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K-CONTACT LIE GROUPS OF DIMENSION FIVE OR GREATER
BRENDAN J. FOREMAN

Abstract

We prove that a K-contact Lie group of dimension five or greater is the central
extension of a symplectic Lie group by complexifying the Lie algebra and applying a
result from complex contact geometry, namely, that, if the adjoint action of the complex
Reeb vector field on a complex contact Lie algebra is diagonalizable, then it is trivial.!

1. Introduction

Recall that a real contact structure on a manifold M of dimension 2n+ 1 is a
distribution # of TM given as the kernel of a 1-form # satisfying # A dn” # 0 at
all points of M. The Reeb vector field of a contact manifold (M, #,n) is the
vector field & transverse to # defined by the equations

n(&) =1, &) dn=0.

The tangent bundle of M splits by TM = # @ {&), and we denote the projection
TM — # by #, as well. If M is a Lie group such that # is left-invariant, then
we call M a contact Lie group.

Note that all of the above definitions also make sense if we switch to the
complex category. That is, we call G a complex contact Lie group, if G is a
complex Lie group with a left-invariant holomorphic one-form # such that
nady” #0 for dimec G=2n+1. Similarly, the definitions of the complex
contact distribution and Reeb vector field carry over analogously.

The main result of this paper, namely that a K-contact Lie group of
dimension five or greater is the central extension of a sympletic Lie group is the
result of this analogy. Namely, given the K-contact Lie group, we complexify
the contact structure, use a result in complex contact geometry and then note the
consequences on the original real contact Lie group. Interestingly, this is the
same strategy for which twistor spaces were originally invented and utilized in
[5]. See [1] for additional and more detailed information on both real and
complex contact structures.
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2. Real contact metric structures

This section provides the preliminary definitions and results with the real
contact geometry. A metric g on a contact manifold (M,#) is called associated
if the following criteria are satisified

1. n(X)=g(X,¢&) for all X e TM and

2. the endomorphism ¢ : TM — TM defined for X, Y e TM by

g(X>¢Y) = d”(Xa Y)
satisfies

PP =—-T+n®C

Much is known about the resulting Riemannian geometry of associated metrics
on contact manifolds ([1]). For the purposes here, the following results are
needed.

ProposITION 2.1. Let (M, #,n) be a contact manifold of dimension 2n + 1
with associated metric g. Then the Levi-Civita connection V satisfies

VXf: _¢X_¢th

where ¢ is a skew-symmetric endomorphism of TM such that ¢* = —Id +n ® &
and h is symmetric with respect to g.

For symplectic manifolds, there is an analogous concept of associated metric,
namely, a metric k is associated to the symplectic structure of a manifold S, if
there is an almost complex structure J on S such that the symplectic form w is
given by o(X,Y) =g(X,JY).

An associated metric g of a contact manifold (M, #,#) is called K-contact,
if £ is an infinitesimal automorphism of g, i.e.,, %g=0. It is not difficult to
see that this is equivalent to the nullity of the tangent bundle transformation %
as given in the proposition above. Also, it is easy to see that, if there is a
symplectic manifold (S, ®) such that 7 : M — S is a fibration of the leaves of the
Reeb vector field with n*w = dy, then an associated metric g on M is K-contact
if and only if there is an associated metric k on (S, ) such that 7*(k) , = g

(see [1]).

PropoSITION 2.2. Let G be a contact Lie group with left-invariant contact
form n, Reeb vector field & and left-invariant associated metric g. Then g is
K-contact if and only if the matrix form of ad() on the Lie algebra g of G is
skew-symmetric with respect to any orthonormal basis e = {ey,...ex} of the
contact distribution H = ker 1.

Proof. Let g be a left-invariant metric and X, Y, Z be left-invariant vector
fields on G. Then

oVxZ, ¥) = 3 (4(1Z, ¥}, X) + g(1X, ¥1,2) + ¢(1Z, X, V))
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so that
9g(VxZ,Y)+9g(VyZ,X) = —g([Z, Y], X) —g([Z, X], Y).

If g is associated, then Vy¢& = —¢X — phX and ¢ is K-contact if and only if
h=0. But the transformation ¢/ is the symmetric part of X — Vy¢&. So, h=0
if and only if 0= —g([¢, Y], X) —g([£, X], Y) for any left-invariant horizontal
vector fields X and Y, ie., 0 = —g(ad(&)Y,X) — g(ad(&)X, Y) for any X, Y € g.
This proves the proposition.

It is well known that any real skew-symmetric n x n matrix B is diago-
nalizable in the space of complex matrices, M,,(C). More specifically, there is
a Qe O(n) such that

0 b
by 0
OBQ' = : ;
0 b
—b. 0
0
for some by,...,br € R*. Thus, if the Jordan canonical form of ad(&) with

respect to any left-invariant basis of g contains a block matrix of the form

0 1 .
0 0) then there is no K-contact structure on g.

3. Complex contact structures

This section deals solely with complex contact Lie groups, i.e., complex Lie
groups with a left-invariant holomorphic 1-form # such that # A dy" # 0, where
the complex dimension of the Lie group is 2n+ 1. Within this section, we will
use the same notation for the resulting structures and forms in the complex
contact Lie theoretical category as we did in the real category. So, like the real
case, we let # be left-invariant distribution given as the kernel of # (in the
holomorphic tangent bundle) and & be the left-invariant vector field given by
n(&) =1 and dn(&,*) = 0. Tt is only in the next section, where we are using both
real and complex contact structures simultaneously that we will use different
notation for the different categories. This material has already been published
across two papers, [2] and [3], but for completeness and coherence we provide
here a unified and streamlined presentation of the relevant results.

Suppose (G,7) is a (2n+ 1)-dimensional complex contact Lie group such
that the adjoint representation of the Reeb vector field ¢ on the Lie algebra of
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G, g is diagonalizable. Let 4 = C be the set of all eigenvalues of ad(&) with
nontrivial eigenvectors. We call A the roots of £. For each o€ C, set

g,={Xeg:[{X]=aX}

For Xeg, X=cE+#X for some ceC so that [&X]=][¢ el + #X]=
[&, #X]. Thus, if e A — {0}, then g, = #.

ProposiTION 3.1.  Let (G,n) be a (2n+ 1)-dimensional complex contact Lie
group such that the adjoint representation of the Reeb vector field & is diago-
nalizable with roots given by the set A. Then

1. If Xeqg, and Y eg; for a,f e A, then ad(&)[X,Y]= («+p)[X, Y] and

either a+ =0 or dn(X,Y) =0.

2. For any a€ A and X € g, — (0), there is a Y eg_, such that [X,Y]=

E+Z for some Z e gyNA.

Proof. For Statement 1, the Jacobi identity gives us:
0=[[¢ X, Y]+ X, Y].&] + [[Y,<], X]
= O‘[Xa Y] + HX7 Y]7é] _ﬂ[YaX]

So, ad(&)[X, Y] = (x+ B)[X, Y]. In particular, n(ad(&)[X, Y]) = (« + B)n([X, Y)).
By definition of &, the left-hand side is zero. Furthermore, #([X,Y]) =
—2dn(X,Y). This proves Statement 1.

Let e 4 and X € g, — (0). Since dy” # 0 on A, we know that there exists
Y € o such that [X, Y] = £+ Z for some Z € #. In fact, if we create a basis of
A such that each element of the basis is an eigenvector of ad(&), we see that
there is some ff € 4 such that Y € g; and [X, Y] = ¢+ Z for some Ze #. By
Statement 1, = —a. Also, 0 =ad(&)([X, Y]) = ad(&)(Z). This proves State-
ment 2.

THEOREM 3.2. Let (G,n) be a (2n+ 1)-dimensional complex contact Lie
group such that the adjoint representation of the Reeb vector field & is diago-
nalizable.  If n> 1, then ad(&) = 0.

Proof. We prove this theorem by systematically reviewing the cases where
A # {0} and showing that each such possible case creates a contradiction. First,
we consider the situation in which ad(£) has no zero eigenvectors in # and two
distinct nonzero eigenvalues, o and ff # —a. Second, we investigate the case in
which ad(¢) has exactly two eigenvectors in #, a #0 and —o. Finally, we
consider the situation in which both o # 0 and 0 are eigenvalues of ad({) in
#. We will show that each of these cases lead to a contradiction.

Case 1. Assume that ad(¢) has no zero eigenvectors in # and two distinct
nonzero eigenvalues, « and f # —«. Without losing any generality, we can
assume that o + f ¢ A. In particular, by Proposition 3.1, —o € 4, and [X,,g_,] =
(&) for any X, eg,. Furthermore, [g,,,q; = (0).
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Let X, €g,, Xpe€gp both non-zero. By the Jacobi identity,
pXp = ad() Xy
d([ X, X_a]) Xp
ad X,)(ad X_,)(Xp) — (ad X_,)(ad X,)(Xp)
ad X,)([X_s, Xp] — (ad X_,)[X Xp]

O/\/\Q

)

since [g.,,84] = (0). Thus, f=0, a contradiction.

Cast 2. Assume that ad(&) has exactly two eigenvectors in #, o # 0 and
—oa. Let E={E,...,Ey} be a basis of # such that

g, =<Ey1:j=1,...,n)
g1:<E2j:j:17...7}’l>’

that is, ad()Ex = (—l)kotEk for k=1,...,2n. By Proposition 3.1,
ad(E)[Ex, Bl = (-1)* + (=1))a[Er, Ej]. In particular, ad(¢)[Ey,, Esy, 1] =0
and 0= [Ey;, 3] = [Ey—1, Ej—1] for ji,jp=1,...,n (since g,,, =(0) by
assumption). Thus, since g, = <&) by assumption, for each k,/=1,...,2n,
[Ek; Ei] = B¢ for some fiy e C with 0= Beyen cven = Podd oaa- Furthermore,
the fact that # is a complex contact structure on G implies that for every
k=1,...,2n, there is a k=1,...,2n such that B #0. Without loss of
generality, we can assume that f,,  #0 for j=1,...,n.
Then

0 = [[E1, Ea), E3] + [[E2, B3], E1] + [[E3, E)], E2]
= Balé, B3] + Baslé, Ei]
= —O(ﬂle3 — Ocﬂ23E1.

Thus, o« = 0, which contradicts the assumption that a # 0.

Casg 3. Assume that both o # 0 and 0 are eigenvalues of ad(&) in .

Proposition 3.1 implies that [gy,g,] = go. Let X be a nonzero element of
g, . Then, again by Proposition 3.1, there is an element X> e 8o N A such
that n([Xl,Xz]) #0. By considering the Jordan canonical form of ad(Xy) re-
stricted on g,, we see that there is an X, e g,N# such that [X},X>]=¢.
Furthermore, ad(X;)(g,) < g, for each j =1,2. The Jacobi identity implies that
[ad(X1), ad(Xz)} = ad([Xl,Xz]) =ad(&) so that on g, ad(X1),ad(X2)]=al.
But, for any linear transformations S and 7 on a given vector space V, ST — TS
is never a non-zero multiple of the identity. Thus, we have a contradiction.
Having exhausted all possibilities in which 4 # {0}, we have proven the theorem.
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4. Main theorem

We now prove the main result as an easy corollary of Theorem 3.2.

THEOREM 4.1. Any K-contact Lie group of dimension five or greater is the
central extension of a symplectic Lie group.

Proof. Given a real contact Lie algebra (g,7), the complexification g€ is a
complex contact Lie algebra with complex contact form given by #¢(X +iY) =
n(X)+in(Y) for X,Y eg. The complex Reeb vector field £€ in g€ is defined

by:

(), dn (€S, %) =0
Since ¢ e g c g€ satisfies this condition, ¢ =¢&. Thus, the adjoint operator
ad () is simply the complex extension of ad(&) on g acting on g€.

In addition, suppose that g is a left-invariant associated metric on g such that
(g9,m,&,9) is a K-contact Lie algebra. There is then an orthonormal basis ¢ of g
with respect to which the matrix representation of ad(¢) is skew-symmetric.

Then the operator ad(¢€) is diagonalizable on g€ with purely imaginary
eigenvalues. By Theorem 3.2, ad(£€) = 0, which implies that ad(£) =0. And
so (g,7,¢) is the central extension of a symplectic Lie algebra.
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