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VOLATILITY CALIBRATION WITH AMERICAN OPTIONS∗

YVES ACHDOU†, GOVINDARAJ INDRAGOBY‡ , AND OLIVIER PIRONNEAU§

Abstract. In this paper, we present two methods in order to calibrate the local volatility
with American put options. Both calibration methods use a least-square formulation and a descent
algorithm. Pricing is done by solving parabolic variational inequalities, for which solution procedures
by active set methods are discussed.

The first strategy consists in computing the optimality conditions and the descent direction
needed by the optimization loop. This approach has been implemented both at the continuous and
discrete levels. It requires a careful analysis of the underlying variational inequalities and of their
discrete counterparts. In the numerical example presented here (American options on the FTSE
index), the squared volatility is parameterized by a bicubic spline.

In the second approach, which works in low dimension, the descent directions are computed with
Automatic Differentiation of computer programs implemented in C++.

Key words. American options, variational inequalities, calibration of volatility, inverse prob-
lems, optimality conditions, finite element methods, automatic differentiation

1. Introduction. The Black-Scholes model involves a risky asset and a risk-free
asset whose price at time t is S0

t e
rt, where r is the interest rate; it assumes that the

price of the risky asset is a solution to the following stochastic differential equation,

dSt = St(µdt+ σtdBt), (1)

where Wt is a standard Brownian motion on a probability space (Ω,A,P). Here σt is
a positive number, called the volatility. In what follows, it will be convenient to work
with the squared volatility ηt = σ2

t .
A European option on the underlying risky asset, is a contract which permits to

its owner a benefit P◦(ST ) at time T The function P◦ is called the payoff function
and the date T is the maturity.
With the Black-Scholes assumptions, it is possible to prove that the option’s price at
time t is given by

Pt = Pe(St, t) ≡ E
∗(e−r(T−t)P◦(ST )|Ft), (2)

where the expectation E
∗ is taken with respect to the so-called risk-neutral probability

P
∗ (equivalent to P and under which dSt = St(rdt +

√
ηtdWt), Wt being a standard

Brownian motion under P
∗ and Ft being the natural filtration of Wt). It can be seen

that the pricing function Pe solves the parabolic partial differential equation:

∂Pe

∂t
+
ηS2

2

∂2Pe

∂S2
+ rS

∂Pe

∂S
− rPe = 0. (3)

In contrast with European options, American options can be exercised any time before
maturity: An American vanilla call (resp. put) option is a contract giving its owner
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†UFR Mathématiques, Université Paris 7, Case 7012, 75251 PARIS Cedex 05, France and Labo-

ratoire Jacques-Louis Lions, Université Paris 6 (achdou@math.jussieu.fr).
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the right to buy (resp. sell) a share of a specific common stock at a fixed priceK before
a certain date T . More generally, for a payoff function P◦, the American option with
payoff P◦ and maturity T can be exercised at any t < T , yielding the payoff P◦(St).
Using the notion of strategy with consumption, the Black-Scholes model leads to
the following formula for pricing an American option with payoff P◦: under the risk
neutral probability,

Pt = P (St, t) ≡ sup
τ∈Tt,T

E
∗
(

e−r(τ−t)P◦(Sτ )
∣

∣

∣Ft

)

, (4)

where Tt,T denotes the set of stopping times in [t, T ] (see [17] for the proof of this
formula). It can be seen that for an American vanilla call on a non dividend paying
stock, the formula (4) coincides with (2), so American and European vanilla calls have
the same price. This means that an American vanilla call should not be exercised
before maturity.
It can be shown that the price P of the American put of strike K and maturity T is
given as a solution to

∂P

∂t
+
ηS2

2

∂2P

∂S2
+ rS

∂P

∂S
− rP ≤ 0, P (t, S) ≥ P◦(S), t ∈ [0, T ), S > 0,

(
∂P

∂t
+
ηS2

2

∂2P

∂S2
+ rS

∂P

∂S
− rP )(P − P◦) = 0 t ∈ [0, T ), S > 0,

P (t = T, S) = P◦(S), S > 0,

(5)

where, usually,

P◦(S) = (K − S)+.

The volatility is the difficult parameter of the Black-Scholes model. It is convenient to
take it to be constant but then the computed options’ prices do not match the market
prices. Conversely, taking a family of options available on the market and inverting
for each of them the Black-Scholes formula does not yield a constant volatility: for
each option, one obtains a different implied volatility, and the implied volatility is
often a convex function of the strike K, which is known in finance as the smile effect.
There are essentially three ways to improve on the Black-Scholes model with a con-
stant volatility:

• Use a local volatility, i.e. assume that the volatility is a function of time and
of the stock price. Then one has to calibrate the volatility from the market
data, i.e. to find a volatility function which can recover the prices of the
options available on the market.

• assume that the volatility is itself a stochastic process, see for example [11, 8].
• generalize the Black-Scholes model by assuming that the spot price is for ex-

ample a Lévy process, see [6] and references therein.
In this paper, we deal with the first approach: the calibration problem consists in
finding η(S, t) from the observations of

• the spot price S◦ today,
• the prices (P̄i)i∈I of a family of options with different maturities and different

strikes (Ti,Ki)i∈I .
It has been observed by Dupire,[7], that fixing t = 0 and S = S◦, the price of a
European vanilla call with maturity τ and strike K: P (S◦, 0,K, τ) as a function of τ
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and K satisfies

∂τP − 1

2
η(K, τ)K2 ∂

2P

∂K2
+ rK

∂P

∂K
= 0, with P (K, 0) = (K − S◦)−, (6)

If the options for all strikes and maturities where on the market, the local squared
volatility would be:

η(K, τ) = 2
∂τP (K, τ) + rK ∂P

∂K
(K, τ)

K2 ∂2P
∂K2 (K, τ)

. (7)

Hence, it is tempting to solve the calibration problem by taking first a smooth K, τ -
interpolation P of (P̄i)i∈I at Ki, Ti), and then by using (7). The problem with this
strategy is that it is unstable (a small change in P̄i can produce a large change in η)
and also it is not possible to constrain η to stay in an interval of sensible values (in
particular to be positive). Nevertheless the argument above shows that most likely,
there are infinitely many solutions to the calibration problem with European options.
A more stable way to solve the calibration problem is to

find η ∈ H minimizing J(η) + JR(η), J(η) =
∑

i∈I

|P (S◦, 0,Ki, Ti) − P̄i|2, (8)

where H is a suitable closed subset of a possibly infinite dimensional function space,
JR is a suitable Tychonoff regularization functional, and where P (S◦, 0,Ki, Ti) is
the price of the option with strike Ki and maturity Ti computed with the local
volatility η.
Note that if H is not carefully chosen and if JR = 0, then the problem is unstable too.
Note also that computing J(η) requires solving n(I) different problems of the type
(3) for European options or (5) for American options, so this approach is expensive.
There has been a number of valuable studies on the calibration of volatility with
European options of which it is difficult to make a complete account here. In Lagnado
and Osher [15, 16] a least square method is used, the volatility is discretized by splines
using matlab and the computation of the gradient of J with respect to η is done
either by numerical differences or by Adol-C. In Achdou et al [2] , calibration with
European option is made easier by using Dupire’s equation. An alternative to least
squares is the pioneering method by Avellaneda et al [5] based on the maximization
of an entropy function via dynamic programming. Up to our knowledge, calibration
with American options has not been very much discussed yet in the mathematical
finance literature.

The paper is divided in five parts: we first give theoretical results on the vari-
ational inequality for pricing American options and on the free boundary which
delimitates the region of exercise. The second part of the paper is devoted to the
finite element method for pricing American options. We show in particular that
under some assumptions, there is a free boundary in the discrete problem too, and
we discuss two algorithms for computing the price of the American option, both
based on active sets strategies. The third part is devoted to volatility calibration
with American options: we consider problem (8) with

JR(η) =

∫ T

0

∫ S̄

0

a(S∂Sη)
2 + b(∂tη)

2 + c(S∂2
tSη)

2 + d(S2∂2
SSη)

2 + e(η − ηg)
2.
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The minimization problem is constrained, and optimality conditions are found for (8);
it is also proved that differentiability with respect to η holds provided a strict com-
plementarity condition is satisfied. We give an example of calibration with American
options on the FTSE index, where the squared volatility is discretized with bicubic
splines. The results contained in the four first parts are proved in [1, 3, 4]. In the
last part of the paper, a suitable parameterization of the volatility leads to an un-
constrained optimization problem, and automatic differentiation of computer codes is
used in order to find descent direction in the optimization algorithm. The technique
of automatic differentiation is particularly easy to implement and very accurate in
most cases. However, it cannot be used in large dimensions.

2. The variational inequality and the free boundary. All the proofs of the
results below can be found in [1].
Calling t the time to maturity, the problem becomes

∂P

∂t
− η(S, t)S2

2

∂2P

∂S2
− rS

∂P

∂S
+ rP ≥ 0, P ≥ P◦,

(
∂P

∂t
− η(S, t)S2

2

∂2P

∂S2
− rS

∂P

∂S
+ rP )(P − P◦) = 0,

(9)

with Cauchy data

P |t=0 = P◦. (10)

We focus on the case of a vanilla put, i.e. the payoff function is P◦(S) = (K − S)+.
To write the variational formulation of (9) (10), we need to use the Sobolev space

V = {v ∈ L2(R+) : S
dv

dS
∈ L2(R+)}, (11)

and we call K the subset of V :

K = {v ∈ V, v ≥ P◦ in R+}. (12)

Since the function of V are continuous, the inequality in (12) has a pointwise meaning.
The set K is a closed and convex subset of V , because convergence in V implies
pointwise convergence. We introduce the bilinear form at:

at(v, w) =

∫

R+

S2η(S, t)

2

∂v

∂S

∂w

∂S
dS

+

∫

R+

(

−r(t) + η(S, t) +
S

2

∂η

∂S
(S, t)

)

S
∂v

∂S
w dS

+ r

∫

R+

vw dS.

(13)

We make the assumptions: there exist two positive constants, η and η such that for
all t ∈ [0, T ] and all S ∈ R+,

0 < η ≤ η(S, t) ≤ η. (14)

There exists a positive constant Cη such that for all t ∈ [0, T ] and all S ∈ R+,

|S ∂η
∂S

(S, t)| ≤ Cη. (15)
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These imply that the bilinear form at is continuous on V uniformly in t, and G̊arding’s
inequality : for a non negative constant λ depending only on η̄, η and Cη,

at(v, v) ≥
η

4
|v|2V − λ‖v‖2

L2(R+), ∀v ∈ V. (16)

The weak form of (9) is to

find P ∈ C0([0, T ];L2(R+)) ∩ L2(0, T ;K) such that ∂P
∂t

∈ L2(0, T ;V ′), satisfying
P|t=0 = P◦, and

∀v ∈ K,
(

∂P

∂t
(t), v − P (t)

)

+ at(P (t), v − P (t))) ≥ 0. (17)

Theorem 1. With η satisfying assumptions (14) and (15), the problem (17) has
a unique solution P which belongs to C0([0, T ]× [0,+∞)) with P (0, t) = K, ∀t ∈ [0, T ],
and is such that
S ∂P

∂S
, ∂P

∂S
∈ L2(0, T ;V ), S ∂P

∂S
∈ C0([0, T ];L2(R+)) and ∂P

∂t
∈ L2(0, T ;L2(R+)).

The function P is also greater than or equal to Pe, the price of the vanilla European
put.
The quantities ‖P‖L2(0,T ;V ), ‖P‖L∞(0,T ;L2(R+)), ‖S ∂P

∂x
‖L2(0,T ;V ), ‖∂P

∂S
‖L2(0,T ;V ),

‖S ∂P
∂S

‖L∞(0,T ;L2(R+)), ‖∂P
∂t

‖L2(0,T ;L2(R+)), are bounded by constants depending only on
K, η̄, η and Cη.
We have that

−1 ≤ ∂P

∂S
≤ 0, ∀t ∈ (0, T ], a.a. S > 0. (18)

There exists a function γ : (0, T ] → [0,K), such that ∀t ∈ (0, T ), {S s.t. P (S, t) =
P◦(S)} = [0, γ(t)]. The function γ is upper semi-continuous, right continuous in
[0, T ), and, for each t ∈ (0, T ], γ has a left-limit at t.
Calling µ the function µ = ∂P

∂t
+ AtP , where At is the linear operator: V → V ′; for

all v, w ∈ V , Atv = − η(S,t)S2

2
∂2v
∂S2 − rS ∂v

∂S
+ rv, we have

µ = rK1{P=P◦}. (19)

In other words, a.e., one of the two conditions P = P◦ and µ = 0 is not satisfied:
there is strict complementarity in (9).
Finally, there exists γ0 > 0 depending only on η̄ and K such that

γ(t) ≥ γ0, ∀t ∈ [0, T ]. (20)

3. Pricing American options with a finite element method.

3.1. A finite element method. All the proof of the results below are given in
[3].
We localize the problem on (0, S̄), so V becomes

V = {v ∈ L2((0, S̄);S
∂v

∂S
∈ L2((0, S̄); v(S̄) = 0}

(where S̄ is large enough so that P◦(S̄) = 0), and K = {v ∈ V, v ≥ P◦}. The
variational inequality is (17) with new meanings for V , K, and at.
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Moreover, if γ0 ∈ (0,K) as in (20) is known, one can focus on the smaller interval
[S, S̄], with 0 ≤ S < γ0 and obtain the equivalent weak formulation:

find P ∈ L2((0, T,K) ∩ C0([0, T ];L2(Ω)), with
∂P

∂t
∈ L2(0, T ;V ′)

such that P (t = 0) = P◦ and (17)for all v ∈ K, with the new definition of the closed
set K:

K = {v ∈ V, v ≥ P◦ in (0, S̄], P = P◦ in (0, S]}. (21)

We introduce a partition of the interval [0, T ] into subintervals [tn−1, tn], 1 ≤ n ≤
N , with ∆ti = ti − ti−1, ∆t = maxi ∆ti and a partition of the interval [0, S̄] into
subintervals ωi = [Si−1, Si], 1 ≤ i ≤ Nh + 1, such that 0 = S0 < S1 < · · · < SNh

<
SNh+1 = S̄. The size of the interval ωi is called hi and we set h = maxi=1,...,Nh+1 hi.
The mesh Th of [0, S̄] is the set {ω1, . . . , ωNh+1}. In what follows, we will assume
that both the strike K and the real number S coincide with nodes of Th: there exist
α < κ, 0 ≤ α < κ < Nh + 1 such that Sκ = K and Sα−1 = S. We define the discrete
space Vh by

Vh =
{

vh ∈ V, ∀ω ∈ Th, vh|ω ∈ P1(ω)
}

, (22)

where P1(ω) is the space of linear functions on ω.
Since K is a node of Th, P◦ ∈ Vh, and since S is also a node of Th, we can define the
closed subset Kh of Vh by

Kh = {v ∈ Vh, v ≥ P◦ in [0, S̄), v = P◦ in [0, S]}
= {v ∈ Vh, v(Si) ≥ P◦(Si), i = 0, . . . , Nh + 1, v(Si) = P◦(Si), i < α}. (23)

The discrete problem arising from an implicit Euler scheme is:

find (Pn)0≤n≤N ∈ Kh satisfying

P 0 = P◦, (24)

and for all n, 1 ≤ n ≤ N ,

∀v ∈ Kh,
(

Pn − Pn−1, v − Pn
)

+ ∆tnatn
(Pn, v − Pn) ≥ 0. (25)

Consider λ such that G̊arding’s inequality (16) holds, and take ∆t < 1
λ
, there exists

a unique Pn satisfying (25).
Let (wi)i=0,...Nh

be the nodal basis of Vh, and let M and Am in R
(Nh+1)×(Nh+1) be

the mass and stiffness matrices defined by

Mi,j = (wi, wj),Am
i,j = atm

(wj , wi), 0 ≤ i, j ≤ Nh.

Calling

Un = (Pn(S0), . . . , P
n(SNh

))T and U0 = (P◦(S0), . . . , P◦(SNh
))T ,

(25) is equivalent to

(M(Un − Un−1) + ∆tnAnUn)i ≥ 0, for i ≥ α,
Un

i = U0
i for i < α,

Un ≥ U0,
(Un − U0)T (M(Un − Un−1) + ∆tnAnUn) = 0.

(26)

We call Mα, respectively An
α, the block of M, respectively An, corresponding to

α ≤ i, j ≤ Nh.
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3.2. The discrete exercise boundary. One may ask if there is a well defined
exercise boundary t→ γh(t) also in the discrete problem. A positive answer has been
given by Jaillet et al [14] in the case of a constant volatility, an implicit Euler scheme
and a uniform mesh in the logarithmic variable. The main argument of the proof lies
in the fact that the solution to the discrete problem is non decreasing with respect to
the variable t. With a local volatility, this may not hold (see the numerical example
below). The result of Jaillet et al has been completed for a local volatility in [3], in
the special case when the mesh is uniform in the variable S: here too, the discrete
problem has a free boundary. The proof does not rely any longer on the monotonic
character of the discrete solution with respect to t but on the discrete analogue of
the bounds (18), i.e. −1 ≤ ∂P

∂S
≤ 0. This is proved by studying a suitable penalized

problem (which is the discrete version of a semilinear parabolic equation with a non
decreasing and convex non linearity) and by using a discrete maximum principle on
the partial derivative with respect to S (for this reason, a uniform mesh is needed).
We can summarize this by

Theorem 2. Let η verify (14) and (15), and choose ∆t < 1
2λ

, with λ given in
(16). Assume that the grid Th is uniform and that S > 0. Assume also that the

parameters h and h2

∆t
are small enough so that the matrices An

α and Mα +∆tnAn
α are

tridiagonal irreducible M-matrices for all n, 1 ≤ n ≤ N .
There exist N real numbers γn

h , 1 ≤ n ≤ N , such that

S ≤ γn
h < K,

γn
h is a node of Th,

∀i, 0 ≤ i ≤ Nh, Pn(Si) = P◦(xi) ⇔ Si ≤ γn
h .

(27)

We believe that this may be extended to somewhat more general meshes.

3.3. A front-tracking algorithm. Here, we propose an algorithm for comput-
ing the solution of (25) assuming that the free boundary is the graph of a function.
In our experience, this algorithm, based on tracking the free boundary, is more robust
(and slightly more expensive) than the Brennan and Schwartz algorithm (see [14]).
Since the free boundary is the graph of a function, the idea is to look for γn

h by
• Start from γn

h = γn−1
h ,

• solve the discrete problem corresponding to

Pn − Pn−1

∆tn
− η(S, tn)S2

2

∂2Pn

∂S2
− rS

∂Pn

∂S
+ rPn = 0 for γn

h < S < S̄,

Pn = P◦ for 0 ≤ S ≤ γn
h ,

and Pn(S̄) = 0,
• if Pn satisfies (25), stop else shift the point γn

h to the next node on the mesh
left/right according to which constraint is violated by Pn.

With the notations introduced above, the algorithm for computing Pn
h is as follows:

Algorithm

choose k such that γn−1
h = Sk; set found=false;

while(not found)
.. solve

(M(Un − Un−1) + ∆tnAnUn)i = 0, for i ≥ k,
Un

i = U0
i for i < k.

(28)
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.. if ((Un − U0)k+1 < 0 )

.. found=false; k = k + 1;

.. else

.. compute a = (M(Un − Un−1) + ∆tnAnUn)k−1;

.. if (a < 0)

.. found=false; k = k − 1;

.. else found=true

In our tests, we have computed the average (over the time steps) number of
iterations to obtain the position of the free boundary: it was found that (with a
rather fine time-mesh), this number is smaller than 2.

3.4. A regularized active set strategy. The algorithm above is not easy to
generalize in higher dimensions. For an algorithm based on active sets and general-
izable in any dimension, we have to regularize first the problem. Following [13], we
first go back to the semi-discrete problem: find Pn ∈ K such that

∀v ∈ K,
(

Pn − Pn−1, v − Pn
)

+ ∆tnatn
(Pn, v − Pn) ≥ 0.

For any positive constant c, this is equivalent to finding Pn ∈ V and a Lagrange
multiplier µ ∈ V ′ such that

∀v ∈ V,

(

Pn − Pn−1

∆tn
, v

)

+ atn
(Pn, v) − 〈µ, v〉 = 0,

µ = max(0, µ− c(Pn − P 0)).

(29)

When using an iterative method for solving (29), i.e. when constructing a sequence
(Pn,m, µm) for approximating (Pn, µ), the Lagrange multiplier µm may not be a func-
tion if the derivative of the Pn,m jumps, whereas µ is generally a function. Therefore,
a dual method (i.e. an iterative method for computing µ) may be difficult to use. As
a remedy, K.Ito and K.Kunisch [13] consider a one parameter family of regularized
problems based on smoothing the equation for µ by

µ = αmax(0, µ− c(Pn − P 0)), (30)

for 0 < α < 1, which is equivalent to

µ = max(0,−χ(Pn − P 0)), (31)

for χ = cα/(1 − α) ∈ (0,+∞). We may consider a generalized version of (31):

µ = max(0, µ̄− χ(Pn − P 0)), (32)

where µ̄ is a fixed function. This turns to be useful when the complementarity condi-
tion is not strict.
It is now possible to study the fully regularized problem

∀v ∈ V,

(

Pn − Pn−1

∆tn
, v

)

+ atn
(Pn, v) − 〈µ, v〉 = 0,

µ = max(0, µ̄− χ(Pn − P 0)),

(33)

and prove that it has a unique solution, with µ a square integrable function. A
primal-dual active set algorithm for solving (33) is
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Primal-dual active set algorithm.
1. Choose Pn,0, set k = 0
2. Loop

(a) Set

A−,k+1 = {S : µ̄k(S) − χ(Pn,k(S) − P 0(S)) > 0}

and A+,k+1 = (0, S̄)\A−,k+1.
(b) Solve for Pn,k+1 ∈ V : ∀v ∈ V,�

P n,k+1
− P n−1

∆tn

, v

�
+ atn(P n,k+1

, v)− (µ̄− χ(P n,k+1
− P

0), 1A−,k+1v) = 0.

(34)

(c) Set

µk+1 =

{

0 on A+,k+1,
µ̄− χ(Pn,k+1 − P 0) on A−,k+1 (35)

(d) Set k = k + 1.

Calling An the operator from V to V ′: 〈Anv, w〉 =
(

v
∆tn

, w
)

+ atn
(v, w) and

F : V × L2(R+) → V ′ × L2(R+)

F (v, µ) =

(

Anv + µ− P n−1

∆tn

µ− max(0, µ̄− χ(v − P 0))

)

,

it is proved in [13] that G(v, µ) : V × L2(R+) → V ′ × L2(R+) defined by

G(v, µ)h =

(

Anh1 + h2

h2 − χ1{µ̄−χ(v−P 0)>0}h1

)

is a generalized derivative of F in the sense that

lim
‖h‖→0

‖F (v + h1, µ+ h2) − F (v, µ) −G(v + h1, µ+ h2)h‖
‖h‖ = 0;

Note that

G(Pn,k, µk)h =

(

Anh1 + h2

h2 − χ1A−,k+1h1

)

.

Thus the primal-dual active set algorithm above can be seen as a semi-smooth Newton
method applied to F , i.e.

(Pn,k+1, µk+1) = (Pn,k, µk) +G−1(Pn,k, µk)F (Pn,k, µk). (36)

Indeed, calling (δPn, δµ) = (Pn,k+1 − Pn,k, µk+1 − µk), it is straightforward to see
that in the primal-dual active set algorithm, we have

AnδP
n + δµ = −AnP

n,k − µk +
Pn−1

∆tn
,

δµ = −µk on A+,k+1,

δµ− χδPn = −µk + µ̄− χ(Pn,k − P 0) on A−,k+1,
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which is precisely (36).
In [13], Ito and Kunish, by using the results proved in [12], establish that the
primal-dual active set algorithm converges from any initial guess, and that if the
initial guess is sufficiently close to the solution of (33), then the convergence is
superlinear.
To compute numerically the solution of (29), it is possible to compute successively
the solutions (Pn(χℓ), µ(χℓ)) of (33) for a sequence of parameters (χℓ) converging to
+∞: to compute (Pn(χℓ+1), µ(χℓ+1)), one uses the primal-dual active set algorithm
with initial guess (Pn(χℓ), µ(χℓ)).

Notice that it is possible to use the same algorithm for the fully discrete prob-
lem. Convergence results hold in the discrete case if there is a discrete maximum
principle. The algorithm amounts to solving a sequence of systems of linear equations,
and the matrix of the system varies at each iteration.

3.5. Mesh adaption. One of the key features of the finite element method is
that it permits to compute reliable and often very efficient error indicators for the
error between the exact and discrete solutions. We do not wish to develop much on
this topic here, because this needs long and technical arguments. We rather refer to
[4]. The strategy relies on the fact that the error due to the time discretization can
be estimated separately: there are indicators for the error due to time discretization,
and at each time step, indicators for the error due to the discretization with respect
to the price variable. The error indicators are local. Therefore, they tell us where the
time grid, and the mesh in the S variable should be refined.
To illustrate this, we consider an American put, with strike K = 100. The interest
rate is 0.04 as above, but the volatility is local and we choose:

σ(S, t) = 0.1 + 0.1 ∗ 1
100(t−0.5)2+ (S−90)2

100 <2
(S, t),

so the volatility is piecewise constant and takes the value 0.2 in an ellipse and 0.1
outside. With such a choice, the exercise boundary is expected to change slope as it
enters and comes out the region where σ = 0.2. On Figure 1, we plot the volatility
surface as a function of S and t. The exercise boundary is displayed on Figure 3:
we see that the free boundary does change slope when the volatility jumps. We see
also that refinement is crucial in order to catch properly the exercise boundary. Note
that the function γ is not monotone. On Figure 2, two meshes at displayed: we see
that the refinement follows the free boundary. On Figure 4, the error indicators with
respect to S are plotted: here again, we see that the error indicators are large near
the free boundary, where the function P is singular.

4. Calibration with American options. The calibration problem consists in
finding η from the observations of

• the spot price S◦ today,
• the prices (P̄i)i∈I of a family of American puts with different maturities and

different strikes (Ti,Ki)i∈I .

We call T = maxi∈I Ti. We assume that for any i ∈ I, the maturity Ti coincides
with some node of the time grid, i.e. there exists Ni ≤ N such that tNi

= Ti. We
also assume that for any i ∈ I, the strike Ki is a node of the S-grid, i.e. there exists
κi < Nh such that Ki = Sκi

.
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Fig. 1. The local volatility surface

We consider the least square problem:

find η ∈ H minimizing J(η) + JR(η), J(η) =
∑

i∈I

|PNi

i (S◦) − P̄i|2, (37)

where H is a suitable closed subset of a possibly infinite dimensional function space,
JR is a suitable Tychonoff regularization functional, and

find (Pn
i )0≤n≤Ni

, Pn
i ∈ Kh,i satisfying

P 0
i = P◦,i, (38)

and for all n, 1 ≤ n ≤ Ni,

∀v ∈ Kh,i,
(

Pn
i − Pn−1

i , v − Pn
i

)

+ ∆tnaTi−tn
(Pn

i , v − Pn
i ) ≥ 0, (39)

where P 0
i = P◦,i = (Ki − S)+. We call µn

i,j the real number

µn
i,j =

(

Pn
i − Pn−1

i , wj − Pn
i

)

+ ∆tnaTi−tn
(Pn

i , w
j − Pn

i ). (40)

4.1. Optimality conditions. In [1], the inverse problem corresponding to the
continuous counterpart of (39) is studied and optimality conditions are given for suit-
able choices of H and JR. Here, we aim at finding optimality conditions for the fully
discrete problem (37).
In order to find optimality conditions for the present least-square problem, we re-
place the state equations (38) (39) by the above mentioned penalized problem, whose
penalty parameter, called ǫ, will tend to 0. Doing so, we obtain a new least square
problem, for which necessary optimality conditions are easily found. Then, we pass
to the limit as ǫ goes to zero: we obtain the following result:

Theorem 3. Let η∗ be a minimizer of (37) which can be found as a limit of a
sequence η∗ǫ of minimizers for the penalized problems, and let (P ∗,n

i )i∈I be the solutions
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Fig. 4. Indicators for the error due to the discretization with respect to S

to (38) (39) with η = η∗. There exist y∗,n
i ∈ Ṽh, and αn

i,j ∈ R, 1 ≤ n ≤ Ni,

ρ ≤ j ≤ Nh, i ∈ I, such that ∀v ∈ Ṽh,

(

y∗,Ni

i , v
)

+ ∆tNi



a∗0(v, y
∗,Ni

i ) +

Nh
∑

j=ρ

αNi

i,j v(Sj)



 = 2(P ∗,Ni

i (S◦) − P̄i)v(S◦),

(

y∗,n
i − y∗,n+1

i , v
)

+ ∆tn



a∗Ti−tn
(v, y∗,n

i ) +

Nh
∑

j=ρ

αn
i,jv(Sj)



 = 0, 1 ≤ n < N,

(41)
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with, for all j, n, ρ ≤ j ≤ Nh, 1 ≤ n ≤ Ni,

αn
i,j(P

∗,n
i (Sj) − P◦(Sj)) = 0, µ∗,n

i,j y
∗,n
i (Sj) = 0, αn

i y
∗,n
i (Sj) ≥ 0,

such that for any η ∈ H, noting by δη = η − η∗,

0 ≤ < DJR(η∗), δη >

− 1

2

∑

i∈I

Ni
∑

n=1

∆tn

Nh
∑

j=ρ

S2
j δη(Sj , Ti − tn)y∗,n

i (Sj)









P ∗,n
i (Sj) − P ∗,n

i (Sj−1)

hj

+
P ∗,n

i (Sj) − P ∗,n
i (Sj+1)

hj+1









.

4.2. Differentiability.

Proposition 1. Take ∆t ≤ 1
2λ

with λ as in (16). Assume that for all η ∈
H verifying (14) (15), the the parameters h and h2

minn ∆tn
are small enough so that

the matrices An
l and Ml + ∆tnAn

l are tridiagonal irreducible M-matrices for all n,
1 ≤ n ≤ N and l, α ≤ l < Nh. Let η ∈ H be such that the strict complementarity
conditions

Pn
i (Sj) > P◦,i(Sj) ⇔ µn

i,j = 0, (42)

for all i ∈ I and for all j, ρ ≤ j ≤ Nh, where Pn
i is the solution to (11) (12), and

µn
i,j =

(

Pn
i − Pn−1

i , wj
)

+ ∆tnaT−tn
(Pn

i , w
j). The functional J is differentiable at η,

and for any admissible variation χ of η,

< DJ(η), χ >=

− 1

2

∑

i∈I

N
∑

n=1

∆tn

Nh
∑

j=ρ

S2
jχ(Sj , T − tn)yn

i (Sj)









Pn
i (Sj) − Pn

i (Sj−1)

hj

+
Pn

i (Sj) − Pn
i (Sj+1)

hj+1









.
(43)

where yn
i = yn(η)i ∈ Ṽh, αn

i,j ∈ R, ρ ≤ j ≤ Nh, are the solution to: ∀v ∈ Ṽh,

(

yNi

i , v
)

+ ∆tNi



a0(v, y
Ni

i ) +

Nh
∑

j=ρ

αNi

i,j v(Sj)



 = 2(PNi

i (S◦) − P̄i)v(S◦),

(

yn
i − yn+1

i , v
)

+ ∆tn



aTi−tn
(v, yn

i ) +

Nh
∑

j=ρ

αn
i,jv(Sj)



 = 0, 1 ≤ n < N,

with

αn
i,j(P

n
i (Sj) − P◦(Sj)) = 0, µn

i,jy
n
i (Sj) = 0, αn

i y
n
i (Sj) ≥ 0.

4.3. Algorithm. We describe the simplest possible projected descent method
in the space Y , where the descent direction is computed thanks to the considerations
above. The degrees of freedom of a function χ ∈ Y are the values of χ at some nodes
of a grid and we call them (Λ∗

ℓ (χ))1≤ℓ≤L, (Λ∗
ℓ is the linear form on Y which maps χ

to its value at a given node). We endow Y with the basis (Λℓ(χ))1≤ℓ≤L defined by

Λ∗
ℓ (Λk) = δℓk, and we define the inner product (

∑L
ℓ=1 aℓΛℓ,

∑L
ℓ=1 bℓΛℓ)Y =

∑L
l=1 aℓbℓ.



VOLATILITY CALIBRATION WITH AMERICAN OPTIONS 547

Algorithm.
• Choose η ∈ H, ǫ > 0 and ρ > 0, set e = +∞.
• While e > ǫ do

1. Compute (Pi)i∈I by (38) (39), by using for example one of the algorithms
proposed in §3.3 and J(η) + JR(η), J(η) =

∑

i∈I |PNi

i (S◦) − P̄i|2,
2. For all i ∈ I, compute (yn

i )1≤n≤Ni
, yn

i ∈ Ṽh satisfying (41).
3. compute ζ ∈ Y such that for all χ ∈ Y ,

(ζ, χ)Y

= −1

2

∑

i∈I

Ni
∑

n=1

∆tn

Nh
∑

j=ρ

S2
jχ(Sj , Ti − tn)yn

i (Sj)

(

un
i (Sj)−un

i (Sj−1)
hj

+
un

i (Sj)−un
i (Sj+1)

hj+1

)

.

(44)

4. set η̃ = πH(η − ρ(gradJR(η) + ζ)), e = ‖η̃ − η‖, η = η̃, where πH is the
projection on H.

• end do

The complete justification of the algorithm above is still an open question because
it is not proved that −gradJR(η) − ζ is always a descent direction. However, from
Proposition 1, we know that most often, ζ is exactly gradJ(η): in this case, the
algorithm coincides with a projected gradient method.
In the numerical tests below, we have used variants of this algorithm (an interior
point algorithm due to J. Herskovits[10]-it is a quasi-Newton algorithm which can
handle general constraints), which have proved very robust. In particular, we never
experienced breakups caused by the fact that the direction ζ is not a descent direction.

Parallelism. The algorithm above can be parallelized in a very natural way on
a distributed memory machine with Np processors, because the computations of the

pairs (Pi, yi), i ∈ I are independent from each other. We split I in I = ∪Np

k=1Ik in
order to balance the amount of work among the processors, the processor labelled k
being responsible for the sums over i ∈ Ik in J(η) and (44). Note that the complexity
of the computation of Pi, yi depends on i, so load balancing is not straightforward.
The data for η and ζ are replicated on the Np processors. The processor labelled k
computes its own contribution to J(η) and to (44), i.e. the sums over i ∈ Ik, in an
independent manner, then communications are needed for assembling the sums over
i ∈ I in J(η) and in (44).
For programming, we have used C + + with the message passing library mpi.

4.4. Results with American Puts on the FTSE Index. In this paragraph,
we consider American puts on the footsie index. The data correspond to June 6, 2001.
We thank José Da Fonseca for providing us with the data.
The price of the underlying asset is x◦ = 5890. The American puts correspond to four
different maturities: 0.122, 0.199, 0.295, 0.55 years. We set T = 0.55. The interest rate
r varies with time, so r is replaced by r(t) in (39), and this function is known. For
these maturities, the prices of the observed options vs strike are plotted on Figure 5.
The aim is to find the volatility surface from these prices. The volatility is discretized
by functions that are the sum of

• a piecewise affine function in the S-variable which is constant in the regions
S < 1000 and S > 9000 and affine in the region 1000 < S < 9000

• a bicubic spline in the region 1000 < S < 9000, |t− T/2| < T/2 + 0.1, whose
value and derivatives vanish on the boundary of this rectangle. The control
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Fig. 5. The data for the inverse problem: the prices of a family of American puts on the footsie

index

points of the spline are plotted on Figure 6, where the time variable is T − t.
We see that the control points are not uniformly distributed: the mesh is
refined for small times t and at the money.

The grid for u is non uniform with 745 nodes in the S-direction and 210 nodes in the
t direction. For simplicity, the grid is chosen in such a way that the points (Ti,Ki)i∈I

coincide with some grid nodes.
The (squared) volatility obtained at convergence is displayed on Figure 7: the surface
has a smile shape. The relative errors between the observed prices and those computed
at convergence are plotted on Figure 8, top. They are rather large for small values of
K. However, we have to realize that the available observed prices are themselves given
with a round-off error, which is exactly 0.5. On Figure 8, bottom, we have plotted
the relative round-off error on the observed prices. Doing so, we see that the relative
errors on the prices at convergence are of the same order as the round-off error on the
observed prices. Therefore, it is very natural that the optimization program cannot
improve on this level of error.

5. Automatic Differentiation by Operator Overloading. Derivatives of
functions defined by their computer implementations can be calculated automatically
and exactly. Several techniques are available; here the forward mode [9] is used. The
basic idea is that each line of a computer program can be differentiated automatically,
except perhaps branching statements but since there are only a finite number of them
in a computer program differentiability will be obtained almost everywhere at worst.

Derivatives of a function can be computed from its differential form; this ob-
servation is easy to understand on the following example:
Let J(u) = |u− ud|2, then its differential is

δJ = 2(u− ud)(δu − δud) (45)
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Fig. 6. The control points of the bicubic splines
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Fig. 7. The squared volatility surface obtained by running the calibration program

and obviously the derivative of J with respect to u is obtained by putting δu =
1, δud = 0 in (45):

∂J

∂u
= 2(u− ud)(1.0 − 0.0)

Now suppose that J is programmed in C/C++ by
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Fig. 8. Top : relative errors between the observed prices and those obtained with η found

after running the calibration program. A curve corresponds to a given maturity. Bottom: relative

round-off error on observed prices. The two errors are of the same order.

double J(double u, double u_d){

double z = u-u_d;

z = z*(u-u_d);

return z;

}

int main(){

double u=2,u_d = 0.1;

cout << J(u,u_d) << endl;

}

A program which computes J and its differential can be obtained by writing above
each differentiable line its differential form:

double JandDJ(double u, double u_d, double du,

double du_d, double *pdz)

{ double dz = du - du_d;
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double z = u-u_d;

double dJ = dz*(u-u_d) + z*(du - du_d);

z = z*(u-u_d);

*pdz = dz;

return z;

} int main()

{ double u=2,u_d = 0.1;

double dJ;

cout << J(u,u_d,1,0,&dJ) << endl;

}

Except for the embarrassing problem of returning both z,dz instead of z, the proce-
dure is fairly automatic. It can be automatized more systematically by introducing
a structured type of differentiable variable to hold the value of the variable and the
value of its derivative:

struct {double val[2];} ddouble;

and rewrite the above as

ddouble J(ddouble u, ddouble u_d) {

ddouble z;

z.val[1] = u.val[1]-u_d.val[1];

z.val[0] = u.val[0]-u_d.val[0];

...

return z;

} int main() {

ddouble u;

u.val[0]=2; u_d.val[0] = 0.1; u.val[1]=1; u_d.val[1] = 0.;

cout << J(u,u_d).val[1]<< endl;

}

In C++ the program can be simplified further by redefining the operators =, - and
*. Then a class has to be used instead of a struct:

class ddouble{ public: double val[2];

ddouble(double a, double b=0){ v[0] = a; v[1]=b;}

ddouble operator=(const ddouble& a)

{

val[1] = a.val[1]; val[0]=a.val[0];

return *this;

}

friend dfloat operator - (const dfloat& a, const dfloat& b)

{ dfloat c;

c.v[1] = a.v[1] - b.v[1]; // (a-b)’=a’-b’

c.v[0] = a.v[0] - b.v[0];

return c;

}

friend dfloat operator * (const dfloat& a, const dfloat& b)

{ dfloat c;

c.v[1] = a.v[1]*b.v[0] + a.v[0]* b.v[1];

c.v[0] = a.v[0] * b.v[0];

return c;

}
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};

As before a differentiable variable has two data fields, its value and the value of its
derivative. Then we need a constructor to initialize such a variable and also the
operator = to assign them to another one, so that u=v triggers u.val[1]=v.val[1]
and u.val[0]=v.val[0]. The operator minus does the usual minus operation on the
value of the variables and also on the value of their differentials. For the product the
rule for the differentiation of products is used. Finally the function and its calling
program are
ddouble J(ddouble u, ddouble u_d) {

ddouble z= u-u_d

z = z*(u-u_d); return z;

}

int main() { ddouble u(2,1), u_d=0.1;

cout << J(u,u_d)<< endl;

}

The operator << needs to be redefined also inside the class ddouble.

The conclusion is that a C program can be differentiated simply by replacing
the keyword double by ddouble.

Of course C programs are not only assignments and it remains to check that
branching statements, loops and function calls etc have the same property, for more
details see [9].

5.1. Numerical Results. Market data will be made artificially available for
each T and each K of Table 5.1

100K
S

= 85 90 95 100 105 110 115 120 130 140
T= 0.175 0.425 0.695 0.94 1 1.5 2

This is done by computing American options with these 70 values Ti,Kj and the
volatility surface shown on figure 9, i.e. given by
double sigvalue(int n, int m)

{ int nn = n*60, mm = m*30;

if(nn <= 1320)

if((nn-600)*(nn-600)+(mm-750)*(mm-750) < 400*400)

return 0.5;

else

if((nn-1800)*(nn-1800)+(mm-750)*(mm-750) < 400*400)

return 0.3;

return 0.4;

}

Figure 9 shows also the spline interpolation of the test volatility surface with 10 × 7
parameters on the grid of known values.

In the computations there are 100 time steps and 150 spatial points for the finite
difference discretization of S. The splines are defined with 5 points in S and 4 points
in t, so the number of parameters for the volatility surface is 20 or 21; the additional
parameter is the constant value of η outside the interval in which the spline is defined;
indeed it is useless to try to vary η when S is small or large because the option is



VOLATILITY CALIBRATION WITH AMERICAN OPTIONS 553

 0
 0.5

 1
 1.5

 2
 2.5

 0
 0.5

 1
 1.5

 2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

’s.txt’

’s.txt’

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

Fig. 9. Test volatility surface for calibration of American options. Below the same surface

interpolated on a 10× 7 spline is shown.

very insensitive to such variations, on the other hand the constant value of η in these
small and large price regions is an important parameter. Only for American option
with strategy 4, we did we not used this extra parameter and fixed it to the exact
value 0.4.

There are 70 variational inequalities to solved each time the cost function or a
component of its gradient needs to be evaluated. The convergence behavior is shown
on the table below, each iteration requires between 3 and 5 trial and error in Armijo’s
rule.
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Iteration number Cost function Gradient
0 52.917 58075.5
1 45.4533 110341
2 39.7139 112675
3 33.7126 33916.8
4 29.2176 6098.08
5 25.8939 18806.8
6 16.6763 7949.74
7 16.0644 10250.2
8 15.6205 17035

The elapsed time is 998.54 sec. on a pentium centrino 1 GHz.
The optimization algorithm is a conjugate gradient with Armijo’s rule for the step
size. The spline is applied to S, t → ψ(S, t) and then we set η = ψ2/(1 + ψ2); this
insures η ∈ (0, 1) and is much more stable than a penalization. The results (Figure
10) cannot be exactly the input smile because the splines are not the same. The two
humps are found, more or less at the right place but one is too large; on the other
line the error between the observations and the synthetic prices have been reduced by
three orders of magnitude compared to a constant volatility and are very small.
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Fig. 10. Test volatility surface obtained by calibration on American options using all 70 varia-

tional inequalities. On the right the observed and measured S, t data prices surfaces are shown. On

the left the surface is to be compared with figure 9.
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