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K-CONTACT LIE GROUPS OF DIMENSION FIVE OR GREATER

Brendan J. Foreman

Abstract

We prove that a K-contact Lie group of dimension five or greater is the central

extension of a symplectic Lie group by complexifying the Lie algebra and applying a

result from complex contact geometry, namely, that, if the adjoint action of the complex

Reeb vector field on a complex contact Lie algebra is diagonalizable, then it is trivial.1

1. Introduction

Recall that a real contact structure on a manifold M of dimension 2nþ 1 is a
distribution H of TM given as the kernel of a 1-form h satisfying h5dhn 0 0 at
all points of M. The Reeb vector field of a contact manifold ðM;H; hÞ is the
vector field x transverse to H defined by the equations

hðxÞ ¼ 1; iðxÞ dh ¼ 0:

The tangent bundle of M splits by TM ¼ Hlhxi, and we denote the projection
TM ! H by H, as well. If M is a Lie group such that h is left-invariant, then
we call M a contact Lie group.

Note that all of the above definitions also make sense if we switch to the
complex category. That is, we call G a complex contact Lie group, if G is a
complex Lie group with a left-invariant holomorphic one-form h such that
h5dhn 0 0 for dimC G ¼ 2nþ 1. Similarly, the definitions of the complex
contact distribution and Reeb vector field carry over analogously.

The main result of this paper, namely that a K-contact Lie group of
dimension five or greater is the central extension of a sympletic Lie group is the
result of this analogy. Namely, given the K-contact Lie group, we complexify
the contact structure, use a result in complex contact geometry and then note the
consequences on the original real contact Lie group. Interestingly, this is the
same strategy for which twistor spaces were originally invented and utilized in
[5]. See [1] for additional and more detailed information on both real and
complex contact structures.
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2. Real contact metric structures

This section provides the preliminary definitions and results with the real
contact geometry. A metric g on a contact manifold ðM; hÞ is called associated
if the following criteria are satisified

1. hðXÞ ¼ gðX ; xÞ for all X A TM and
2. the endomorphism f : TM ! TM defined for X ;Y A TM by

gðX ; fYÞ ¼ dhðX ;YÞ
satisfies

f2 ¼ �I þ hn x:

Much is known about the resulting Riemannian geometry of associated metrics
on contact manifolds ([1]). For the purposes here, the following results are
needed.

Proposition 2.1. Let ðM;H; hÞ be a contact manifold of dimension 2nþ 1
with associated metric g. Then the Levi-Civita connection ‘ satisfies

‘Xx ¼ �fX � fhX ;

where f is a skew-symmetric endomorphism of TM such that f2 ¼ �Id þ hn x
and h is symmetric with respect to g.

For symplectic manifolds, there is an analogous concept of associated metric,
namely, a metric k is associated to the symplectic structure of a manifold S, if
there is an almost complex structure J on S such that the symplectic form o is
given by oðX ;YÞ ¼ gðX ; JYÞ.

An associated metric g of a contact manifold ðM;H; hÞ is called K-contact,
if x is an infinitesimal automorphism of g, i.e., Lxg ¼ 0. It is not di‰cult to
see that this is equivalent to the nullity of the tangent bundle transformation h
as given in the proposition above. Also, it is easy to see that, if there is a
symplectic manifold ðS;oÞ such that p : M ! S is a fibration of the leaves of the
Reeb vector field with p�o ¼ dh, then an associated metric g on M is K-contact
if and only if there is an associated metric k on ðS;oÞ such that p�ðkÞjH ¼ gjH.
(see [1]).

Proposition 2.2. Let G be a contact Lie group with left-invariant contact
form h, Reeb vector field x and left-invariant associated metric g. Then g is
K-contact if and only if the matrix form of adðxÞ on the Lie algebra g of G is
skew-symmetric with respect to any orthonormal basis e ¼ fe1; . . . e2ng of the
contact distribution H ¼ ker h.

Proof. Let g be a left-invariant metric and X , Y , Z be left-invariant vector
fields on G. Then

gð‘XZ;YÞ ¼ � 1

2
ðgð½Z;Y �;XÞ þ gð½X ;Y �;ZÞ þ gð½Z;X �;YÞÞ
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so that

gð‘XZ;YÞ þ gð‘YZ;X Þ ¼ �gð½Z;Y �;XÞ � gð½Z;X �;Y Þ:

If g is associated, then ‘Xx ¼ �fX � fhX and g is K-contact if and only if
h ¼ 0. But the transformation fh is the symmetric part of X 7! ‘Xx. So, h ¼ 0
if and only if 0 ¼ �gð½x;Y �;XÞ � gð½x;X �;YÞ for any left-invariant horizontal
vector fields X and Y , i.e., 0 ¼ �gðadðxÞY ;X Þ � gðadðxÞX ;YÞ for any X ;Y A g.
This proves the proposition.

It is well known that any real skew-symmetric n� n matrix B is diago-
nalizable in the space of complex matrices, Mn�nðCÞ. More specifically, there is
a Q A OðnÞ such that

QBQt ¼

0 b1

�b1 0

. .
.

0 bk

�bk 0

0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

for some b1; . . . ; bk A R�. Thus, if the Jordan canonical form of adðxÞ with
respect to any left-invariant basis of g contains a block matrix of the form
0 1

0 0

� �
, then there is no K-contact structure on g.

3. Complex contact structures

This section deals solely with complex contact Lie groups, i.e., complex Lie
groups with a left-invariant holomorphic 1-form h such that h5dhn 0 0, where
the complex dimension of the Lie group is 2nþ 1. Within this section, we will
use the same notation for the resulting structures and forms in the complex
contact Lie theoretical category as we did in the real category. So, like the real
case, we let H be left-invariant distribution given as the kernel of h (in the
holomorphic tangent bundle) and x be the left-invariant vector field given by
hðxÞ ¼ 1 and dhðx; �Þ ¼ 0. It is only in the next section, where we are using both
real and complex contact structures simultaneously that we will use di¤erent
notation for the di¤erent categories. This material has already been published
across two papers, [2] and [3], but for completeness and coherence we provide
here a unified and streamlined presentation of the relevant results.

Suppose ðG; hÞ is a ð2nþ 1Þ-dimensional complex contact Lie group such
that the adjoint representation of the Reeb vector field x on the Lie algebra of
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G, g is diagonalizable. Let AHC be the set of all eigenvalues of adðxÞ with
nontrivial eigenvectors. We call A the roots of x. For each a A C, set

ga ¼ fX A g : ½x;X � ¼ aXg
For X A g, X ¼ cxþHX for some c A C so that ½x;X � ¼ ½x; cxþHX � ¼
½x;HX �. Thus, if a A A� f0g, then ga HH.

Proposition 3.1. Let ðG; hÞ be a ð2nþ 1Þ-dimensional complex contact Lie
group such that the adjoint representation of the Reeb vector field x is diago-
nalizable with roots given by the set A. Then

1. If X A ga and Y A gb for a; b A A, then adðxÞ½X ;Y � ¼ ðaþ bÞ½X ;Y � and
either aþ b ¼ 0 or dhðX ;YÞ ¼ 0.

2. For any a A A and X A ga � ð0Þ, there is a Y A g�a such that ½X ;Y � ¼
xþ Z for some Z A g0 VH.

Proof. For Statement 1, the Jacobi identity gives us:

0 ¼ ½½x;X �;Y � þ ½½X ;Y �; x� þ ½½Y ; x�;X �
¼ a½X ;Y � þ ½½X ;Y �; x� � b½Y ;X �:

So, adðxÞ½X ;Y � ¼ ðaþ bÞ½X ;Y �. In particular, hðadðxÞ½X ;Y �Þ ¼ ðaþ bÞhð½X ;Y �Þ.
By definition of x, the left-hand side is zero. Furthermore, hð½X ;Y �Þ ¼
�2 dhðX ;YÞ. This proves Statement 1.

Let a A A and X A ga � ð0Þ. Since dhn 0 0 on H, we know that there exists
Y A H such that ½X ;Y � ¼ xþ Z for some Z A H. In fact, if we create a basis of
H such that each element of the basis is an eigenvector of adðxÞ, we see that
there is some b A A such that Y A gb and ½X ;Y � ¼ xþ Z for some Z A H. By

Statement 1, b ¼ �a. Also, 0 ¼ adðxÞð½X ;Y �Þ ¼ adðxÞðZÞ. This proves State-
ment 2.

Theorem 3.2. Let ðG; hÞ be a ð2nþ 1Þ-dimensional complex contact Lie
group such that the adjoint representation of the Reeb vector field x is diago-
nalizable. If n > 1, then adðxÞ ¼ 0.

Proof. We prove this theorem by systematically reviewing the cases where
A0 f0g and showing that each such possible case creates a contradiction. First,
we consider the situation in which adðxÞ has no zero eigenvectors in H and two
distinct nonzero eigenvalues, a and b0�a. Second, we investigate the case in
which adðxÞ has exactly two eigenvectors in H, a0 0 and �a. Finally, we
consider the situation in which both a0 0 and 0 are eigenvalues of adðxÞ in
H. We will show that each of these cases lead to a contradiction.

Case 1. Assume that adðxÞ has no zero eigenvectors in H and two distinct
nonzero eigenvalues, a and b0�a. Without losing any generality, we can
assume that aG b B A. In particular, by Proposition 3.1, �a A A, and ½Xa; g�a� ¼
hxi for any Xa A ga. Furthermore, ½gGa; gb� ¼ ð0Þ.
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Let Xa A ga, Xb A gb, both non-zero. By the Jacobi identity,

bXb ¼ adðxÞXb

¼ adð½Xa;X�a�ÞXb

¼ ðad XaÞðad X�aÞðXbÞ � ðad X�aÞðad XaÞðXbÞ
¼ ðad XaÞð½X�a;Xb� � ðad X�aÞ½Xa;Xb�
¼ 0;

since ½gGa; gb� ¼ ð0Þ. Thus, b ¼ 0, a contradiction.

Case 2. Assume that adðxÞ has exactly two eigenvectors in H, a0 0 and
�a. Let E ¼ fE1; . . . ;E2ng be a basis of H such that

g�a ¼ hE2j�1 : j ¼ 1; . . . ; ni

ga ¼ hE2j : j ¼ 1; . . . ; ni;

that is, adðxÞEk ¼ ð�1ÞkaEk for k ¼ 1; . . . ; 2n. By Proposition 3.1,
adðxÞ½Ek;El � ¼ ðð�1Þk þ ð�1Þ lÞa½Ek;El �. In particular, adðxÞ½E2j1 ;E2j2�1� ¼ 0
and 0 ¼ ½E2j1 ;E2j2 � ¼ ½E2j1�1;E2j2�1� for j1; j2 ¼ 1; . . . ; n (since gG2a ¼ ð0Þ by

assumption). Thus, since g0 ¼ hxi by assumption, for each k; l ¼ 1; . . . ; 2n,
½Ek;El � ¼ bklx for some bkl A C with 0 ¼ beven even ¼ bodd odd. Furthermore,
the fact that H is a complex contact structure on G implies that for every

k ¼ 1; . . . ; 2n, there is a ~kk ¼ 1; . . . ; 2n such that bk ~kk 0 0. Without loss of
generality, we can assume that b2j2j�1 0 0 for j ¼ 1; . . . ; n.

Then

0 ¼ ½½E1;E2�;E3� þ ½½E2;E3�;E1� þ ½½E3;E1�;E2�
¼ b12½x;E3� þ b23½x;E1�
¼ �ab12E3 � ab23E1:

Thus, a ¼ 0, which contradicts the assumption that a0 0.

Case 3. Assume that both a0 0 and 0 are eigenvalues of adðxÞ in H.
Proposition 3.1 implies that ½g0; g0�H g0. Let X1 be a nonzero element of

g0 VH. Then, again by Proposition 3.1, there is an element ~XX2 A g0 VH such
that hð½X1; ~XX2�Þ0 0. By considering the Jordan canonical form of adðX1Þ re-
stricted on g0, we see that there is an X2 A g0 VH such that ½X1;X2� ¼ x.
Furthermore, adðXjÞðgaÞH ga for each j ¼ 1; 2. The Jacobi identity implies that
½adðX1Þ; adðX2Þ� ¼ adð½X1;X2�Þ ¼ adðxÞ so that, on ga, ½adðX1Þ; adðX2Þ� ¼ aI .
But, for any linear transformations S and T on a given vector space V , ST � TS
is never a non-zero multiple of the identity. Thus, we have a contradiction.
Having exhausted all possibilities in which A0 f0g, we have proven the theorem.
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4. Main theorem

We now prove the main result as an easy corollary of Theorem 3.2.

Theorem 4.1. Any K-contact Lie group of dimension five or greater is the
central extension of a symplectic Lie group.

Proof. Given a real contact Lie algebra ðg; hÞ, the complexification gC is a
complex contact Lie algebra with complex contact form given by hCðX þ iY Þ ¼
hðX Þ þ ihðYÞ for X ;Y A g. The complex Reeb vector field xC in gC is defined
by:

hCðxCÞ; dhCðxC; �Þ ¼ 0:

Since x A gH gC satisfies this condition, xC ¼ x. Thus, the adjoint operator
adðxCÞ is simply the complex extension of adðxÞ on g acting on gC.

In addition, suppose that g is a left-invariant associated metric on g such that
ðg; h; x; gÞ is a K-contact Lie algebra. There is then an orthonormal basis e of g
with respect to which the matrix representation of adðxÞ is skew-symmetric.

Then the operator adðxCÞ is diagonalizable on gC with purely imaginary
eigenvalues. By Theorem 3.2, adðxCÞ ¼ 0, which implies that adðxÞ ¼ 0. And
so ðg; h; xÞ is the central extension of a symplectic Lie algebra.
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