y)]
d

dy

(

sin 2πMy

πy

)

dy.

We can integrate-by-parts on each finite interval [a, b] on which f is absolutely con-
tinuous:

∫ b

a

[f(y) − f(−y)]
d

dy

(

sin 2πMy

πy

)

= [f(y) − f(−y)]

(

sin 2πMy

πy

)

|y=b
y=a

−

∫ b

a

[f ′(y) + f ′(−y)]
sin 2πMy

πy
dy.

If a 6= 0, b 6= 0, each of the endpoint contributions gives the stated contribution, while
the new integral tends to zero, by the Riemann-Lebesgue lemma. In case a = 0 or
b = 0, the new integral is the standard Fourier partial sum for f ′

x, which satisfies a
Dini condition at y = 0. Hence this new integral converges to the stated value when
M → ∞.

2.2. The conjugate Fourier partial sum. The conjugate Fourier partial sum
is analyzed in a similar fashion. By definition

S̃Mf(x) : = −i

∫ M

0

e2πiuxf̂(u) du + i

∫ 0

−M

e2πiuxf̂(u) du (6)

=

∫

R

1 − cos 2πM(x − y)

π(x − y)
f(y) dy (7)

where we have used the definition of f̂ and evaluated
∫M

0
and

∫ 0

−M
.

Theorem 2.4. Suppose that f ∈ L∞(R) ∩ L1(R) and there exists δ0(f, x) :=
f(x + 0) − f(x − 0). Then

S̃Mf(x)

log M
→ −

1

π
[f(x + 0) − f(x − 0)], M ↑ ∞.
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Proof. The conjugate Fourier partial sum is written

S̃Mf(x) =

∫

R

1 − cos 2πMt

πt
f(x − t) dt

=

∫ ∞

0

1 − cos 2πMt

πt
[f(x − t) − f(x + t)] dt.

Note that for any R0 > 0,

∫ R0

0

1 − cos 2πMt

πt
dt =

∫ MR0

0

1 − cos 2πt

πt
dt =

1

π
log M + O(1).

Letting F (t) = f(x − t) − f(x + t) + δ0(f, x), we have for any R0 > 0,

S̃Mf(x) +
δ0(f, x)

π
log M =

∫ R0

0

F (t)
1 − cos 2πMt

πt
dt + O(1). (8)

Given ǫ > 0, choose δ > 0 so that |F (t)| < ǫ for |t| < δ. Then

∣

∣

∣

∣

∣

∫ δ

0

F (t)
1 − cos 2πMt

πt
dt

∣

∣

∣

∣

∣

≤ ǫ

∫ δ

0

1 − cos 2πMt

πt
dt < ǫ log M

∣

∣

∣

∣

∣

∫ R0

δ

F (t)
1 − cos 2πMt

πt
dt

∣

∣

∣

∣

∣

< ||F ||∞

∫ R0

δ

2

πt
dt ≤ ||F ||∞ log(R0/δ) = O(1).

Dividing both sides of (8) by log M , we have

lim sup
M

∣

∣

∣

∣

∣

S̃Mf(x)

log M
+

δ0(f, x)

π

∣

∣

∣

∣

∣

< ǫ

which was to be proved.

It is interesting to note that this result for the conjugate partial sum requires no
more smoothness hypotheses than the existence of the jump δ0(f, x). By contrast,
the result for the derivative in Theorem 2.1 requires that f be of bounded variation.
This discrepancy in assumptions is consistent with the classical results of Lukács [L]
for Fourier series on the circle.

2.3. Fejér’s Gibbs phenomenon. Fejér also discovered the following Gibbs-
like phenomenon for the jump. There exists a universal sequence xM ↓ 0, so that for
any f above,

lim
M→∞

[SMf(x + xM ) − SMf(x − xM )] = f(x + 0) − f(x − 0). (9)

Here xM may be chosen as the smallest positive root x of the equation

∫ ∞

x

sin 2πMt

πt
dt = 0.

We will not pursue this theme in this paper.
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3. The generalized jump of a function. For a locally integrable function on
the real line we can consider three different notions of jump. We set

δ0(f, x) = lim
t↓0

(f(x + t) − f(x − t)) (10)

δ2(f, x) = lim
h↓0

1

h

∫ h

0

(f(x + t) − f(x − t)) dt (11)

provided that these limits exist. An intermediate notion is the existence of δ1(f, x)
with the property that

lim
h↓0

1

h

∫ h

0

|f(x + t) − f(x − t) − δ1(f, x)| dt = 0. (12)

If δ0(f, x) exists, then so does δ1(f, x) and they are equal. If δ1(f, x) exists, then so
does δ2(f, x) and they are equal. At the end of this section we give the proof that
for a.e. x, δ1(f, x) exists and is zero, generalizing a well-known result for functions of
bounded variation.

In the next paragraph we provide examples of locally integrable functions for
which

• a) None of the three limits exist.

• b) Only δ2(f, 0) exists.

• c) Only δ1(f, 0) and δ2(f, 0) exist.

To see this, begin with the locally integrable function defined for t > 0 by

f(t) = tα sin

(

1

tβ

)

, α > −1, β > 0 (13)

where we set f(t) = 0 for t ≤ 0. If α > 0, then δ0(f, 0) = 0. We claim that δ2(f, 0)
exists if and only if α + β > 0, whereas δ1(f, 0) exists if and only if α > 0. To see this
make the change of variable s = 1/tβ and write

∫ h

0

tα sin

(

1

tβ

)

dt =
1

β

∫ ∞

h−β

sin s

sα/β+1+1/β
ds

= −
1

β

∫ ∞

h−β

s−[α/β+1+1/β]d(cos s)

=
1

β

(

h−β
)−1−α/β−1/β (

cos(h−β) + o(1)
)

=
1

β
hα+β+1

(

cos(h−β) + o(1)
)

1

h

∫ h

0

f(t) dt =
1

β
hα+β

(

cos(h−β) + o(1)
)

, h ↓ 0.

If α + β > 0, then δ2(f, 0) = 0. If α + β ≤ 0, then δ2(f, 0) does not exist.

To compute δ1(f, 0) for this example, note from the above that if it exists it must
be zero. However we can compute directly as follows:
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∫ h

0

tα
∣

∣

∣

∣

sin

(

1

tβ

)
∣

∣

∣

∣

dt =
1

β

∫ ∞

h−β

|sin s|

sα/β+1+1/β
ds

∼ const

∞
∑

[h−β ]

1

n1+1/β+α/β

= const h1+α (1 + o(1))

1

h

∫ h

0

|f(t)| dt ∼ const hα(1 + o(1)), h ↓ 0.

Thus we see that if α > 0 then δ1(f, 0) exists and is zero. If α ≤ 0 and δ1(f, 0) did
exist, then it must be zero, since δ2(f, 0) = 0. But the above analysis shows that the
choice δ1(f, 0) = 0 gives a contradiction.

To summarize, the above class of examples show the possibilities a) and b). Fi-
nally we give an example for which only δ1(f, 0) and δ2(f, 0) exist. Let

f(t) = 1, |t − 2−n| ≤
3−n

2
n = 1, 2, . . .

and f(t) = 0 otherwise. These intervals are non-overlapping and the integral on each
interval is 3−n. Hence

0 ≤ t ≤ 2−N =⇒

∫ t

0

f(s) ds ≤
∞
∑

n=N

3−n =
3

2
3−N .

Therefore if 2−(N+1) ≤ t ≤ 2−N

1

t

∫ t

0

f(s) ds ≤ 2N+1 3

2
3−N = 3

(

2

3

)N

which tends to zero when t ↓ 0. But clearly lim supt→0 f(t) = +1, hence δ0(f, 0) does
not exist but δ1(f, 0) = 0 = δ2(f, 0).

3.1. Proof that δ1(f, x) = 0 a.e. This follows closely the details of the proof of
the Lebesgue differentiation theorem using the Hardy-Littlewood maximal function.
If f is a continuous function, then clearly δ1(f, x) = 0 for every x ∈ R. For any
f ∈ L1(R) and ǫ > 0, there exists a continuous function g such that ||f − g||1 < ǫ.
Let f = g + r and set

Nf(x, h) :=
1

h

∫ h

0

|f(x + t) − f(x − t)| dt ≤ Ng(x, h) + Nr(x, h).

Since limh↓0 Ng(x, h) = 0, we have

lim sup
h↓0

Nf(x, h) ≤ lim sup
h↓0

Nr(x, h) ≤ sup
h>0

1

h

∫ x+h

x−h

|r(t)| dt ≤ 2 Mr(x)

where Mr is the Hardy-Littlewood maximal function of r. Hence for any δ > 0
∣

∣

∣

∣

∣

{x : lim sup
h↓0

Nf(x, h) > δ}

∣

∣

∣

∣

∣

≤ |{x : 2 Mr(x) > δ}|

≤
C

δ
||r||1

≤
C

δ
ǫ
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where the Hardy-Littlewood maximal inequality was applied in the second line. But
ǫ > 0 was arbitrary. Hence the Lebesgue measure on the left side must be zero, for any
δ > 0. This means that limh↓0 Nf(x, h) = 0 a.e. for any f ∈ L1. If f is only locally
integrable, then apply the above argument on a sequence of compact sets whose union
is the real line, which completes the proof.

4. Extension to summability kernels. In this section we extend Theorem 2.1,
where we replace the Fourier partial sum by a convolution operator with a suitable
class of kernels. Specifically, we consider a family of integral transforms on the real
line, written

Kyf(x) =

∫

R

f(x − yt)k(t) dt, y > 0. (14)

In every case, k is an absolutely continuous real-valued function with

k ∈ L1(R), k′ ∈ L1(R), k(−t) = k(t), ∀t ∈ R. (15)

Note that we do not require that the integral of k be normalized to 1. This normal-
ization would be convenient in studying limy↓0 Kyf(x) but is not relevant in studying
the derivative (Kyf)′(x) when y ↓ 0. In addition we consider the following properties:

|k′(t)| ≤ L(t), ∀t > 0, where L ∈ L1(R+) is monotone decreasing (16)

k′is absolutely continuous with k′(t) ≤ 0, k′′(t) ≥ 0 for t ≥ t0 > 0. (17)

For examples the Poisson kernel with k(t) = 1/π(1 + t2) and the Gauss kernel with

k(t) = e−πt2 satisfy all three properties. The Fejér kernel with k(t) = (1 − cos t)/πt2

satisfies (15) and (16) but not (17). In general, any kernel that satisfies (15) and (17)
also satisfies (16). Recalling the definitions of the jumps δi(f, x) from the previous
section, we have the following three results for the derivative approximations.

Theorem 4.1. Suppose that k satisfies (15). Let f ∈ L∞(R) and suppose that
for some x ∈ R, δ0(f, x) exists. Then (Kyf)′(x) exists for y > 0, x ∈ R and

lim
y↓0

y (Kyf)′(x) = k(0)δ0(f, x). (18)

This result can be considered a counterpart of Theorem 2.1 on the derived Fourier
integral.

Theorem 4.2. Suppose that k satisfies (15) and (16). Let f ∈ L∞(R) and
suppose that for some x ∈ R, δ1(f, x) exists. Then

lim
y↓0

y (Kyf)′(x) = k(0)δ1(f, x). (19)

This result generalizes Zygmund’s theorem to the present setting, when Lebesgue-
type conditions hold. In order to handle the case of more general points, we require
a more stringent condition on the kernel.

Theorem 4.3. Suppose that k satisfies (15), (16) and (17). Let f ∈ L∞(R) and
suppose that for some x ∈ R, δ2(f, x) exists. Then

lim
y↓0

y (Kyf)′(x) = k(0)δ2(f, x). (20)
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4.1. Proofs. We begin by writing

Kyf(x) =

∫

R

f(t)k

(

x − t

y

)

dt

y
.

Hypothesis (15) allows one to differentiate the integral to obtain

(Kyf)′(x) :=
d

dx
Kyf(x) =

∫

R

f(t)k′

(

x − t

y

)

dt

y2

=
1

y

∫

R

f(x − yt)k′(t) dt. (21)

From (15), k′ is an odd function, so that we can write

(Kyf)′(x) =
1

y

∫ ∞

0

[f(x − yt) − f(x + yt)]k′(t) dt

y (Kyf)′(x) − k(0)δ0(f, x) =

∫ ∞

0

[f(x − yt) − f(x + yt) + δ0(f, x)]k′(t) dt.

To prove Theorem 4.1, we note that k′ ∈ L1(R) so that given ǫ > 0 we may choose
M > 0 so that

∫∞

M
|k′(t)| dt < ǫ. From (10) we see that the integral on the interval

[0, M ] tends to zero by the dominated convergence theorem, so that Theorem 4.1
follows.

To proceed further we state and prove a useful lemma.

Lemma 4.4. Suppose that j(t) is defined for t ≥ t0 with
∫∞

t0
|j(t)| dt < ∞ so that

j(t) ≤ 0 and j′(t) ≥ 0 for t ≥ t0. Then
∫∞

t0
tj′(t) dt < ∞.

Proof. Under these hypotheses, we can write

tj(t) − t0j(t0) =

∫ t

t0

j(s) ds +

∫ t

t0

s j′(s) ds.

When t → ∞ the first integral has a finite limit while the second integral tends to
some C ∈ [0,∞]. Hence there exists D = limt→∞ tj(t), −∞ < D ≤ ∞. But j(t) ≤ 0
implies that D ≤ 0. But D 6= 0 is impossible, since

∫∞

t0
|j(t)| dt < ∞. We have proved

that
∫∞

t0
sj′(s) ds = −t0j(t0) −

∫∞

t0
j(s) ds < ∞, as required.

To prove Theorem 4.2, we write

E : = y(Kyf)′(x) − k(0)δ1(f, x)

Φ(t) =

∫ t

0

|f(x − u) − f(x + u) + δ1(f, x)| du

so that Φ(t)/t → 0 when t → 0. Finally, let ǫ(t) = Φ(t)/t, a bounded function with
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limt↓0 ǫ(t) = 0, we have

|E| ≤

∫ ∞

0

|f(x − ty) − f(x + ty) + δ(x)| |k′(t)| dt

≤

∫ ∞

0

L(t)Φ′(ty) dt

=

∫ ∞

0

L(t)

y

d

dt
[Φ(ty)] dt

= −

∫ ∞

0

Φ(ty)

y
L′(t) dt

= −

∫ ∞

0

ǫ(ty) (tL′(t)) dt.

But Lemma 4.4 applied to t0 = 0, j(t) = −L(t) shows that −tL′(t) is the density of
a finite measure on [0,∞); but the integrand tends to zero boundedly when y → 0 so
that the result follows by the dominated convergence theorem.

To prove Theorem 4.3, define Ψ(t) =
∫ t

0
(f(x − u) − f(x + u) + δ2(f, x)) du and

ǫ(t) = Ψ(t)/t, a bounded function with limt→0 ǫ(t) = 0. Then

E := y(Kyf)′(x) − k(0)δ2(f, x) =

∫ ∞

0

[f(x − yt) − f(x + ty) + δ2(f, x)]k′(t) dt

=

∫ ∞

0

k′(t)Ψ′(ty) dt

= −

∫ ∞

0

1

y
Ψ(ty)k′′(t) dt

=

(
∫ t0

0

+

∫ ∞

t0

)

tk′′(t)ǫ(ty) dt

: = J1 + J2.

Then

|J1| ≤ sup
0≤t≤yt0

|ǫ(u)|

∫ t0

0

t|k′′(t)| dt

which tends to zero when y → 0. On the interval (t0,∞), t → tk′′(t) is a non-negative
integrable function, while ǫ(ty) → 0 boundedly when y ↓ 0. Therefore J2 → 0 by the
dominated convergence theorem. This completes the proof of the first set of results.

5. Summability of the conjugate partial sum. In parallel with the direct
summability methods involving the derivative, one can model a class of kernels based
on the conjugate partial sum. We consider kernels k(t) satisfying

k(−t) = −k(t), 0 ≤ t k(t) ≤ C, lim
t→∞

t k(t) = k∞. (22)

This includes the conjugate Poisson kernel where k(t) = t/[π(1+t2)] and the conjugate
Fejér kernel, where k(t) = (πt)−1(1 − sin t

t ). (see section 6.2). Note that neither of
these kernels is integrable. In the appendix we give the detailed computation of the
conjugate Fejér kernel. In general, we define a sequence of linear functionals

LMf =

∫

R

M k(Mt)f(t) dt (23)
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and recall the definitions of δ0, δ1, δ2 in (10),(11),(12).

Theorem 5.1. Suppose that f ∈ L1(R, dx/(1 + |x|)) and that δ0(f, 0) exists.
Then

lim
M→∞

LMf

log M
= k∞δ0(f, 0).

Theorem 5.2. Suppose, in addition to (22), we have |k(t)| ≤ K(t) for t ≥ 0,
where K is monotone increasing for 0 ≤ t ≤ y0, monotone decreasing for t ≥ y0 and
satisfies (22). Suppose that f ∈ L1(R, dx/(1 + |x|)) and that δ1(f, 0) exists. Then

lim
M→∞

LMf

log M
= k∞δ1(f, 0).

Theorem 5.3. Suppose, in addition to (22), that k is monotone increasing for
0 ≤ t ≤ y0 and monotone decreasing for t ≥ y0. Suppose that f ∈ L1(R, dx/(1 + |x|))
and that δ2(f, 0) exists. Then

lim
M→∞

LMf

log M
= k∞δ2(f, 0).

These three theorems give successively weaker conditions on f while imposing
increasingly stronger conditions on the kernel k. It is also understood that these
results are to be applied to a convolution operator f →

∫

R f(x − ty)k(t) at x = 0.

5.1. Proofs.

Proof of Theorem 5.1. Write

LMf =

∫ ∞

0

[f(t) − f(−t)]Mk(Mt) dt.

Given ǫ > 0, choose η > 0 so that |f(t) − f(−t) − δ0(f, 0)| < ǫ for 0 < t < η. Then

LMf =

(
∫ η

0

+

∫ ∞

η

)

= I + II

|II| ≤ sup
0≤z

|z k(z)|

∫ ∞

η

∣

∣

∣

∣

f(t) − f(−t)

t

∣

∣

∣

∣

dt = O(1)

∣

∣

∣

∣

I − δ0(f, 0)

∫ η

0

Mk(Mt) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ η

0

[f(y) − f(−y) − δ0(f, 0)]Mk(My) dy

∣

∣

∣

∣

< ǫ

∫ η

0

Mk(My) dy

= ǫ

∫ Mη

0

k(z) dz

< ǫ (log M + O(1)) .

But
∫ η

0
M k(Mt) dt = k∞ log M + O(1), M → ∞. Thus

|KMf − δ0(f, 0)k∞ log M | < ǫ log M + O(1).
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Dividing by log M and letting M → ∞ gives the result.

Coming to the proofs of the Theorems 5.2 and 5.3, we will need to integrate by
parts and deal with the contributions from the differentiated terms. These will be
handled by a simple lemma.

Lemma 5.4. For any K satisfying the hypothesis of Theorem 5.2 and η > 0,

∫ η

0

zM2|K ′(Mz)| dz ≤ C1 + C2 log M.

Proof. For M > y0/δ, we can write the integral in two portions, corresponding to
the interval (0, y0/M) and the interval (y0/M, η). In the first case we have

∫ y0/M

0

zM2|K ′(Mz)| dz = y0K(y0) −

∫ y0/M

0

MK(Mz) dz

= y0K(y0) −

∫ y0

0

K(u) du = O(1).

In the second case, we have

∫ η

y0/M

zM2|K ′(Mz)| dz = y0K(y0) − MηK(Mη) +

∫ η

y0/M

MK(Mu) du

= O(1) +

∫ Mη

y0

K(u) du

= O(1) + O(log M)

which completes the proof.

Proof of Theorem 5.2. Let F (t) =
∫ t

0 |f(z) − f(−z)− δ1(f, 0)| dz. For any η > 0,
write

KMf − δ1(f, 0)

∫ η

0

Mk(Mt) dt =

∫ η

0

[f(t) − f(−t) − δ1(f, 0)]Mk(Mt) dt

+

∫ ∞

η

[f(t) − f(−t)]Mk(Mt) dt.

The second integral is handled in exactly the same way as in Theorem 5.1. To handle
the first integral, we can write for M > y0/η,

∣

∣

∣

∣

∫ η

0

[f(t) − f(−t) − δ1(f, 0)]Mk(Mt) dz

∣

∣

∣

∣

≤

∫ η

0

MK(Mt)F ′(t) dz

= MK(Mη)F (η) −

∫ η

0

M2K(Mz)F (z) dz.

Given ǫ > 0, choose η > 0 so that |F (z)/z| < ǫ for 0 < z < η. Then the first term
is less than ǫC. The new integral is estimated by Lemma 5.4 by ǫ(C1 + C2 log M).
Summarizing, we have the estimate

KMf − δ0(f, 0)

∫ η

0

Mk(Mt) dt = O(1) + ǫ (C1 + C2 log M) .
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Dividing by log M and taking M → ∞ produces the result.

Proof of Theorem 5.3. Let G(t) =
∫ t

0 [f(z)−f(−z)−δ2(f, 0)] dz, so that G(t)/t →
0. Following the previous steps, we have

LMf − δ2(f, 0)

∫ η

0

Mk(Mt) dt = O(1) +

∫ η

0

Mk(Mt)G′(t) dt.

In this case the kernel k satisfies the hypothesis satisfied by K in Theorem 5.2. Hence
we can integrate by parts and follow the steps in the previous proof.

5.2. The conjugate Poisson kernel. Theorem 5.3 applies to the conjugate
Poisson integral, defined classically [SW] for f ∈ L1(R) as

−Qyf(x) =
1

π

∫

R

t − x

(t − x)2 + y2
f(t) dt. (24)

In order to obtain a more generally applicable theory, we follow Koosis [Ko] and add
a constant to consider

−Q̃yf(x) =
1

π

∫

R

(

t − x

(t − x)2 + y2
−

t

1 + t2

)

f(t) dt. (25)

If f ∈ Lp(R) for some 1 ≤ p < ∞ we can separate the two terms to see that
Qyf(x) − Q̃yf(x) is a constant. In general Q̃yf(x) is defined on a larger space,
namely

B2 = {f : ||f || :=

∫

R

|f(x)|

1 + x2
dx < ∞}. (26)

Koosis [K] has shown that for any f ∈ B2 there exists a.e. the conjugate function
H̃f(x) = limy↓0 Q̃yf(x) and we have the Kolmogorov inequality

1

π

∫

{x:|H̃f(x)|>α}

dx

1 + x2
≤

4

α
||f || α > 0. (27)

Corollary 5.5. Suppose that f ∈ B2 and that for some x ∈ R , δ2(f, x) exists.
Then

lim
y↓0

Q̃yf(x)

log(1/y)
= −

1

π
δ2(f, x). (28)

Proof. We change variables to u = x − t which leads to

Q̃yf(x) =
1

π

∫

R

u2x + u(1 + x2 − y2) − xy2

(u2 + y2)(1 + (x + u)2)
f(x + u) du

= I + II + III.

To estimate I, we discard y2 in the denominator to obtain

|I| ≤
|x|

π

∫

R

|f(x + u)|

1 + (x + u)2
du = O(1)
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which is independent of y. Similary to estimate III we discard u2 in the denominator
to obtain

|III| ≤
|x|

π

∫

R

f(x + u)

1 + (x + u)2
du = O(1).

It remains to analyze

II :=
1 + x2 − y2

π

∫

R

u

(u2 + y2)(1 + (x + u)2
f(x + u) du.

The function u → f(x + u)/(1 + (x + u)2) satsifies the hypotheses of Theorem 5.3, as
does the conjugate Poisson kernel π k(t) = t/(1 + t2). Hence we can apply Theorem
5.3 to conclude that II/ log(1/y) → (1/π)δ2(f, x)

6. Appendix.

6.1. Proof of (21). In the absence of a published reference, we provide a direct
proof of the elementary fact that for f ∈ L∞(R) and k, k′ ∈ L1(R) we can differentiate
under the sign of integration.

Without loss of generality, we can make a change-of-variable and assume that
y = 1, x = 0. We write the difference quotient:

1

x
(K1f(x) − K1f(0)) =

1

x

∫

R

f(t) (k(x − t) − k(−t)) dt

=
1

x

∫

R

f(t)

(
∫ x−t

−t

k′(u) du

)

dt

=

∫

R

k′(u)

(

1

x

∫ −u+x

−u

f(t) dt

)

du

where we have interchanged the orders of integration in the last step. The new
integrand is bounded pointwise by ||f ||∞ and converges a.e. to f(−u). Since k′ ∈
L1(R), we can apply the Lebesgue dominated convergence theorem to conclude that

d

dx
K1f(x)|x=0 =

∫

R

k′(−u)f(u) du (29)

as required.

6.2. The conjugate Fejér kernel. Since it is not easy to find a reference, we
include here the detailed computation of the conjugate Fejér kernel. This is defined
in terms of its Fourier transform for x 6= 0:

K̃M (x) = i

∫ 0

−M

(

1 +
ξ

M

)

e2πiξx dξ − i

∫ M

0

(

1 −
ξ

M

)

e2πiξx dξ

= i

∫ 0

−M

(

1 +
ξ

M

)

d

(

e2πiξx

2πix

)

− i

∫ M

0

(

1 −
ξ

M

)

d

(

e2πiξx

2πix

)

= i

(

1

2πix
−

1

M

∫ 0

−M

e2πiξx

2πix
dξ

)

− i

(

−
1

2πix
+

1

M

∫ M

0

e2πiξx

2πix
dξ

)

=
1

2πx
−

i

2πMx

(

1 − e−2πiMx

2πix

)

+
1

2πx
−

i

2πMx

(

e2πiMx − 1

2πix

)

=
1

πx

(

1 −
sin 2πMx

2πMx

)
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which is non-negative for x ≥ 0 and satisfies the conditions that xK̃M (x) ≤ 2
π and

limx→∞ xK̃M (x) = 1
π .

REFERENCES

[F] L. Fejér, Uber die Bestimmung des Sprunges der Funktion aus ihrer Fourierreihe, Journal
für die Reine und Angewandte Mathematik, 142 (1913), pp. 165–188.

[Ka] J. P. Kahane, Le phénomène de Pinsky et la géométrie des surfaces, CRAS Paris, 321 (1995),
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