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ON COMPLETE SPACELIKE SUBMANIFOLDS IN

SEMI-RIEMANNIAN SPACE FORMS WITH PARALLEL

NORMALIZED MEAN CURVATURE VECTOR
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Abstract

In this paper, by modifying Cheng-Yau’s technique to complete spacelike sub-

manifolds in Qnþp
p ðcÞ, we prove a rigidity theorem for complete spacelike submanifolds

in the de Sitter space with parallel normalized mean curvature vector. As a corollary,

we have the Corollary 1.1 of [7].

1. Introduction

Let Qnþp
p ðcÞ be an ðnþ pÞ-dimensional connected semi-Riemannian manifold

of index p and of constant curvature c, which is called an indefinite space form of
index p. If c > 0, we call it the De Sitter space of index p and denote it by
Snþp
p ðcÞ. If c < 0, we call it the semi-Hyperbolic space of index p and denote it

by Hnþp
p ðcÞ. A smooth immersion j : Mn ! Qnþp

p ðcÞ of an n dimensional con-

nected manifold Mn is said to be a spacelike if the induced metric via j is a
Riemannian metric on Mn. As is usual, the spacelike submanifold is said to be
complete if the Riemannian induced metric is a complete metric on Mn.

The interest in the study of spacelike hypersurfaces immersed in the de Sitter
space is motivated by their nice Bernstein-type properties. It was proved by
E. Calabi [5] (for na 4) and by S. Y. Cheng and S. T. Yau [15] (for all n) that
a complete maximal spacelike hypersurface in Lnþ2 is totally geodesic. In [22],
S. Nishikawa obtained similar results for others Lorentzian manifolds. In par-
ticular, he proved that a complete maximal spacelike hypersurface in Snþ1

1 ð1Þ is
totally geodesic.

Goddard [16] conjectured that a complete spacelike hypersurface with con-
stant mean curvature in de Sitter Snþ1

1 should be umbilical. Although the con-
jecture turned out to be false in its original statement, it motivated a great deal of
work of several authors trying to find a positive answer to the conjecture under
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appropriate additional hypotheses. For instance, in 1987 Akutagawa [2] proved

the Goddard conjecture when H 2 < 1 if n ¼ 2 and H 2 <
4ðn� 1Þ

n2
if n > 2. He

also showed that when n ¼ 2, for any constant H 2 > c2 there exists a non-
umbilical surface of mean curvature H in the de Sitter space S3

1 ðcÞ of constant
curvature c > 0. One year later S. Montiel [20] solved Goddard’s problem in
the compact case in Snþ1

1 without restriction over the range of H. He also gave
examples of non-umbilical complete spacelike hypersurfaces in Snþ1

1 with constant

H satisying H 2 b
4ðn� 1Þ

n2
if n > 2, including the so-called hyperbolic cylinders.

In [21], Montiel proved that the only complete spacelike hypersurface in Snþ1
1

with constant H ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

n
with more than one topological end is a hyperbolic

cylinder. At the same time, the complete hypersurfaces in the de Sitter space
have been characterized by Cheng [9] under the hypothesis of the mean curvature
and the scalar curvature being linearly related.

In order to study spacelike hypersurfaces with constant scalar curvature in
de Sitter space, Y. Zheng [29] proved that a compact spacelike hypersurface
in Snþ1

1 ð1Þ with constant normalized scalar curvature r, r < 1 and non-negative
sectional curvatures is totally umbilical. Later, Q. M. Cheng and S. Ishikawa
[11] showed that Zhengs result in [29] is also true without additional assumptions
on the sectional curvatures of the hypersurface. In [19], H. Li proposed the
following problem: Let Mn be a complete spacelike hypersurface in Snþ1

1 ð1Þ,

nb 3, with constant normalized scalar curvature r satisfying
n� 2

n
a ra 1. Is

Mn totally umbilical? A. Caminha [8] answered that question a‰rmatively
under the additional condition that the supremum of H is attained on Mn.
Recently, Camargo-Chaves-Sousa [6] showed that Li’s question is also true if the
mean curvature is bounded.

In higher codimension, the condition on the mean curvature is replaced by
a condition on the mean curvature vector. Let Qnþp

p ðcÞ be the complete con-
nected semi-Riemannian manifolds of index p with constant curvature c and Mn

be a spacelike submanifold of Qnþp
p ðcÞ with parallel mean curvature vector h.

When Mn is maximal, i.e., h1 0, T. Ishihara [17] established a inequality for

the squared norm jBj2 of the second fundamental form B of Mn: 1
2sjBj2 b

jBj2ðncþ jBj2=2Þ. As an important application, Ishihara proved that maximal
complete spacelike submanifolds in Qnþp

p ðcÞ, cb 0, are totally umbilical and, if
c < 0, then 0a jBj2 a�npc. Moreover, he determined all the complete space-
like maximal submanifolds Mn of Qnþp

p ðcÞ, c < 0, satisfying jBj2 ¼ �npc. R.
Aiyama [1] studied compact spacelike submanifolds in Snþp

p ðcÞ with parallel mean
curvature vector and proved that if the normal connection of Mn is flat, then
Mn is totally umbilical. She also proved that compact spacelike submanifolds
in Snþp

p ðcÞ with parallel mean curvature vector and non-negative sectional curva-
tures are also totally umbilical. Q. M. Cheng [10] showed that Akutagawa’s
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result [2] is valid for complete spacelike submanifolds in Snþp
p ðcÞ with parallel

mean curvature vector.
In [12] and [13], Chaves-Sousa obtained a Simon type formula for the squared

norm of the traceless tensor f ¼ B�Hg, where g stands for the induced metric
on a spacelike submanifold in Qnþp

p ðcÞ with parallel mean curvature vector. As
an application of this formula, Brasil-Chaves-Mariano [3] obtained an other

limitation for the supremum of the mean curvature sup H 2 <
4ðn� 1Þc

ðn� 2Þ2pþ 4ðn� 1Þas an extension of results of [2] and [10].
Recently, Camargo-Chaves-Sousa [7] considered complete spacelike subman-

ifold in Qnþp
p ðcÞ with parallel normalized mean curvature vector (which is much

weaker than the condition to have parallel mean curvature vector) and obtained

Theorem 1.1. Let Mn be a complete spacelike submanifold in Qnþp
p ðcÞ,

nb 3, with parallel normalized mean curvature vector and constant normalized
scalar curvature r satisfying ra c. If the mean curvature H of Mn satisfies

sup H 2 <
4ðn� 1Þc

ðn� 2Þ2pþ 4ðn� 1Þ
;

then Mn is totally umbilical.

In this paper, in order to improve Theorem 1.1, we modify Cheng-Yau’s
technique to complete spacelike submanifold in Qnþp

p ðcÞ and prove a rigidity
theorem under the hypothesis of the mean curvature and the normalized scalar
curvature being linearly related. More precisely, we have

Theorem 1.2. Let Mn be a complete spacelike submanifold in Qnþp
p ðcÞ, nb 3

with parallel normalized mean curvature vector. If r ¼ aH þ b, a; b A R, ab 0,
ðn� 1Þa2 þ 4nðc� bÞb 0 and the mean curvature H of Mn satisfies

sup H 2 <
4ðn� 1Þc

ðn� 2Þ2pþ 4ðn� 1Þ
;

then Mn is totally umbilical.

Remark 1.3. If we choose a ¼ 0 and ba c in Theorem 1.2, we obtain the
Theorem 1.1.

Acknowledgement. This work was done while the author was visiting Uni-
versity of Notre Dame. The author is grateful for the hospitality of the math-
ematical department of University of Notre Dame.

2. Preliminaries

Let Mn be an n-dimensional Riemannian manifold immersed in Qnþp
p ðcÞ.

For any p A M, we choose a local orthonormal frame e1; . . . ; enþp in Qnþp
p ðcÞ
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around p such that e1; . . . ; en are tangent to Mn. Take the corresponding dual
coframe o1; . . . ;onþp. We use the following standard convention for indices:

1aA;B;C; . . .a nþ p; 1a i; j; k; . . .a n; nþ 1a a; b; g; . . .a nþ p:

Let ei ¼ 1, ea ¼ �1, then the structure equations of Qnþp
p ðcÞ are given by

doA ¼
X
B

eBoAB5oB; oAB þ oBA ¼ 0;ð2:1Þ

doAB ¼
X
C

eCoAC5oCB � 1

2

X
C;D

eCeDRABCDoC5oD;ð2:2Þ

RABCD ¼ ceAeBðdAC dBD � dADdBCÞ:ð2:3Þ

Restricting those forms to Mn, we have

oa ¼ 0; nþ 1a aa nþ p:ð2:4Þ

So the Riemannian metric of Mn is written as ds2 ¼
P

i o
2
i . Since 0 ¼ doa ¼P

i oai5oi, from Cartan lemma, we can write

oai ¼
X
j

ha
ijoj; ha

ij ¼ ha
ji :ð2:5Þ

Let B ¼
P

a; i; j h
a
ijoiojea be the second fundamental form. We will denote by

h ¼ 1

n

P
að
P

i h
a
iiÞea and by H ¼ jhj ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
að
P

i h
a
iiÞ

2
q

the mean curvature vector

and the mean curvature of Mn, respectively.
The structure equations of Mn are

doi ¼
Xn
j¼1

oij5oj; oij þ oji ¼ 0;ð2:6Þ

doij ¼
Xn
k¼1

oik5okj �
1

2

Xn
k; l¼1

Rijklok5ol :ð2:7Þ

The Gauss equations are

Rijkl ¼ cðdik djl � dil djkÞ �
X
a

ðha
ikh

a
jl � ha

ilh
a
jkÞ;ð2:8Þ

nðn� 1Þr ¼ nðn� 1Þc� n2H 2 þ jBj2;ð2:9Þ

where r is the normalized scalar curvature of Mn and jBj2 ¼
P

a; i; jðha
ijÞ

2 is the
norm square of the second fundamental form of Mn.

The Codazzi equations are

ha
ijk ¼ ha

ikj ¼ ha
jik;ð2:10Þ
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where the covariant derivative of ha
ij is defined byX

k

ha
ijkok ¼ dha

ij þ
X
k

ha
kjoki þ

X
k

ha
ikokj �

X
b

h
b
ijoba:ð2:11Þ

Similarly, the components ha
ijkl of the second derivative ‘2h are given byX

l

ha
ijklol ¼ dha

ijk þ
X
l

ha
ljkoli þ

X
l

ha
ilkolj þ

X
l

ha
ijlolk �

X
b

h
b
ijkoba:ð2:12Þ

By exterior di¤erentiation of (2.11), we can get the following Ricci formula

ha
ijkl � ha

ijlk ¼
X
m

ha
imRmjkl þ

X
m

ha
jmRmikl þ

X
b

h
b
ijRabkl :ð2:13Þ

The Laplacian sha
ij of ha

ij is defined by sha
ij ¼

P
k h

a
ijkk, from the Codazzi

equation and Ricci formula, we have

sha
ij ¼

X
k

ha
kkij þ

X
m;k

ha
kmRmijk þ

X
m;k

ha
imRmkjk þ

X
k;b

h
b
ikRabjk:ð2:14Þ

If H0 0, we choose enþ1 ¼
h

H
, then it follows that

Hnþ1 :¼ 1

n
trðhnþ1Þ ¼ H; H a :¼ 1

n
trðhaÞ ¼ �Honþ1a; Eab nþ 2;ð2:15Þ

where ha denotes the matrix ðha
ijÞ. From (2.11) and (2.15), we can see that

X
k

H nþ1
k ok ¼ dH;

X
k

H a
kok ¼ �Honþ1a; Eab nþ 2:ð2:16Þ

From (2.12), (2.15) and (2.16) we have

Hnþ1
kl ¼ Hkl �

1

H

X
b>nþ1

H
b
k H

b
l ;ð2:17Þ

where

dH ¼
X
i

Hioi; ‘Hk ¼
X
l

Hklol ¼ dHk þ
X
l

Hlolk:

If Mn has parallel normalized mean curvature vector, we have

onþ1a ¼ 0; hnþ1ha ¼ hahnþ1; Ea:ð2:18Þ

Then (2.16) and (2.17) yield

H a
k ¼ 0; Ek; ab nþ 2; Hnþ1

kl ¼ Hkl :ð2:19Þ
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From (2.12) and (2.19) we obtain

H a
kl ¼ 0; ab nþ 2:ð2:20Þ

From (2.24) of [7] we have

1

2
sjBj2 ¼ 1

2

X
a; i; j

sðha
ijÞ

2 ¼
X
a; i; j;k

ðha
ijkÞ

2 þ
X
a; i; j

ha
ijsha

ijð2:21Þ

¼
X
a; i; j;k

ðha
ijkÞ

2 þ n
X
a; i; j

ha
ijH

a
ij þ ncðjBj2 � nH 2Þ

� nH
X
a

trðhnþ1ðhaÞ2Þ þ
X
a;b

ðtrðhahbÞÞ2 þ
X
a;b

Nðhahb � hbhaÞ;

where NðAÞ ¼ trðAAtÞ, for all matrix A ¼ ðaijÞ.
Set fa

ij ¼ ha
ij �H adij, it is easy to check that fa is traceless and

jfj2 ¼
X
a; i; j

ðfa
ijÞ

2 ¼ jBj2 � nH 2

NðfaÞ ¼ NðhaÞ � nðH aÞ2; nþ 1a aa nþ p;

ð2:22Þ

where fa denotes the matrix ðfa
ijÞ. Following Cheng-Yau [15], we introduce a

modified operator k acting on any C2-function f by

kð f Þ ¼
X
i; j

nH þ n� 1

2
a

� �
dij � hnþ1

ij

� �
fij ;ð2:23Þ

where fij is given by the followingX
j

fijoj ¼ dfi þ fjoij :

Lemma 2.1. Let Mn be a complete spacelike submanifold of Qnþp
p ðcÞ with

r ¼ aH þ b, a; b A R and ðn� 1Þa2 þ 4nc� 4nbb 0. Then we have

j‘Bj2 ¼
X
a; i; j;k

ðha
ijkÞ

2
b n2j‘Hj2:ð2:24Þ

Proof. From Gauss equation, we have

jBj2 ¼ n2H 2 þ nðn� 1Þðr� cÞ ¼ n2H 2 þ nðn� 1ÞðaH þ b� cÞ:

Taking the covariant derivative of the above equation, we have

2
X
a; i; j

ha
ijh

a
ijk ¼ 2n2HHk þ nðn� 1ÞaHk:
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Therefore,

4jBj2j‘Bj2 b 4
X
k

X
a; i; j

ha
ijh

a
ijk

 !2
¼ ½2n2H þ nðn� 1Þa�2j‘Hj2:

Since we know

½2n2H þ nðn� 1Þa�2 � 4n2jBj2 ¼ 4n4H 2 þ n2ðn� 1Þ2a2 þ 4n3ðn� 1ÞaH

� 4n2ðn2H 2 þ nðn� 1ÞðaH þ b� cÞÞ

¼ n2ðn� 1Þ2a2 � 4n3ðn� 1Þðb� cÞ

¼ n2ðn� 1Þ½ðn� 1Þa2 þ 4nc� 4nb�b 0;

it follows that

j‘Bj2 b n2j‘Hj2: r

We will need the following algebraic lemma, whose proof can be found in
[27].

Lemma 2.2. Let A;B : Rn ! Rn be symmetric linear maps such that
AB� BA ¼ 0 and trðAÞ ¼ trðBÞ ¼ 0. Then

jtr A2Bja n� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p NðAÞ
ffiffiffiffiffiffiffiffiffiffiffi
NðBÞ

p
:

We also will need the well known generalized Maximum Principle due to H.
Omori [25].

Lemma 2.3. Let Mn be an n-dimensional complete Riemannian manifold
whose sectional curvature is bounded from below and f : Mn ! R be a smooth
function which is bounded from above on Mn. Then there is a sequence of points
fpkg in Mn such that

lim
k!y

f ðpkÞ ¼ sup f ; lim
k!y

j‘f ðpkÞj ¼ 0; lim sup
k!y

ðsf ðpkÞÞa 0:

Proposition 2.4. Let Mn be a complete spacelike submanifold in Qnþp
p ðcÞ

with parallel normalized mean curvature vector. If r ¼ aH þ b, a; b A R and
ðn� 1Þa2 þ 4nc� 4nbb 0, then the following inequality holds

kðnHÞb jfj2 jfj2

p
� nðn� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 1Þ
p Hjfj þ nðc�H 2Þ

 !
:ð2:25Þ
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Proof. From (2.23) we have

kðnHÞ ¼
X
i; j

nH þ 1

2
ðn� 1Þa

� �
dij � hnþ1

ij

� �
ðnHÞijð2:26Þ

¼ nH þ 1

2
ðn� 1Þa

� �
sðnHÞ �

X
i; j

hnþ1
ij ðnHÞij

¼ nH þ 1

2
ðn� 1Þa

� �
s nH þ 1

2
ðn� 1Þa

� �
�
X
i; j

hnþ1
ij ðnHÞij

¼ 1

2
s nH þ 1

2
ðn� 1Þa

� �2

� ‘ nH þ 1

2
ðn� 1Þa

� �����
����
2

�
X
i; j

hnþ1
ij ðnHÞij

¼ 1

2
s nH þ 1

2
ðn� 1Þa

� �2
� n2j‘Hj2 �

X
i; j

hnþ1
ij ðnHÞij :

On the other side, from Gauss equation and r ¼ aH þ b, we have

sjBj2 ¼sðn2H 2 þ nðn� 1Þðr� cÞÞð2:27Þ

¼sðn2H 2 þ nðn� 1ÞðaH þ b� cÞÞ

¼sðn2H 2 þ ðn� 1ÞanHÞ

¼s nH þ 1

2
ðn� 1Þa

� �2
:

From (2.21), (2.26) and (2.27) we get

kðnHÞ ¼ 1

2
sjBj2 � n2j‘Hj2 �

X
i; j

hnþ1
ij ðnHÞijð2:28Þ

¼
X
a; i; j;k

ðha
ijkÞ

2 � n2j‘Hj2 þ n
X
a; i; j

ha
ijH

a
ij � n

X
i; j

hnþ1
ij Hij

þ ncðjBj2 � nH 2Þ � nH
X
a

trðhnþ1ðhaÞ2Þ

þ
X
a;b

ðtrðhahbÞÞ2 þ
X
a;b

Nðhahb � hbhaÞ:
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Since Mn has parallel normalized mean curvature vector, (2.19), (2.20) and (2.28)
yield

kðnHÞ ¼
X
a; i; j;k

ðha
ijkÞ

2 � n2j‘Hj2 þ ncðjBj2 � nH 2Þð2:29Þ

� nH
X
a

trðhnþ1ðhaÞ2Þ þ
X
a;b

ðtrðhahbÞÞ2 þ
X
a;b

Nðhahb � hbhaÞ:

From (2.15) and (2.22), we have

fnþ1
ij ¼ hnþ1

ij �Hdij ;

Nðfnþ1Þ ¼ trðfnþ1Þ2 ¼ trðhnþ1Þ2 � nH 2 ¼ Nðhnþ1Þ � nH 2;

trðhnþ1Þ3 ¼ trðfnþ1Þ3 þ 3HNðfnþ1Þ þ nH 3;

fa
ij ¼ ha

ij ; NðfaÞ ¼ NðhaÞ; ab nþ 2:

ð2:30Þ

By (2.29), (2.30) and Lemma 2.1, we see that

kðnHÞb njfj2ðc�H 2Þ � nH
X
a

trðfnþ1ðfaÞ2Þð2:31Þ

þ
X
a;b

ðtrðhahbÞÞ2 þ
X
a;b

Nðhahb � hbhaÞ:

By (2.18) we know that the traceless matrix fnþ1 commutes with the traceless
matrices fa, for all a. Hence we can apply Lemma 2.2 in order to obtain

X
a

trðfnþ1ðfaÞ2Þa n� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðfnþ1Þ

q
jfj2 a n� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 1Þ
p jfj3:ð2:32Þ

Moreover, Cauchy-Schwarz inequality implies that

jfj4 a p
X
a

ðNðfaÞÞ2 a p
X
a;b

ðtrðhahbÞÞ2:ð2:33Þ

Inserting (2.32) and (2.33) into (2.31), we arrive to (2.25). r

Proposition 2.5. Let Mn be a complete spacelike submanifold in Qnþp
p ðcÞ

with bounded mean curvature. If r ¼ aH þ b, a; b A R, ab 0 and ðn� 1Þa2 þ
4nc� 4nbb 0, then there is sequence of points fpkg A Mn such that

lim
k!y

nHðpkÞ ¼ n sup H; lim
k!y

j‘nHðpkÞj ¼ 0; lim sup
k!y

ðkðnHÞðpkÞÞa 0:
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Proof. Choose a local orthonormal frame field e1; . . . ; en at p A Mn such
that hnþ1

ij ¼ lnþ1
i dij . Thus

kðnHÞ ¼
X
i

nH þ 1

2
ðn� 1Þa

� �
� lnþ1

i

� �
ðnHÞii:

If H1 0 the proposition is obvious. Let us suppose that H is not identically
zero. By changing the orientation of Mn if necessary, we may assume sup H > 0.
From

ðlnþ1
i Þ2 a jBj2 ¼ n2H 2 þ nðn� 1ÞðaH þ b� cÞ

¼ ðnHÞ2 þ ðn� 1ÞaðnHÞ þ nðn� 1Þðb� cÞ

¼ nH þ 1

2
ðn� 1Þa

� �2
� 1

4
ðn� 1Þððn� 1Þa2 þ 4nc� 4nbÞ

a nH þ 1

2
ðn� 1Þa

� �2
;

we have

jlnþ1
i ja nH þ 1

2
ðn� 1Þa

����
����:ð2:34Þ

Then

Rijij ¼ c�
X
a

ðha
iih

a
jj � ðha

ijÞ
2Þb c� p nH þ 1

2
ðn� 1Þa

� �2
:ð2:35Þ

Because H is bounded, it follows from (2.35) that the sectional curvatures are
bounded from below. Therefore we may apply Lemma 2.3 to nH, obtaining a
sequence of points fpkg A Mn such that

lim
k!y

nHðpkÞ ¼ n sup H; lim
k!y

j‘nHðpkÞj ¼ 0; lim sup
k!y

ððnHÞiiðpkÞÞa 0:ð2:36Þ

Since H is bounded, taking subsequences if necessary, we can arrive to a sequence
fpkg A Mn which satisfies (2.36) and such that HðpkÞb 0. Thus from (2.34) we
get

0a nHðpkÞ þ
1

2
ðn� 1Þa� jlnþ1

i ðpkÞja nHðpkÞ þ
1

2
ðn� 1Þa� lnþ1

i ðpkÞð2:37Þ

a nHðpkÞ þ
1

2
ðn� 1Þaþ jlnþ1

i ðpkÞj

a 2nHðpkÞ þ ðn� 1Þa:

Using once more the fact that H is bounded, from (2.37) we infer that nHðpkÞþ
1
2 ðn� 1Þa� lnþ1

i ðpkÞ is non-negative and bounded. By applying kðnHÞ at pk,
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taking the limit and using (2.36) and (2.37) we have

lim sup
k!y

ðkðnHÞðpkÞÞa
X
i

lim sup
k!y

nH þ 1

2
ðn� 1Þa

� �
� lnþ1

i

� �
ðpkÞðnHÞiiðpkÞ

a 0: r

3. Proof of the main result

Proof of theorem 1.2. If Mn is maximal, i.e., if H1 0, due to Ishihara’s
result [17] we know that Mn is totally geodesic. Let us suppose that H is not
identically zero. In this case, by Proposition 2.5 it is possible to obtain a
sequence of points fpkg A Mn such that

lim sup
k!y

ðkðnHÞðpkÞÞa 0; lim
k!y

HðpkÞ ¼ sup H > 0:ð3:1Þ

Moreover, using the Gauss equation, we have that

jfj2 ¼ jBj2 � nH 2 ¼ nðn� 1ÞðH 2 þ aH þ b� cÞ:ð3:2Þ

In view of limk!y HðpkÞ ¼ sup H and ab 0, (3.2) implies that limk!yjfj2ðpkÞ
¼ supjfj2. Now we consider the following polynomial given by

Psup HðxÞ ¼
x2

p
� nðn� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 1Þ
p sup Hxþ nðc� sup H 2Þ:ð3:3Þ

If sup H 2 <
4ðn� 1Þc

ðn� 2Þ2pþ 4ðn� 1Þ
, then the discriminant of Psup HðxÞ is negative.

Hence, Psup HðsupjfjÞ > 0.
Using Lemma 2.1 and evaluating (2.25) at the points pk of the sequence,

taking the limit and using (3.1), we obtain that

0b lim sup
k!y

ðkðnHÞðpkÞÞb supjfj2Psup HðsupjfjÞb 0;

and so supjfj2Psup HðsupjfjÞ ¼ 0. Therefore, since Psup HðsupjfjÞ > 0, we con-

clude that supjfj2 ¼ 0 which shows that Mn is totally umbilical. r
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