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ON COMPLETE SPACELIKE SUBMANIFOLDS IN
SEMI-RIEMANNIAN SPACE FORMS WITH PARALLEL
NORMALIZED MEAN CURVATURE VECTOR
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Abstract

In this paper, by modifying Cheng-Yau’s technique to complete spacelike sub-
manifolds in QI’,”F (¢), we prove a rigidity theorem for complete spacelike submanifolds
in the de Sitter space with parallel normalized mean curvature vector. As a corollary,
we have the Corollary 1.1 of [7].

1. Introduction

Let Q;7(c) be an (n + p)-dimensional connected semi-Riemannian manifold
of index p and of constant curvature ¢, which is called an indefinite space form of
index p. If ¢ >0, we call it the De Sitter space of index p and denote it by
Str(e). If ¢ <0, we call it the semi-Hyperbolic space of index p and denote it
by H)*7(c). A smooth immersion ¢ : M" — Q)*?(c) of an n dimensional con-
nected manifold M” is said to be a spacelike if the induced metric via ¢ is a
Riemannian metric on M". As is usual, the spacelike submanifold is said to be
complete if the Riemannian induced metric is a complete metric on M".

The interest in the study of spacelike hypersurfaces immersed in the de Sitter
space is motivated by their nice Bernstein-type properties. It was proved by
E. Calabi [5] (for n < 4) and by S. Y. Cheng and S. T. Yau [15] (for all n) that
a complete maximal spacelike hypersurface in L™ is totally geodesic. In [22],
S. Nishikawa obtained similar results for others Lorentzian manifolds. In par-
ticular, he proved that a complete maximal spacelike hypersurface in Sl”“(l) is
totally geodesic.

Goddard [16] conjectured that a complete spacelike hypersurface with con-
stant mean curvature in de Sitter S/'*! should be umbilical. Although the con-
jecture turned out to be false in its original statement, it motivated a great deal of
work of several authors trying to find a positive answer to the conjecture under
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appropriate additional hypotheses. For instance, in 1987 Akutagawa [2] proved
. . 4n—1) .
the Goddard conjecture when H?> < 1 if n =2 and H? < % if n>2. He

also showed that when n =2, for any constant H? > ¢’ there exists a non-
umbilical surface of mean curvature H in the de Sitter space S;(c) of constant
curvature ¢ > 0. One year later S. Montiel [20] solved Goddard’s problem in
the compact case in S’”1 without restriction over the range of H. He also gave
examples of non- umblhcal complete spacelike hypersurfaces in S "1 with constant

4 1
H satisying H> > % if n > 2, including the so-called hyperbolic cylinders.

In [21], Montiel proved that the only complete spacelike hypersurface in S{’“
with constant H = 2’;71 with more than one topological end is a hyperbolic
cylinder. At the same time, the complete hypersurfaces in the de Sitter space
have been characterized by Cheng [9] under the hypothesis of the mean curvature
and the scalar curvature being linearly related.

In order to study spacelike hypersurfaces with constant scalar curvature in
de Sitter space, Y. Zheng [29] proved that a compact spacelike hypersurface
in S""'(1) with constant normalized scalar curvature r, r < 1 and non-negative
sectional curvatures is totally umbilical. Later, Q. M. Cheng and S. Ishikawa
[11] showed that Zhengs result in [29] is also true without additional assumptions
on the sectional curvatures of the hypersurface. In [19], H. Li proposed the
following problem: Let M" be a complete spacelike hypersurface in S{”'(l),

. . i n. n—2
n > 3, with constant normalized scalar curvature r satisfying —— <r < 1. Is
n

M" totally umbilical? A. Caminha [8] answered that question affirmatively
under the additional condition that the supremum of H is attained on M".
Recently, Camargo-Chaves-Sousa [6] showed that Li’s question is also true if the
mean curvature is bounded.

In higher codimension, the condition on the mean curvature is replaced by
a condition on the mean curvature vector. Let Q”(c) be the complete con-
nected semi-Riemannian manifolds of index p with constant curvature ¢ and M"
be a spacelike submanifold of QI':+P(C) with parallel mean curvature vector /.
When M" is maximal i.e., h =0, T. Ishihara [17] established a inequality for
the squared Jnorm |B|> of the second fundamental form B of M": %A\B|2 >
|B|*(nc + |B|*/2). As an important application, Ishihara proved that maximal
complete spacelike submamfolds in Q)7(c), ¢ >0, are totally umbilical and, if
¢ <0, then 0 < |B\ < —npc. Moreover he determined all the complete space-
like maximal submanifolds M" of Q;j*”( ¢), ¢ <0, satisfying |B|* = —npc. R.
Aiyama (1] studied compact spacelike submanifolds in S)*”(c) with parallel mean
curvature vector and proved that if the normal connection of M" is flat, then
M?" is totally umbilical. She also proved that compact spacelike submanifolds
in S)*7(c) with parallel mean curvature vector and non-negative sectional curva-
tures are also totally umbilical. Q. M. Cheng [10] showed that Akutagawa’s
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result [2] is valid for complete spacelike submanifolds in Sifﬂ’(c) with parallel
mean curvature vector.

In [12] and [13], Chaves-Sousa obtained a Simon type formula for the squared
norm of the traceless tensor ¢ = B — Hy, where ¢ stands for the induced metric
on a spacelike submanifold in QI’,”"’ (¢) with parallel mean curvature vector. As
an application of this formula, Brasil-Chaves-Mariano [3] obtained an other

limitation for the supremum of the mean curvature sup H? < 4(211 De

as an extension of results of [2] and [10]. (n=2)p+4n-1)
Recently, Camargo-Chaves-Sousa [7] considered complete spacelike subman-

ifold in Q)*7(c) with parallel normalized mean curvature vector (which is much

weaker than the condition to have parallel mean curvature vector) and obtained

TaeoreM 1.1. Let M" be a complete spacelike submanifold in Q;(c),
n >3, with parallel normalized mean curvature vector and constant normalized
scalar curvature r satisfying r < c. If the mean curvature H of M" satisfies

4(n—1)c
(n— 2)2p+4(n — 1)7

sup H* <
then M" is totally umbilical.

In this paper, in order to improve Theorem 1.1, we modify Cheng-Yau’s
technique to complete spacelike submanifold in Q;,’*”(c) and prove a rigidity
theorem under the hypothesis of the mean curvature and the normalized scalar
curvature being linearly related. More precisely, we have

THEOREM 1.2.  Let M" be a complete spacelike submanifold in Q)7 (c), n >3
with parallel normalized mean curvature vector. If r=aH +b, a,beR, a >0,
(n —1)a*> +4n(c — b) > 0 and the mean curvature H of M" satisfies

4(n—1)c
(n=2)°p+4(n—1)

sup H? <
then M" is totally umbilical.

Remark 1.3. If we choose a=0 and b < ¢ in Theorem 1.2, we obtain the
Theorem 1.1.

Acknowledgement. This work was done while the author was visiting Uni-
versity of Notre Dame. The author is grateful for the hospitality of the math-
ematical department of University of Notre Dame.

2. Preliminaries

Let M" be an n-dimensional Riemannian manifold immersed in Q,*”(c).
For any pe M, we choose a local orthonormal frame ej,...,e,1, In Q;’*P(c)
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around p such that ej,...,e, are tangent to M". Take the corresponding dual
coframe wy,...,w,4p. We use the following standard convention for indices:

1<A4,B,C,...<n+p, 1<ijk,...<n n+1=<apfy...<n+p.

Let ¢ =1, & = —1, then the structure equations of QJ*”(c) are given by
(2.1) dw 4 :Z.stAB/\a)B, w4p+ wps =0,
B
1
(2~2) dwyp = ; Ecwyc NWCB — § ; ecepRapcpwc A wp,
(2.3) Rupcp = ceae(04cOpp — 04ndBC).

Restricting those forms to M", we have
(2.4) w, =0, n+l<a<n+p.

So the Riemannian metric of M" is written as ds*> =), w?. Since 0 = dw, =
>0y Aw;, from Cartan lemma, we can write

(2'5) Wy = Zh;a)j, h; = h;;.
J

Let B=5

1 1
h= ZZI(Z, h#)e, and by H = |h| = . >0 h#)? the mean curvature vector

xi,; Mjwiw;e, be the second fundamental form. We will denote by

and the mean curvature of M", respectively.
The structure equations of M" are

n
(2.6) dw; = W A, @+ w; =0,
=1
n 1 n
(27) da)i/‘ = Z Wi N W — E Z R[/k](()k A y.
k=1 k,i=1
The Gauss equations are
(2.8) Ry = c0di — Sad) — > _(hihi — hih?,),
o
(2.9) n(n—1)r=n(n—1)c—n’H*+|B|?,

where r is the normalized scalar curvature of M” and |B|* = Dowi j(hij?)z is the
norm square of the second fundamental form of AM”.
The Codazzi equations are

(2.10) B = b= b,
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where the covariant derivative of 4 is defined by

(2.11) > hor = dhi+ > hion+ > hiog — > hog,.
k k k p

Similarly, the components hij”:k, of the second derivative V?h are given by

(2.12) > higor=dhl + > o+ > hiop+ > hbor — > hop,.
/ / / / B

By exterior differentiation of (2.11), we can get the following Ricci formula
(2.13) B = e =3 hk Rt + > W Ry + > Wi Ry,
m m s

The _Laplacian Ah;‘ of hj is defined by Ahgzzkhgkk, from the Codazzi
equation and Ricci formula, we have

(2.14) ARE ="+ b Rugic + Y hi Ruge + > 1y Rugie.
k m, k m,k k,p

h .
If H #0, we choose e, = then it follows that

1 1
(2.15) H"' .= EZr(h"“) =H; H”:=—ur(h") = —Hou,, Vazn+2,

where /* denotes the matrix (h}). From (2.11) and (2.15), we can see that

(2.16) > HM'op=dH; Y Hiwg=-Hou,, Ya=n+2.
k k
From (2.12), (2.15) and (2.16) we have

1
(2.17) it = H = > HUH],
p>n+1

where
dH = ZHiwh VH = ZHklwl = dH + Zlelk-
7 ] 7

If M" has parallel normalized mean curvature vector, we have
(2.18) Opi1y =0, K% = h*h" Yo

Then (2.16) and (2.17) yield

(2.19) H=0, Vk,o>n+2; H}'=Hy.
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From (2.12) and (2.19) we obtain
(2.20) H}=0, a=n+2.
From (2.24) of [7] we have

(2.21) —A|B| —2ZA DP= " (3P + > hinh

o0, ] o, i, j, k o, j

Z (h) +nZh°‘H“+nc (|B]* — nH?)

o, i, ),k o0,

- nHZ (k" (h*)?) + Z tr(h*h?)? +> " N(*hF — hPh),

% f

where N(A4) = tr(AA"), for all matrix 4 = (a;).
Set ¢; = hj — H"5y, it is easy to check that ¢” is traceless and

4° = Z(¢§)2 = |B|* — nH?
(2.22) oy
N(¢*) = N(h*) —n(H")*, n+1<a<n+p,

where ¢” denotes the matrix (¢;). Following Cheng-Yau [15], we introduce a
modified operator [] acting on any C>-function f by

(2.23) a) = Z((nHJF”T_Ia)(S,-j —h;;“)ﬁj,

iJ

where f; is given by the following

Zf,-ja)j = dfl + ];COU
J

LEmMMa 2.1. Let M" be a complete spacelike submanifold of Q)7 (c) with
r=aH +b, a,beR and (n—1)a®> +4nc —4nb > 0. Then we have

(2.24) VB> = > (h}y)? = n?|VH|".
o, i, j k

Proof. From Gauss equation, we have
|B|> = n?H?> + n(n—1)(r— ¢) = n*H* + n(n — 1)(aH + b — ¢).

Taking the covariant derivative of the above equation, we have

2Zhlj = = 2’ HHj. + n(n — 1)aHj.

o,i,j
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Therefore,
2
4|B)*|VB|* > 42 <Z h} ,,k> [2n*H + n(n — 1)a)*|VH|*.
o, i,

Since we know

[2n°H + n(n — 1)a)* — 4n®|B)* = 4n*H? + n*(n — 1)%a® + 4n’(n — 1)aH
—4n*(nPH? +n(n—1)(aH + b — ¢))
n’(n—1)a® —4n*(n— 1)(b — ¢)
=n*(n—1)[(n — 1)a* +4nc — 4nb] = 0

it follows that

\VB|* > n*|VH|”. O

We will need the following algebraic lemma, whose proof can be found in
[27].

Lemma 2.2. Let A,B:R" —R" be symmetric linear maps such that
AB—BA =0 and tr(4) = tr(B) =0. Then

r A2 < =2 N(4)VNB).
ir 48] = L2 () /NB

We also will need the well known generalized Maximum Principle due to H.
Omori [25].

LemMa 2.3. Let M" be an n-dimensional complete Riemannian manifold
whose sectional curvature is bounded from below and f : M" — R be a smooth
function which is bounded from above on M". Then there is a sequence of points
{pr} in M" such that

Jim f(pk) = sup f; Jim IVf(px)l = 0;  limsup(Af(pi)) <O0.

k— o0

ProOPOSITION 2.4. Let M" be a complete spacelike submanifold in Q;’“’ (¢)
with parallel normalized mean curvature vector. If r=aH +b, a,beR and
(n—1)a* + 4nc — 4nb > 0, then the following inequality holds

(225) D) = |9 <'¢' %maﬁun(c—m))



COMPLETE SPACELIKE SUBMANIFOLDS

Proof. From (2.23) we have

(2.26) O(nH) = zj:((nH + % (n— 1)a>5,, — h;;“) (nH);

1 n+l
:(nH+2(n—l > Zh (nH);

_ (nH +%(n - 1)a>A(nH +%(” - Ua) =Y hit(nH),

iJ

BN Y S ’
—2 n 2}1 a

— ’V(nH—&-%(n— l)a>

2

— Zh;;“(nH),j

iJ

1 1 : 2 2 n+1
ZEA(nH—&—E(n—I)a) —n*|VH| _Zhij (nH),;.

iJ

On the other side, from Gauss equation and r = aH + b, we have

(2.27) A|B)? = Am*H? +n(n—1)(r — ¢))
A(nsz +n(n—1)(aH +b —c))
A(

n*H?* + (n— 1)anH)

1 2
A(nH—i—E(n— 1)a> .
From (2.21), (2.26) and (2.27) we get

1
(2.28) D(nH):§A|B|2—n2|VH| Zh”“ nH);

= > (hj)* =’ |VH? +nY hiHZ —nY_ hit' Hy
i,j

o, i, j, k o6, J

+ne(|BI> = nH?) —nH > tr(h" (h*)?)

+ 3 (tr(h*h#)? + > N(h P — hPh?).
o f o,

49
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Since M" has parallel normalized mean curvature vector, (2.19), (2.20) and (2.28)
yield

(229)  O@mH)= Y (h%)* —n*|VH|* + nc(|B]> — nH?)
o, i, j, k

—nH Y (B () Y (k1) + > NP — WP
o o, f

% f

From (2.15) and (2.22), we have

n+l _ pn+l
¢ij —hij+ _H5Z/7

N(¢n+l) — tr(¢n+1)2 — tr(h"H)z _ nHZ — N(hn+l) _ I/le,
tr(hn+1)3 _ lr(¢l’l+l)3 + 3HN(¢11+1) +I1H3,

P=hl N =N, a=n+2

(2.30)

By (2.29), (2.30) and Lemma 2.1, we see that
(231) OnH) = nlg|*(c — H?) = nH Y (9™ (4%)?)
+ 3" (er(h?h?))? + 3" N (WP — WP R,
Ly o, f

By (2.18) we know that the traceless matrix ¢""' commutes with the traceless
matrices ¢, for all «. Hence we can apply Lemma 2.2 in order to obtain

Y R Ve

_r=s _n=s 3
n(n—1) n(n—l)lqﬁ‘ .

(232) D (" () <

Moreover, Cauchy-Schwarz inequality implies that

(2.33) 91" < pd (N(@)* < p) (ir(h*h’))*.
o o, f

Inserting (2.32) and (2.33) into (2.31), we arrive to (2.25). O

PROPOSITION 2.5.  Let M" be a complete spacelike submanifold in Q)" (c)
with bounded mean curvature. If r=aH +b, a,beR, a>0 and (n—1)a>+
4dnc — 4nb > 0, then there is sequence of points {pi} € M" such that

lim nH(py) =nsup H; klim |VuH (p)| = 0;  limsup(Cl(nH)(pr)) < 0.

k— o0 Je— o0
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Proof. Choose a local orthonormal frame field e,...,e, at pe M" such
that A" = /"'y Thus

O(nH) = Z KnH +%(n - 1)a) — “;’“} (nH),.

If H =0 the proposition is obvious. Let us suppose that H is not identically
zero. By changing the orientation of M" if necessary, we may assume sup H > 0.
From

(Y2 < |B)* = n?H? 4+ n(n—1)(aH + b — ¢)
= (nH)* + (n— Da(nH) +n(n — 1)(b — ¢)

2
= (nH—&—%(n - 1)(1) —%(n —1)((n — 1)a* + 4nc — 4nb)

(ot o ).

<
we have
(2.34) ) < nH—i—%(n— 1)al.
Then
(2.35) R =c— > (hih% — (h})?) = ¢ — p<nH +%(n - 1)a>2.

Because H is bounded, it follows from (2.35) that the sectional curvatures are
bounded from below. Therefore we may apply Lemma 2.3 to nH, obtaining a
sequence of points {p;} € M" such that

(2.36) lim nH(px) =nsup H; klim |VnH (pr)| = 0; limsup((nH),;(px)) < 0.

k— o0 k— o0

Since H is bounded, taking subsequences if necessary, we can arrive to a sequence
{px} € M" which satisfies (2.36) and such that H(p;) > 0. Thus from (2.34) we
get

1 1 .
(2.37)  O0<nH(pr) + E(n —1)a— |/1;’+l(pk)| < nH(pi) +§(n —1a— A,“(pk)

1 n
< nH (pe) +5 (n = Da+ 27 ()|
<2nH(pr) + (n— 1a.

Using once more the fact that H is bounded, from (2.37) we infer that nH (py) +
L(n—1)a—2"""(px) is non-negative and bounded. By applying [I(nH) at py,
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taking the limit and using (2.36) and (2.37) we have
. . 1
lim sup(((nH)(py)) < E lim sup{(nHJrz(n - l)a) - ,1[,"+1] (pi)(nH),(pr)
k— o0 i k— o0

<0. O

3. Proof of the main result

Proof of theorem 1.2. If M" is maximal, i.e., if H =0, due to Ishihara’s
result [17] we know that M" is totally geodesic. Let us suppose that H is not
identically zero. In this case, by Proposition 2.5 it is possible to obtain a
sequence of points {pr} € M" such that

(3.1 limsup(CI(nH ) (pr)) < 0, klim‘ H(pr) =sup H > 0.

Moreover, using the Gauss equation, we have that
(3.2) |9|* = |B]* —nH?> = n(n—1)(H?>+aH + b — ¢).

In view of limi_., H(py) =sup H and a >0, (3.2) implies that limi_ . |¢|*(px)
= sup|¢|2. Now we consider the following polynomial given by

2 —2
(3.3) Pgup 1 (x) :X——M sup Hx + n(c — sup H?).
p nn—1)
2 4(n—1)c . . .
If sup H- < , then the discriminant of Pg,, y(X) is negative.

(n— 2)217 +4(n-1)
Hence, Pgyp m(sup|g|) > 0.

Using Lemma 2.1 and evaluating (2.25) at the points p; of the sequence,
taking the limit and using (3.1), we obtain that

0= li§n sup(CI(nH)(px)) = supl@|’ Psup 1 (supl4|) = 0,
and so sup|¢|2PsupH(sup|¢|) =0. Therefore, since Pgyp g (sup|g|) >0, we con-
clude that sup|g|? =0 which shows that M”" is totally umbilical. O
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