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ON CONSTRAINED EQUATIONS WITH SINGULAR DIFFUSIVITY ∗

YOSHIKAZU GIGA† AND RYO KOBAYASHI‡

Dedicated to Professor Stanley Osher on the occasion of his 60th birthday

1. Introduction. This is a continuation of our work [KG], [GGK], where we
studied a gradient (flow) system of an energy whose energy density is not C1 so
that the diffusivity in the equation is very strong and its effect is even nonlocal. In
this paper we consider the case when the values of unknowns are constrained. To
be specific we consider a gradient (flow) system of the total variations of mappings
with constraint of their values. Let us write the equation formally. For a mapping
u : Ω → RN with a domain Ω in Rn let E1(u) denote its total variation, i.e.,

E1(u) =
∫

Ω

|∇u|dx. (1.1)

Let δE1/δu denote its ‘first variation’ (with respect to L2 inner product). Then the
unconstrained gradient system is formally written in the form

ut = −δE1/δu (1.2)

for u = u(x, t), x ∈ Ω, t > 0, where ut denotes the time derivative, i.e., ut = ∂u/∂t. If
the values of u is constrained in some fixed (Riemannian) manifold M embedded in
RN , the first variation δE1/δMu with this constraint is of the form

δE1/δMu = Pu(δE1/δu),

where Pu is the orthogonal projection to the tangent space of M at the value of u.
Thus our constrained gradient system is of the form

ut = −Pu(δE1/δu). (1.3)

The explicit form of (1.2) is

ut = div
( ∇u
|∇u|

)
. (1.4)

If M is a unit sphere SN−1, then the explicit form of (1.3) is

ut = div
( ∇u
|∇u|

)
+ |∇u|u (1.5)

as explained in Example 2 in Section 2. An explicit calculation for (1.3) is for example
in [MSO]. Although the notion of solution of (1.4) is not a priori clear because of
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singularity at ∇u = 0, a general nonlinear semigroup theory (initiated by Y. Kōmura
[Ko]) applies under appropriate boundary conditions since the energy is convex. The
theory yields the unique global solvability of the initial value problem for (1.2) under
the Dirichlet boundary condition; see e.g. [Br], [Ba] and also [KG], [GGK], [HZ],
[ACM], [ABCM], [ABCM2], [BCM]... However, for (1.3) such a theory does not apply
since it cannot be viewed as a gradient system of a convex functional. Even for smooth
energy a constrained gradient system needs individual study for well-posedness. A
typical example is the harmonic map flow equation. It is formally written in the form
(1.3) where E1 in (1.1) is replaced by the Dirichlet energy

E2(u) =
1
2

∫
Ω

|∇u|2dx.

Its initial value problem is well-studied, for example, in [ES], [St], [Cg], [Ch], [C],
[CDY], [F]. The solution is independent of the way how M is embedded in RN . For
the gradient system of the total variation (1.3) even the notion of solution is unclear
because of singularity at ∇u = 0.

In this paper, as a first attempt, we propose to formulate a constrained gradient
system when the energy ϕ is convex but having singularities by using subdifferentials
∂ϕ. It is formally written as

ut ∈ −Pu(∂ϕ(u)).

The speed ut looks undetermined. However, under some regularity condition of u we
prove that the right derivative d+u/dt is uniquely determined. Like unconstrained
problems it equals the minus of ‘minimal section’ of the convex set Pu(∂ϕ(u)).

Unfortunately, even unique local solvability of the initial value problem for (1.3)
is not clear. 1 We restrict ourselves to consider piecewise constant initial data in
a one dimensional domain — an open interval. We calculate the subdifferential ∂ϕ
when ϕ is the total variation at a piecewise constant function. We further calcu-
late the minimal section of Pu(∂ϕ(u)) and construct a global solution for (1.3) with
the Dirichlet condition by reducing the problem to a system of ordinary differential
equations (ODEs). A key observation is that the minimal section is constant on each
maximal spatial interval where the solution is constant so that the solution must stay
as piecewise constant and the jump discontinuities are included in those of the initial
data. This yields the uniqueness of a solution at least among piecewise constant func-
tions. We say that each connected component of the graph of a piecewise constant
function is a plateau.

We also study the behavior of solution when M is the unit circle S1. The equation
of the motion of the plateau is presented, which is written in the form of reducing
ODE. We identify the form of stationary solutions and prove that the solution becomes
a stationary solution in finite time.

In the last part of this paper we demonstrate numerical simulations of the S1-
valued problem. Although our theoretical approach is restricted to the piecewise
constant solutions at this point, our method also applies to calculating the evolution
of the solutions in more general class. Our method to solve S1-valued problem employs
an angle variable, thus it is different from the method in [MSO] whereM is represented
as a zero level set of some functions.

1Recently, a local solution is constructed for smooth initial data with small total variation under
periodic boundary condition [GKY].
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Unlike the harmonic map flow, the notion of solution depends not only onM itself,
but also on the ambient space RN . Moreover, there are several ways to define the
notion of total variation for mappings to M . The corresponding gradient system may
differ. The definition of the total variation in this paper is not intrinsic; it depends on
distance of the ambient space RN . For S1-valued problem one is tempting to define
the total variation of u = (cos θ, sin θ) by

∫
Ω
|∇θ|dx. However, this energy is also

singular when the jump of argument is π, so the dynamics starting with such jumps
cannot be determined uniquely. There are several discussion to define the notion
of mapping of bounded variation with values in S1. In [GMS] a class of mappings
approximated by smooth S1 mappings was characterized.

Although there is huge literature on quasilinear parabolic equations with singu-
larity at ∇u = 0, the singularity is weaker than ours in the sense that the diffusion
effect is still local; see e.g. [D], [G]. There are several fields where equations with
nonlocal singular diffusivity are proposed. The first example stems from material sci-
ences for describing motion of antiphase grain boundaries [Gu]. In fact, a crystalline
curvature flow equation was proposed [AG], [T] as an example of anisotropic cur-
vature flow equations [G], [Gu] with singular interfacial energy. When the interface
is a curve given as the graph of a function, a simple example is of the form (1.4)
with n = 1 [FG]. The second example stems from image analysis. In [ROF] it was
proposed to use gradient flow system of the total variation with L2-constraint for a
grey level function u to remove noises from images. The third example stems from
plasticity problem [HZ]. The fourth example is derived from the phase field model of
grain structure evolution which include grain boundary migrations and grain rotation
[KWC],[WKC],[LW],[GBP]. The equation of orientation with singular diffusivity is
coupled with the equation of ordering parameter. This model yields a mathematical
subproblem with spatially non-uniform energy. We developed a mathematical the-
ory which handles such a non-uniform equation with singular diffusivity in [KG] and
[GGK] together with the case of the uniform energy. By now well-posedness for un-
constrained gradient system (1.3) is established by many authors [FG], [HZ], [ACM],
[ABCM], [ABCM2], [ChW]...

Although the curvature flow equations with singular diffusivity do not have the
divergence structure of the form (1.2), they are well-studied for evolution of curves
[GG1] based on order-preserving structure. For a surface evolution the corresponding
theory is widely open; see e.g. [BN], [GPR]. There are several other applications of
singular diffusivity, for example for formation of shocks of conservation laws [GG2],
[TGO].

The problem with value constraint is proposed by [TSC] in image processing
to remove noise from chromaticity - direction field of color gray-level mappings u =
(u1, u2, u3) keeping its strength u2

1+u
2
2+u

2
3 = 1. There is a nice book for background of

the problems form image processing. As mentioned in [S, §6.3] the well-posedness for
the initial-boundary problem for constrained problem (1.3) has not yet been studied
even for (1.5). This type of constrained problems also naturally arise in multi-grain
problems [KWC] where u is an angle of averaged crystallographical directions.

2. Gradient system with constraint. We prepare an abstract framework for
studying gradient systems of a convex functional. Let ϕ(�≡ ∞) be a convex, lower
semicontinuous function on a Hilbert space H with values in R∪ {∞}. The gradient
system for ϕ is of the form

du

dt
(t) ∈ −∂ϕ(u(t)) for t > 0, (2.1)



256 Y. GIGA AND R. KOBAYASHI

where ∂ϕ(v) denotes the subdifferential of ϕ at v, i.e.,

∂ϕ(v) := {ξ ∈ H; ϕ(v + h) − ϕ(v) ≥ 〈h, ξ〉 for all h ∈ H}
and u is a function from (0,∞) to H. It is well known (see e.g. [Br], [Ba]) that the
problem (2.1) admits a unique global solution for any given initial data in H. We next
consider a gradient system with constraints on values of functions. Let (v, w) denote
the standard inner product of v, w ∈ RN . Let Ω be a smooth, bounded domain in
Rn. The space of RN -valued square integrable functions is denoted by L2(Ω;RN ).
As a Hilbert space H we take L2(Ω;RN ) equipped with the inner product

〈f, g〉 =
∫

Ω

(f(x), g(x))dx for f, g ∈ H.

Let M be a smoothly embedded complete manifold in RN . For a given point v ∈M
let πv denote the orthogonal projection from RN = TvRN to the tangent space TvM
of M at v. Let M be the space of L2-mappings from Ω to M i.e.,

M = {f ∈ H; f(x) ∈M for a.e. x ∈ Ω}.
For g ∈ M we define a mapping from H to H by

Pg(f)(x) = πg(x)(f(x)) for a.e. x ∈ Ω,

where f ∈ H. By definition Pg is an orthogonal projection of H so that its image Hg

is a closed subspace of H. (Actually, it is the tangent space of the Hilbert manifold
M at g.)

A constrained (by M) gradient systems is of the form

du

dt
(t) ∈ −Pu(t)(∂ϕ(u(t))) for t > 0. (2.2)

This problem is no longer dissipative so unique globally solvability is not expected even
if ϕ is smooth so that no singular diffusivity appears. In fact, there is a counterexample
for global solvability of a smooth solution and uniqueness for the harmonic map flow
in Example 1.

Example 1 (Harmonic map flow). Let g be a Lipschitz map from ∂Ω to M .
For v ∈ H we set

ϕ(v) =

⎧⎨
⎩

1
2

∫
Ω

|∇v|2dx, if ∂xi
v, v ∈ H (1 ≤ i ≤ n) with v = g on ∂Ω,

+∞, otherwise.

Then (2.2) is the harmonic map flow equation with the Dirichlet condition v = g on
∂Ω. Here ∇v = (∂x1v, . . . , ∂xn

v) and ∂xi
= ∂/∂xi and |∇v|2 denotes the sum of all

squares of ∂xi
vs for v = (v1, . . . , vN ). Unconstrained problem (2.1) for this ϕ is the

heat equation with the Dirichlet condition. Of course, ϕ is a lower semicontinuous,
convex function in H.

The harmonic map flow equation is well-studied by many authors. Uniqueness
and global solvability depend on the dimension of Ω and also geometric properties
of manifold M . For example if Ω is two-dimensional, i.e., n = 2, there is a unique
global weak solution which is regular except a finite number of isolated points and
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the energy is decreasing in time [St], [Cg], [F]. When n ≥ 3, although there exists
a global weak solution, it may not be unique [Ch], [C]. If M = S1, then the global
solution is smooth. However, if M = S2, there exists a smooth local solution which
develops singularities in finite time [CDY] when Ω is a two dimensional disk. See, for
example, [S] for more complete list of references on this topics.

If

M = SN−1 = {w ∈ RN ; |w| = 1} (2.3)

i.e. M is the unit sphere, then for z ∈M

πz(y) = y − (y, z)z for y ∈ RN .

Since ∂ϕ(v) = {−∆v} for v (belonging to the domain of ∂ϕ),

−Pv(∂ϕ(v)) = {∆v − (∆v, v)v}.

Since |v| = 1 so that (∆v, v) = div(∇v, v) − |∇v|2 = −|∇v|2, we observe that

−Pv(∂ϕ(v)) = {∆v + |∇v|2v}.

So (2.2) is formally written as

∂u

∂t
= ∆u+ |∇u|2u.

Example 2 (Total variation flow with constraint). Let g be a Lipschitz map
form ∂Ω to M . Let g̃ denote a Lipschitz extension of g to Rn. For v ∈ H let ṽ be its
extension to Rn such that ṽ(x) = g̃(x) for x ∈ Rn \ Ω. We set

ϕ(v) =

⎧⎨
⎩
∫

Ω̄

|∇ṽ(x)|dx, if ṽ ∈ BV (Ω;RN )

+∞, otherwise,
(2.4)

where BV denotes the space of functions of bounded total variation. The quantity
ϕ(v) is the total variation of the measure ∇v in Rn. The reason we extend v to ṽ
is that we would rather measure the discrepancy of v from g on the boundary. By
this choice of ϕ (2.1) is the total variation flow equation with Dirichlet condition. Its
formal form is

∂u

∂t
= div

( ∇u
|∇u|

)
. (2.5)

It is easy to see that ϕ is a convex, lower semicontinuous function in H [GGK].
The equation (2.2) is the Dirichlet problem for the total variation flow equation with
constraint. If M is the unit sphere (2.3), then its formal form is

∂u

∂t
= div

( ∇u
|∇u|

)
+ |∇u|u

since
(
div
(

∇v
|∇v|

)
, v
)

= div
(

∇v
|∇v| , v

)
− |∇v| = −|∇v| for v satisfying |v| = 1.
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Example 3 (A simple inhomogeneous example). Let a be a positive continuous
function in Ω̄. Instead of Example 2 we set

ϕ(v) =
∫

Ω̄

a(x)|∇ṽ(x)|dx

for v ∈ BV (Ω,RN ) and ϕ(v) = +∞ otherwise. This ϕ is also a convex, lower
semicontinuous function in H. This type of inhomogeneous version is important
in application to multi-grain problems [GGK], [KG] and also image processing e.g.
[ChW].

3. Characterization of speed. The evolution laws (2.1) and (2.2) look am-
biguous since ∂ϕ is multivalued. Like (2.1) the speed du/dt of the evolution by (2.2)
is actually uniquely determined under stronger assumptions than those for (2.1). We
state such a characterization of the speed in this section. Unfortunately, it does not
yield the uniqueness of a solution of the initial value problem for (2.2).

We prepare several notations. For a closed convex set A in a Hilbert space there
exists a unique point z closest to the origin. We shall write z by 0A. Since ∂ϕ(v) is
always a closed convex set in H, 0(∂ϕ(v)) is well-defined and is denoted by ∂0ϕ(v). It
is called the canonical restriction (or minimal section) of ∂ϕ(v). The set Pv(∂ϕ(v)) is
also a convex set in Hv for v ∈ M since Pv is an orthogonal projection. However, it
may not be closed. If there exists a point z′ ∈ Pv(∂ϕ(v)) which is closest to the origin
of Hv, it must be unique since the set is convex. We shall denote z′ by 0Pv(∂ϕ(v)).
We call this element the minimal section (of Pv(∂ϕ(v)).

Theorem 3.1. Assume that δ > 0 and that M is compact. Assume that u :
[t0, t0 + δ] → M ⊂ H is continuous and right differentiable. Assume that the right
derivative d+u/dt is continuous in [t0, t0 + δ] and that

{∂0ϕ
(
u(t) + Pu(t)(u(t+ τ) − u(t))

)
; t, t+ τ ∈ [t0, t0 + δ], τ ∈ R}

is bounded in H. If u satisfies

d+u

dt
(t) ∈ −Pu(t)(∂ϕ(u(t)) for t ∈ [t0, t0 + δ), (3.1)

then

d+u

dt
(t) = −0Pu(t)(∂ϕ(u(t)) for t ∈ [t0, t0 + δ). (3.2)

In particular, the minimal section of −Pu(t)(∂ϕ(u(t))) always exists for t ∈ [t0, t0+δ).

Proof. It suffices to prove (3.2) for t = t0. We may assume that t0 = 0. We set

h(s) = u(s) − u(0), Ps = Pu(s) for s ∈ [0, δ)

to simplify the notation. By (3.1)

〈d
+u

dt
(s), h(s)〉 = 〈−d

+u

dt
(s), −Psh(s)〉 ≤ ϕ(u(s) − Psh(s)) − ϕ(u(s)). (3.3)

By definition for ξ ∈ P0(∂ϕ(u(0)) we have

〈−ξ, h(s)〉 = 〈−ξ, P0h(s)〉 ≥ ϕ(u(0)) − ϕ(u(0) + P0h(s)). (3.4)
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Combining (3.3) and (3.4), we obtain

〈d
+u

dt
(s), h(s)〉 ≤ 〈−ξ, h(s)〉 + Φ(s) + Ψ(s)

with

Φ(s) = ϕ(u(s) − Psh(s)) − ϕ(u(0)),
Ψ(s) = ϕ(u(0) + P0h(s)) − ϕ(u(s)).

We divide both hand sides by s > 0. Sending s to zero yields

||d
+u

dt
(0)||2 ≤ 〈−ξ, d

+u

dt
(0)〉 ≤ ||ξ|| ||d

+u

dt
(0)|| (3.5)

if we admit

lim
s↓0

Φ(s)/s = 0 and lim
s↓0

Ψ(s)/s = 0, (3.6)

where || · || denotes the norm in H. By (3.5) we observe that d+u(0)/dt is the minimal
section of P0(∂ϕ(u(0)).

It remains to prove (3.6). We shall present the proof for Φ since the proof for Ψ
is similar. By definition of subdifferentials

ϕ(u(s) − Psh(s)) − ϕ(u(0)) ≤ 〈(I − Ps)h(s), ∂0ϕ(u(s) − Psh(s))〉
By our boundedness assumption on ∂0ϕ it suffices to prove that

lim
s↓0

‖(I − Ps)h(s)‖/s = 0. (3.7)

By definition of the tangent space there exists a constant C and δ0 > 0 that satisfies

|(I − πv)ζ| ≤ C|πvζ|2 (3.8)

for all ζ ∈ RN , v ∈M satisfying ζ + v ∈M and |ζ| ≤ δ0. (Note that δ0 can be taken
independent of v since M is compact.) Indeed, for small δ > 0 there is a ball Bδ(v) of
radius δ centered at v such that M is expressed as the graph of function xN = f(x′) in
Bδ(v) with f(v′) = vN , ∇′f(v′) = 0 by a rotation, where x = (x′, xN ), v = (v′, vN )
and ∇′ = ∇x′ . Since M is smooth, we observe that f(v′ + ζ ′) − f(v′) = O(|ζ ′|2) as
|ζ ′| → 0. This implies that |ζN | ≤ C|ζ ′|2 for small ζ = (ζ ′, ζN ) which yields (3.8).

For δ ∈ (0, δ0) we set

Ωsδ = {x ∈ Ω||h(x, s)| ≥ δ}
and denote its complement in Ω by Ωcsδ. By (3.8) we have∫

Ωc
sδ

1
s2

|(I − Ps)h(s)|2dx ≤ Cδ2
∫

Ω

|h(s)|2
s2

dx (3.9)

and∫
Ωsδ

1
s2

|(I − Ps)h(s)|2dx ≤
∫

Ωsδ

1
s2

|h(s)|2dx

≤
⎡
⎣
(∫

Ω

∣∣∣∣h(s)s − d+u(0)
dt

∣∣∣∣
2

dx

)1/2

+

(∫
Ωsδ

∣∣∣∣d+u

dt
(0)
∣∣∣∣
2

dx

)1/2
⎤
⎦

2

. (3.10)
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Since h(s)/s→ d+u(0)/dt as s ↓ 0 in H, (3.9) and (3.10) yield

lim
s↓0

‖(I − Ps)h(s)‖2/s2 ≤ Cδ2
∫

Ω

∣∣∣∣d+u

dt
(0)
∣∣∣∣
2

dx+ lim
s↓0

∫
Ωsδ

∣∣∣∣d+u

dt
(0)
∣∣∣∣
2

dx.

Since h(s) → 0 in H, the Lebegue measure of Ωsδ tends to zero by taking a subse-
quence. Thus

lim
s↓0

‖(I − Ps)h(s)‖2/s2 ≤ Cδ2
∫

Ω

∣∣∣∣d+u

dt
(0)
∣∣∣∣
2

dx.

Sending δ to zero yields (3.7). We now obtain (3.6).

4. One dimensional piecewise constant evolution. We now consider the
total variation flow with constraint (Example 2) when the domain Ω is an interval
(z0, z1). We consider the initial value problem

du

dt
(t) ∈ −Pu(t)(∂ϕ(u(t))), u|t=0 = u0 (4.1)

with ϕ defined by (2.4) with Ω = (z0, z1). We consider a piecewise constant initial
data

u0(x) = h0
i ∈ RN on (xi, xi+1), i = 0, 1, . . . , 	− 1, 	 ≥ 2, (4.2)

where z0 = x0 < x1 < x2 < · · · < x� = z1. The boundary values h0
0, h

0
�−1 are

taken so that h0
0 = g(z0) and h0

�−1 = g(z1). We also assume that h0
i �= h0

i+1 for
i = 0, 1, . . . , 	− 2.

We shall seek a solution u(t) = u(x, t) of (4.1)-(4.2) when u(x, t) is piecewise
constant and its jump discontinuities are included in {xi}�−1

i=1 .

4.1. Subdifferentials. We first calculate the subdifferential ∂ϕ of ϕ defined by
(2.4) at a piecewise linear function u0 defined by (4.2). We set

m0
i = (h0

i − h0
i−1)/|h0

i − h0
i−1|, i = 1, . . . , 	− 1. (4.3)

Lemma 4.1 Let f ∈ L2(Ω;RN ) be of the form

f(x) = −(ξ(x))x, |ξ(x)| ≤ 1, x ∈ Ω = (z0, z1) (4.4)

for some continuous ξ in Ω that satisfies

ξ(xi) = m0
i , i = 1, 2, . . . , 	− 1. (4.5)

Then f ∈ ∂ϕ(u0). Conversely, if f ∈ ∂ϕ(u0), then f is of the form (4.4) with (4.5).
Here ( )x denotes derivative in the sense of distributions.

Proof. The proof is similar to that of [GGK, §3.2, Lemma 1]. We shall check

〈v − u0, f〉 ≤ ϕ(v) − ϕ(u0)

for all v ∈ D(ϕ) = {v;ϕ(v) <∞}. By definition

〈v − u0, f〉 = −
∫

Ω

(v − u0, ξx)dx. (4.6)
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Since |ξ| ≤ 1, integrating by parts we see

−
∫

Ω

(v, ξx)dx =
∫

Ω

(vx, ξ)dx− (u0, ξ)|z1z0 ≤ ϕ(v) − (u0, ξ)|z1z0 , (4.7)

where vx is regarded as a Radon measure; ϕ(v) equals the total variation of (ṽ)x. For
example

ϕ(u0) =
�−1∑
i=1

|h0
i − h0

i−1|.

Since ξ(xi) = mi, we see that

∫
Ω

(u0, ξx)dx = (u0, ξ)|z1z0 −
�−1∑
i=1

(h0
i − h0

i−1)m
0
i

= (u0, ξ)|z1z0 − ϕ(u0).

(4.8)

The formula (4.6)-(4.8) now yields

〈v − u0, f〉 ≤ ϕ(v) − (u0, ξ)|z1z0 + (u0, ξ)|z1z0 − ϕ(u0)
= ϕ(v) − ϕ(u0),

which implies f ∈ ∂ϕ(u0).

Conversely, assume that f ∈ ∂ϕ(u0). Let ζ be a primitive of −f . Since f ∈
L2(Ω;RN ), ζ must be absolutely continuous on Ω. The condition f ∈ ∂ϕ(u0) is
equivalent to ∫

Ω

(v − u0, ζx)dx ≤ ϕ(v) − ϕ(u0). (4.9)

We test various v in this inequality to derive properties of ζ.

We plug

v(x) = u0(x) − λmi

∫ x

z0

δ(τ − xi)dτ, λ ∈ R, |λ| < |h0
i − h0

i−1|

in (4.9) and integrate by parts to get

−λ(mi, ζ(xi)) ≤ −λ.

for i = 1, . . . , 	 − 1. Here δ denotes the Dirac delta function. Since this inequality
holds for both positive and negative λ, we conclude that

(mi, ζ(xi)) = 1, i = 1, . . . , 	− 1.

For x̂ ∈ (z0, z1) \ {xi}�−1
i=1 we set

v(x) = u0(x) + λ

∫ x

z0

mδ(τ − x̂)dτ, λ ∈ R, m ∈ SN−1.



262 Y. GIGA AND R. KOBAYASHI

We plug this v in (4.9) and integrate by parts to get

λ(m, ζ(x̂)) ≤ |λ|
Since this inequality holds for both positive and negative λ, we observe that

|(m, ζ(x̂))| ≤ 1

Since m ∈ SN−1 is arbitrary, this implies |ζ(x̂))| ≤ 1. Be continuity of ζ we see that

|ζ(x)| ≤ 1 for all x ∈ Ω.

Since (mi, ζ(xi)) = 1, the inequality |ζ(x)| ≤ 1 implies that ζ(xi) = mi. We have
thus proved that f ∈ ∂ϕ(u0) must have the form (4.4)-(4.5).

4.2. Minimal section. We shall calculate 0Pu0∂ϕ(u0) for a piecewise constant
function u0 in (3.7). In general it is not clear that 0Pv∂ϕ(v) = Pv∂

0ϕ(v) but for our
u0 this property holds.

Lemma 4.2. Let Li be the length of the interval (xi, xi+1), i.e., Li = xi+1 − xi.
Then

−0Pu0((∂ϕ)(u0))(x) =

⎧⎨
⎩

L−1
i πh0

i
(m0

i+1 −m0
i ) for x ∈ (xi, xi+1),

i = 1, . . . , 	− 2,
0 for x ∈ (x0, x1) ∪ (x�−1, x�).

Moreover, 0Pu0((∂ϕ)u0) = Pu0(∂
0ϕ)(u0)).

Proof. By Lemma 4.1 we already know the explicit form of ∂ϕ(u0). If q =
0Pu0(∂ϕ)(u0), it must be

q = −Pu0(ηx)

with η minimizing

||q||2 =
�−1∑
i=0

∫ xi+1

xi

|πh0
i
ηx|2dx

with constraints η(xi) = m0
i (i = 1, 2, . . . , 	− 1) and |η(x)| ≤ 1 for x ∈ Ω. It suffices

to minimize ∫ xi+1

xi

|πh0
i
ηx|2dx

with above constraint. The answer is easy. The minimum is attained when η is linear

η(x) = {(x− xi)m0
i+1 + (xi+1 − x)m0

i }L−1
i for x ∈ (xi, xi+1)

for i = 1, 2 . . . , 	− 1 and

η(x) =
{
m0

1 for x ∈ (x0, x1),
m0
�−1 for x ∈ (x�−1, x�).

Since q = −Pu0(ηx), we have an expression of 0Pu0(∂ϕ)(u0) in Lemma 4.2.

Since ∂0ϕ(u0) is also computable and

∂0ϕ(u0) =
{
L−1
i (m0

i+1 −m0
i ) for x ∈ (xi, xi+1), i = 1, 2, . . . , 	− 2,

0 for x ∈ (x0, x1) ∪ (x�−1, x�),

we obtain 0Pu0(∂ϕ)(u0) = Pu0(∂
0ϕ(u0)).
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4.3. Dynamics. We consider (4.1)-(4.2) assuming that

u(x, t) = hi(t) ∈ RN on (xi, xi+1), i = 0, 1, . . . , 	− 1, t > 0 (4.10)

with h0(t) = g(z0) and h�−1(t) = g(z1). The values hi(t) and hi+1(t) may agree for
some t > 0. It turns out that the problem (4.1)-(4.2) is reduced to an ODE system
for hi’s. Moreover, there exists a unique global solution.

Theorem 4.3. Assume that M is compact. There exists a unique

h(t) = (h1(t), . . . , h�−2(t))

such that hi(1 ≤ i ≤ 	− 2) is Lipschitz continuous from [0,∞) to M which is smooth
except finitely many points such that (4.10) solves (4.1)-(4.2). Moreover, hi solves

dhi(t)
dt = 1

Li
πhi(t)(mi+1(t) −mi(t)) for x ∈ (xi, xi+1),

i = 1, . . . , 	− 2
(4.11)

for sufficiently small t > 0, where

mi(t) = (hi(t) − hi−1(t))/|hi(t) − hi−1(t)|, i = 1, . . . , 	− 1. (4.12)

Proof. If hi’s are Lipschitz on [0,∞) and smooth except finitely many points, u
given by (4.10) fulfills the regularity assumptions of Theorem 3.1. Then by Theorem
3.1 and Lemma 4.2 hi must solve (4.11) until the first merging time when hi = hi+1

for some i.
Of course, (4.11) is uniquely solvable until the first merging time. If hi’s merges

at some time t0, we removes some xi’s and renumber jumps xi’s such that hi(t0) �=
hi+1(t0) for i = 0, 1, . . . , 	0 − 2 with 	0 < 	, Again we are able to solves (4.11).
Repeating this procedure finitely many times, one is able to solve (4.1)-(4.2) uniquely
and globally-in-time. (Since hi’s are bounded, the solution of (4.11) can be extended
unless some hi’s merge.) Since the right hand side of (4.11) is bounded (independent
of t), the solution hi’s must be globally Lipschitz continuous in time.

4.4. Constrained gradient system of ordinary differential equations. If
u = u(x, t) is of the form (4.10), then

ϕ(u(t)) = ψ(h1(t), . . . , hd(t)), d = 	− 2 (	 ≥ 3)

ψ(h1, . . . , hd) =
d+1∑
j=1

|hj − hj−1|, h0 = g(z0), h�−1 = g(z1).

(If 	 = 2, ϕ(u(t)) = |h1 − h0| and is independent of t.) Using this ψ : RNd → R, we
are able to rewrite (4.11) as

dh

dt
= −πh grad∗ ψ(h), h(t) = (h1(t), . . . , hd(t)), (4.13)

where grad∗ is the gradient of ψ in RNd with respect to the inner product

(h, g)∗ =
d∑
i=1

Li(hi, gi)
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for g = (g1, . . . , gd) and πh = (πh1 , . . . , πhd
). Indeed, by definition,

grad∗ψ(h) =
(
L−1
i

∂ψ

∂hi

)d
i=1

.

Since ∂ψ
∂hi

(t) = −(mi+1(t) −mi(t)), (4.11) is the same as (4.13). This weight is very
natural since our subdifferential of ϕ is taken with respect to L2(Ω)-inner product.
Let us summarize what we obtained here.

Proposition 4.4. Assume that M is compact. Let h(t) be a function defined
in Theorem 4.3. Then h solves (4.13) for t before the first merging time.

We expect that in finite time our solution u stops moving. We shall prove such
a phenomena when M = S1. For this purpose we study the large time behavior of
(4.13) assuming that there is no merging of hi’s.

Proposition 4.5 Assume that M is compact. Let h be a global solution of
(4.13) for t ∈ [t∗,∞) such that no hi’s merge for t ∈ [t∗,∞). Then∫ ∞

t0

(ht, ht)∗ dt ≤ ψ(h(t∗)) and
dψ(h(t))

dt
≤ 0 for t > t∗.

Moreover, there is a subsequence of {u(x, t + t∗ + k)}∞k=1 converges in L2 (Ω ×
(0, 1);M) to a piecewise constant stationary solution u∞ of (4.1) in the sense that
0Pu∞(∂ϕ(u∞)) = 0. Here u(x, t) is defined by (4.12).

Proof. We observe that h is smooth for (t∗,∞). We take inner product of (4.13)
and ht and observe that

(ht, ht)∗ = −dψ
dt

(h(t))

which yields dψ(h(t))/dt ≤ 0 for all t ∈ (t∗,∞). We integrate over (t∗, s) and send s
to infinity to get ∫ ∞

t∗
(ht, ht)∗dt ≤ ψ(h(t∗))

since ψ ≥ 0. In particular, (hk)t(t) = ht(t + tk + k) converges in L2(0, 1) to zero.
Since {hk(t)} ⊂ M is bounded for t ∈ (0, 1] {hk(t)} has a convergent subsequence.
Since (hk)t → 0 in L2(0, 1), the limit of {uk} (defined by (4.10) with hi replaced by
hki) converges to u∞ (by taking a subsequence) which is a stationary solution. (In
this argument there might be a chance that (hi−hi−1)(t) → 0 as t→ ∞ so we rather
use u instead of h).

4.5. S1-valued problem. We shall study a more detailed dynamics when the set
of constraint M equals the unit circle S1 in R2. We first characterize all stationary
piecewise constant solutions. For two vectors in p, q ∈ M we define arg(p, q) =
arg p− arg q. The value is taken so that arg(p, q) ∈ (−π, π].

Lemma 4.6. Let u0 be of the form (4.2) with h0
i �= h0

i+1 for i = 0, 1, . . . 	−2, 	 ≥ 2
and h0

0 = g(z0) and h0
�−1 = g(z1). Then u0 is a stationary solution of (4.1) (in the
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sense that 0Pu0(∂ϕ(u0)) = 0) if and only if arg(h0
i , h

0
i−1) is independent of i =

1, 2, . . . , 	− 1.

Proof. We may assume 	 ≥ 3. By elementary geometry we observe that

πh0
i
(m0

i+1 −m0
i ) = 0

is equivalent to say that arg(h0
i , h

0
i−1) = arg(h0

i+1, h
0
i ) for i = 1, . . . , 	− 2.

We next study the stability of stationary solutions. For u0 in (4.2) we observe that

ϕ(u0) =
�−1∑
i=1

|h0
i − h0

i−1| =
�−1∑
i=1

2| sin ξi|, ξi =
1
2

arg(h0
i , h

0
i−1).

Since h0
0 and h0

�−1 are fixed by the Dirichlet data, the sum
∑�−1
i=1 ξi =: λ is con-

stant independent of (ξ1 . . . , ξ�−1) (at least small perturbation of (ξ1, . . . , ξd)). We
set E(ξ1, . . . , ξd) =

∑d−1
i=1 | sin ξi| + | sin(λ − ∑d

j=1 ξj)|, d = 	 − 2. By definition
E(ξ1, . . . , ξd) = ϕ(u0)/2. If u0 is a stationary solution of (4.1), then by Lemma 4.6
we see that ξ1 = ξ2 = · · · = ξd = λ −∑d

i=1 ξi. The next lemma shows that such
a stationary solution is local maximum of E so in particular it is unstable in all di-
rection. Note that when we discuss the stability it suffices to check Hesse matrix for
grad (= ∇) instead of grad∗.

Lemma 4.7. Assume that d = 	 − 2 ≥ 1. Assume that λ �= 0 and λ/(	 − 1) ∈
(−π/2, π/2]. Then the Hesse matrix ∇2E at ξ0 = (λ/(	−1), . . . , λ/(	−1)) is negative
definite.

Proof. We may assume that λ > 0. We differentiate E and observe that

∇E = (cos ξi − cos(λ−
d∑
j=1

ξj))di=1 near ξ0 and

−∇2E(ξ0) = (δija+ a)1≤i,j≤d, a = sin(λ/(	− 1)),

where δij is Kronecker’s delta. Since

(δija+ a) = a(δij + σiσj) with σ = (σ1, . . . , σd) = (1, . . . , 1),

its determinant is easy to calculate. Indeed,

det(δija+ a) = ad det(δij + σiσj) = ad(1 + |σ|2) = ad(1 + d).

Thus we conclude that

det((δija+ a)1≤i,j≤r) > 0

for all r = 1, 2, . . . , d, which implies that −∇2E(ξ0) is positive definite.

By Lemma 4.7 all piecewise constant stationary solution (except one jump or no
jump solution) are local maximum in a class of piecewise constant functions having
the same location of jump discontinuities. Of course all one jump and no jump
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solutions are isolated global minimizers since each stationary solution has a different
value of energy ϕ. Combining Proposition 4.5 and Lemmas 4.6, 4.7, we obtain a full
convergence result.

Proposition 4.8. Assume that M = S1 and N = 2. Let u be of the form
(4.10) and h = (h1, . . . , h�−2) solves (4.13) for t ∈ [t∗,∞) such that no hi’s merges
for t ∈ [t∗,∞). Assume that u(x, t∗) is not a stationary solution of (4.1). Then
u(x, t) converges to a (piecewise constant) stationary solution with jump discontinu-
ities strictly contained in {xi}�−1

i=1 . In particular, hi − hi−1 → 0 as t → ∞ for some
i = 1, . . . , 	− 1, as t→ ∞.

4.6. Stopping in finite time. We continue to study the case when M = S1

with N = 2. We shall prove that our piecewise constant solution u = u(t) actually
stops moving after finite time and it becomes a stationary solution. For this purpose
we shall rewrite (4.11) by using argument θi(t) of hi(t). Since

mi+1= (cos θi+1 − 1, sin θi+1)/Ai+1,

mi = (1 − cos θi−1,− sin θi−1)/Ai−1

with Ai = ((cos θi − 1)2 + sin2 θi)
1
2 if hi = (1, 0), we see that

πhi
(mi+1 −mi) = τ(sin θi+1/Ai+1 + sin θi−1/Ai−1)

with τ = (0, 1). Since A2
i = 4 sin2(θi/2), we see that

πhi
(mi+1 −mi) = τ

(
sin θi+1

2| sin(θi+1/2)| +
sin θi−1

2| sin(θi−1/2)|
)
.

For a general hi = (cos θi, sin θi) our calculation shows that

πhi
(mi+1 −mi) = τ

{
sin(θi+1 − θi)

2| sin( θi+1−θi

2 )|
+

sin(θi−1 − θi)

2| sin( θi−1−θi

2 )|

}

= τ

{
sgn

(
sin

θi+1 − θi
2

)
cos

θi+1 − θi
2

+sgn
(

sin
θi−1 − θi

2

)
cos

θi−1 − θi
2

}

with τ = (− sin θi, cos θi). Since

dhi
dt

= τ
dθi
dt
,

(4.11) becomes

dθi
dt

= L−1
i

[
sgn

(
sin

θi+1 − θi
2

)
cos

θi+1 − θi
2

+sgn
(

sin
θi−1 − θi

2

)
cos

θi−1 − θi
2

] (4.14)

for i = 1, . . . , 	 − 2. If we consider the evolution of u, (4.14) holds until the first
merging times of hi’s. At the merging time we renumber jumps so that renumbered
θi’s solves (4.14) until the next merging time. We set ξi = (θi − θi−1)/2 as before.
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Theorem 4.9 (Stopping in finite time). Assume that N = 2 and M = S1.
Let u be the solution of (4.1)-(4.2) of the form (4.10). Then there exists t∗ ≥ 0 such
that u(x, t) = U(x) for t ≥ t∗ with some (piecewise constant) stationary solution of
(4.1).

Proof. We may assume that the initial data is not a stationary solution. Then
there are finitely many times t0 < t1 < · · · < ts, t0 > 0 such that the set of jump
discontinuities decreases at tj , j = 0, . . . , s while in [0, t0), [tj , tj+1), (j = 0, . . . , s−1)
and [ts,∞) the set of jump discontinuities is independent of time. (At each tj some hi
merges.) We claim that u(x, ts) = U(x)— some stationary solution so that u(x, t) =
U(x) for t > ts. If u(x, ts) is not a stationary solution, then we have a situation
of Proposition 4.8 with t∗ = ts. By Proposition 4.8 there exists an nonempty set
I ⊂ Λ = {1, . . . , 	− 1} that satisfies

lim
t→∞(θi(t) − θi−1(t)) = 0 for i ∈ I.

(i)If I �= Λ, then there is i0 ∈ I such that either i0 + 1 or i0 − 1 does not belong to
I. If i0 + 1 /∈ I, then |dθi0/dt| is bounded away from zero for sufficiently large t by
(4.14) since θi0 − θi0−1 → 0 while θi0+1 − θi0 is bounded away from zero. Similarly, if
i0 − 1 /∈ I then |dθi0−1/dt| is bounded away from zero for sufficiently large t. In both
cases these properties contradict the convergence of hi0 or hi0−1 as t → ∞. So this
case does not occur.

(ii)If I = Λ, then g(z0) = g(z1). Then there is some i0 ∈ Λ such that sgn sin ξi0 > 0
and either sgn sin ξi0+1 > 0 or sgn sin ξi0−1 > 0. Note that sgn sin ξi0+1(t) is indepen-
dent of t ≥ t∗. By (4.14) either |dθi0/dt| or |dθi0−1/dt| is bounded away from zero for
large t. This property contradicts the convergence of hi0 or hi0−1 as t → ∞. So this
case does not occur neither.

We thus conclude that u(x, ts) = U(x).

Remark 4.10. The stationary solution U(x) we obtain at ts is not necessarily
one jump or no jump solution. Here is a simple example. We set

h0
0 = (0,−1), h0

3 = (0, 1), h0
1 = (cos θ0, sin θ0), h0

2 = (cos θ0,− sin θ0)

with 	 = 4 and θ0 ∈ (0, π/2). Assume that the initial data u0 is given by (4.2) with
these h0

i ’s and that L0 = L1 = L2 = L3. Then the solution u(x, t) becomes

U(x) =

⎧⎨
⎩

h0
0, x ∈ (x0, x1),

(1, 0), x ∈ (x1, x3),
h0

3, x ∈ (x3, x4)

at the first merging time which is a stationary solution.
Although all piecewise constant stationary solution (except one or no jump solu-

tion) are local maximum in a class of piecewise constant functions having the same
location of jump discontinuities, it may be attained at the merging time of evolution
as this example shows.
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5. Numerics and simulations.

5.1. Numerical scheme. In this section we concentrate on the special situation
where n = 1, N = 2 andM = S1 as was argued in the last part of the previous section.
We assume Ω = (0, 1) for simplicity, and consider the angle variable θ = θ(x) whose
values are restricted to the interval (−π, π]. Using this variable we formally rewrite
the energy functional (1.1) as follows,

E[θ] =
∫ 1

0

[|∇ cos θ|2 + |∇ sin θ|2] 1
2 dx. (5.1)

Although (5.1) seems to be deformed to the simpler form

E[θ] =
∫ 1

0

|∇θ|dx (5.2)

by the formal calculation ∇ cos θ = − sin θ · ∇θ and ∇ sin θ = cos θ · ∇θ, we do not
adopt (5.2) because this cannot count the energy correctly when the discontinuity
exists. The energy (5.1) measures the variation by the natural metric in R2-space
where S1 is embedded, while (5.2) sums up the variation along the arc of S1. The
energy (1.1) does require the former type (5.1) of measurement. Note that (5.1) and
(5.2) are the same as long as θ(x) is continuous.

In order to construct our numerical scheme, we first discretize the energy func-
tional (5.1) in the space variable. Let us approximate an arbitrary function by the
piecewise constant function expressed in the form

θ(x) = θi for x ∈ (xi−1, xi) (i = 1, 2, . . . , I)

where xi = iδx (i = 0, 1, . . . , I) and δx = 1/I. For such functions, we define an
energy functional

E[θ] =
I∑
i=2

[
(cos θi − cos θi−1)2 + (sin θi − sin θi−1)2

] 1
2 ,

by evaluating the variations across the jump points. Note that it is equivalent to

E[θ] = δx

I∑
i=2

[(
cos θi − cos θi−1

δx

)2

+
(

sin θi − sin θi−1

δx

)2
] 1

2

.

which is a formal approximation of the energy form (5.1). The partial derivative with
respect to θi is easily obtained as follows,

∂E

∂θi
=

sin (θi − θi−1)
Ri

− sin (θi+1 − θi)
Ri+1

,

where Ri =
[
(cos θi − cos θi−1)2 + (sin θi − sin θi−1)2

] 1
2 . Using this formula, we ob-

tain a formal expression of the gradient system

δx
dθi
dt

=
∂E

∂θi
,

thus

dθi
dt

=
1
δx

[
sin (θi+1 − θi)

Ri+1
− sin (θi − θi−1)

Ri

]
(i = 2, . . . , I − 1). (5.3)



ON CONSTRAINED EQUATIONS WITH SINGULAR DIFFUSIVITY 269

Note that θ1 and θI are fixed to some values since we adopt the Dirichlet boundary
conditions in this paper, and the modification to Neumann boundary condition is
straightforward.

Although the formula (5.3) is quite similar to (4.14), there is an essential difference
between them. The equation system (4.14) is not an usual ordinary equation system,
but a reducing ODE system which means that the dimension of phase space (the
number of θi’s) reduces when the height of the adjacent plateaus coincide as time
passes. In this process the plateaus join and increase their sizes, thus (4.14) includes
the sizes Li’s in its expression. On the other hand, in the equation system (5.3) the
number of small intervals I (i.e. the number of variables) does not change and their
size is always δx even after the merging of plateaus. The equation system (5.3) is
designed to solve the equation (1.5) numerically as a PDE system whose initial data
might be other type of functions than piecewise constant ones as will be shown in
Fig.5 and Fig.6.

Now let us give a numerical scheme using the equations (5.3) by discretizing
the time variable t with the uniform mesh size δt. Numerical solution is denoted
by θni which expresses a value of θ in the interval (xi−1, xi) and at the time tn =
nδt. Singular diffusivity (i.e. infinitely large diffusivity) is replaced by the very
large diffusivity using the method proposed in [KG]. In addition the sine function
is rewritten as shown below in order to design an implicit scheme yielding the linear
equation system. We propose a numerical scheme as follows.

θni − θn−1
i

δt
=

1
δx

[χγ(Rn−1
i+1 )f(θn−1

i+1 − θn−1
i − 2πσn−1

i+1 )(θni+1 − θni − 2πσn−1
i+1 )

−χγ(Rn−1
i )f(θn−1

i − θn−1
i−1 − 2πσn−1

i )(θni − θni−1 − 2πσn−1
i )] (5.4)

where χγ is a cut-off inverse function defined by

χγ(ξ) =
{

γ 0 ≤ ξ < 1/γ,
1/ξ 1/γ ≤ ξ,

with a large positive number γ, and f(ξ) = sin ξ/ξ. The integer σn−1
i = 0,±1 is taken

so that the relation |θn−1
i − θn−1

i−1 − 2πσn−1
i | ≤ π holds. The notation Rn−1

i indicates
Ri at the time step tn−1.

We obtain the linear equation system to be numerically solved as follows,

−Aiθni−1 +Biθ
n
i − Ciθ

n
i+1 = Di

where

Ai =
1
δx
χγ(Rn−1

i )f(θn−1
i − θn−1

i−1 − 2πσn−1
i ),

Ci =
1
δx
χγ(Rn−1

i+1 )f(θn−1
i+1 − θn−1

i − 2πσn−1
i+1 ),

Bi =
1
δt

+Ai + Ci,

Di =
1
δt
θn−1
i + 2πσn−1

i Ai − 2πσn−1
i+1 Ci.

Do not forget to make newly obtained θni ’s lie in the interval (−π, π] by adding ap-
propriate corrections 2π × (integer) on every time step.
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5.2. Simulations. Several simulations are performed using the numerical
scheme (5.4), and we mostly handle the situation which was analyzed in the section
4 whose initial data is a piecewise constant functions (thus the solution is piecewise
constant all through the evolution process). In the last part, two examples with the
smooth initial data will be presented. Before going to demonstrate our numerical
results, we give explanations of the panels (a)-(d) in Fig.1 - Fig.4. The panel (a)
shows a profile of the initial data which is a piecewise constant function. Positive
integers are given as indices of the plateaus in the initial data. The panel (b) is a
plot of the initial data in the u-plane. Large white makers express the plateaus which
are movable along the unit circle, while small black ones correspond to the plateaus
which are fixed to the points determined by the Dirichlet conditions. The final data
is presented in the panel (c) in the same way with the panel (b). The panel (d)
is a graph of the orbits of the plateaus’ evolution, where each number on the orbit
represents the corresponding initial plateau. The notation, for example, 2 + 3 means
that the initial plateaus with the indices 2 and 3 merged at some time and act as a
one plateau at that moment. The computational parameters are taken as follows in
all the simulations; I = 400 (δx = 0.0025), γ = 1.0 × 105 and δt = 5.0 × 10−4.

Fig.1 shows a simple example in which only one plateau is movable and the exact
solution is explicitly calculated using (4.14). By setting the angle of the central plateau
θ(t) we have an ODE

L
dθ

dt
= −2sgn

(
sin

θ

2

)
cos

θ

2
(5.5)

for the initial angle θ0(�= 0, π). It is clear that both of θ ≡ 0 and θ ≡ π are stationary
solutions and the former is stable while the latter is unstable. The exact solution of
(5.5) is obtained in the inverse function form

t =
L

2

∣∣∣∣∣log
1 + sin θ

2

1 − sin θ
2

− log
1 + sin θ0

2

1 − sin θ0

2

∣∣∣∣∣ . (5.6)

The final state θ = 0 is attained at the time t∗ = L
2

∣∣∣∣log 1+sin θ0
2

1−sin θ0
2

∣∣∣∣. The graph of this

exact solution (5.6) with L = 0.6 and θ0 = 5π/6 is drawn in the panel (d), and it
agrees with the numerical solution within the graphical resolution. The convergence
property is confirmed by controlling the values of δt and δx. Fig.2 presents another
example which admits an exact solution. In this case the equation for the central
plateau is

L
dθ

dt
=

√
2sgn(cos θ) sin

θ

2
,

and its exact solution is

t =
L√
2

∣∣∣∣∣log
1 − cos θ2
1 + cos θ2

− log
1 − cos θ

0

2

1 + cos θ02

∣∣∣∣∣ .
This solution is also drawn in the panel (d) which agrees with the numerical data
with high accuracy.

In Fig.3 and Fig.4, the destabilization of stationary solutions and the following
evolution are presented. By the lemma 4.6, a stationary solution must have a uniform
gap in θ at each jump point as long as we consider piecewise constant solutions.
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The initial data of the simulation shown in Fig.3 is slightly fluctuated from the
step-like stationary solution as is described in the figure and its caption. Then the
solution θ(x, t) must start to deviate from the stationary solution as the lemma 4.7
claims. Actually it does, and the plateaus sequentially join to reduce their number to
the final value 2. The whole evolution process is presented in the panel (d). In this
simulation, the only discontinuity in the final state locates at the point between the
third and fourth plateau in the initial data. The position of the final discontinuity
depends sensitively on the fluctuation added to the initial data. We can easily see
the change of the total variation in this evolution process. The total variation of the
initial data is close to 16 sin π

12 since all the gaps of θ at the 8 discontinuous points are
approximately π

6 , while the total variation in the final state equals to 2 sin π
3 =

√
3.

Note that the continuous solution changing linearly from −2π/3 to 2π/3 is obtained
in the final state if we solve the constrained diffusion equation from the same initial
data.

In the simulation shown in Fig.4, the initial state is also a slightly fluctuated step-
like function. The gap of θ at each jump point of the stationary solution is 4π/5 in this
case. This stationary solution turns around the origin twice exactly, and consequently
the Dirichlet data at the both ends coincide as is indicated by the star shape in the
panel (b). Adjacent plateaus fuse to form a new one plateau until the solution reaches
the final state which is constantly 9π/10 as presented in the panel (d). If we solve
the diffusion equation with this initial data, the final state is continuous and turns
around the origin twice. Actually the rotation number around the origin is conserved
in the diffusion equation’s case, while our equation may reduce it.

In Fig.5 we presents an evolution of the solution whose initial data is given by the
linear function with small noises (the 1st panel). It takes long for the initial smooth
data to destabilize, actually the linear profile looks almost unchanged until the time
t = 9.0. However, once discontinuities become observable (the 2nd), the gap at the
jump point grows rapidly (the 3rd) until the solution exhibit a piecewise constant
profile (the 4th). Then the solution reach the final solution which has only one jump
point (the 5th).

The final simulation is given in Fig.6 whose initial data is smooth function with
convex parts and concave parts (the 1st panel). Such convex or concave part is quickly
flattened (the 2nd), and consequently the solution becomes monotone function with
plateaus (the 3rd). Then the process drastically slow down, and the profile is kept
for long time. Finally the discontinuities appear in the non-flat part (the 4th), and
the solution changes to the piecewise constant function. The final state is essentially
the same with the previous simulation except for the position of the jump point (the
5th).
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Fig. 1. Dirichlet data at the both ends are set to 0. In the initial data, the number of plateau
is 3, the value of θ is 5π/6 in the central interval whose length is 0.6.
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Fig. 2. Dirichlet data at the left end is set to −π/2 and the one at the right is set to π/2. In
the initial data, the number of plateau is 3, the value of θ is π/9 in the central interval whose length
is 0.6.
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Fig. 3. Dirichlet data at the left end is set to −2π/3 and the one at the right is set to 2π/3.
In the initial data, the number of plateau is 9, the value of θ is (k − 5)π/6 + ak in the k-th interval
whose length is 1/8 for k = 2, . . . , 8 and 1/16 for k = 1, 9. The sequence {ak} (k = 2, . . . , 8) is given
by small random numbers.
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Fig. 4. Dirichlet data at the both end is set to pπ/10. In the initial data, the number of plateau
is 6, the value of θ is (8k+1)π/10+ak (restricted to the interval (−π, π)) in the k-th interval whose
length is 1/5 for k = 2, . . . , 5 and 1/10 for k = 1, 6. The sequence {ak} (k = 2, . . . , 5) is given by
small random numbers.
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Fig. 5. Dirichlet data at the left end is set to −2π/3 and the one at the right is set to 2π/3.
The initial data is given by θ(x) = 2π

3
(2x − 1) + noise.
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Fig. 6. Dirichlet data at the left end is set to −2π/3 and the one at the right is set to 2π/3.
The initial data is given by θ(x) = 2π
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(2x − 1) + 2 sin 4πx + 0.3 sin 7πx + noise.
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