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ON IZUMI’S THEOREM ON COMPARISON OF VALUATIONS
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Abstract

We prove that the sequence of MacLane key polynomials constructed in [7] and [3]

for a valuation extension ðK; nÞH ðKðxÞ; mÞ is finite, provided that both n and m are

divisorial and m is centered over an analytically irreducible local domain ðR;mÞHK ½x�.
As a corollary, we prove Izumi’s theorem on comparison of divisorial valuations. We

give explicit bounds for the Izumi constant in terms of the key polynomials of the

valuations. We show that this bound can be attained in some cases.

1. Introduction

We give a proof of the finiteness of the sequence of MacLane key poly-
nomials of the extensions of the valuations, in the case of divisorial valuations
centered over an analytically irreducible domain (Theorem 3.6). As a result, we
are able to prove Izumi’s theorem:

Theorem 1.1. Suppose m and m 0 are two divisorial k-valuations of a field
K=k such that K is the quotient field of an analytically irreducible local domain
ðR;mÞHK. Furthermore, suppose that m and m 0 are centered over ðR;mÞ (with
common center m1). Then there exists a real number c > 0 such that mðyÞ <
cm 0ðyÞ, for y A Rnf0g. Therefore, the Izumi constant of these two valuations,

namely the number cRðm; m 0Þ :¼ supy ARnf0g
mðyÞ
m 0ðyÞ

� �
, is well-defined.

In [6] Izumi proved an analogous result of Theorem 1.1 in the case where R
is the local algebra of a point x A X for a reduced and irreducible complex space
ðX ;OX Þ, and when m is the order function in the point x and m 0 is the pullback
of m under a morphism f : ðY ; hÞ ! ðX ; xÞ (However, notice that in this case the
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mappings m and m 0 are not necessarily valuations). In [10] Rees stated Izumi’s
result in an algebraic setting and proved Theorem 1.1. In [5] Theorem 1.1 is
proved when ðR;mÞ is an analytically irreducible excellent domain.

In Section 2 we describe the main results of the theory of key polynomials.
In Section 3 we prove the finiteness of the key polynomials of the divisorial

valuation extension ðK ; nÞH ðKðxÞ; mÞ, provided that m is centered over an analyti-
cally irreducible local domain ðR;mÞHK ½x�.

In Section 4 we use the theory of key polynomials to prove Izumi’s theorem
(Theorem 1.1). From a computational point of view, an interesting question is to
compute the Izumi constants. In [5], the Izumi constants are computed for some
special examples. In [11], the Izumi constants are used to give bounds for the
Artin functions which arise in the Artin approximation theory. Here, we give
explicit bounds for the Izumi constant cðm; m 0Þ in terms of the key polynomials of
the valuation m. We show that in certain cases this bound is equal to the Izumi
constant; For example we compute cðm; ordn;bÞ for any divisorial valuation m
which extends n (Theorem 4.3.(ii)).

Acknowledgments. I would like to thank Bernard Teissier for his helpful
comments and questions, Shahram Mohsenipour for discussions on the valuations
and Tirdad Sharif for his comments. Also, I would like to thank the referee for
pointing out a serious mistake in an earlier version of this paper, his helpful
comments and interesting examples.

2. Valuations and key polynomials

In this section we fix the notation and recall the main results of the theory of
key polynomials.

Throughout this section ðK ; nÞ is a field with a valuation n whose value
group is an ordered subgroup of the ordered group ðR; <Þ. However, the theory
presented in this section is generalized in [13] and [3] for valuations with value
groups of arbitrary rank. If we allow that the value nðyÞ of some nonzero ele-
ments y A K can be y then we say that n is a pseudo-valuation. A k-valuation
n of a field K=k is a valuation of K such that njk � ¼ 0. In this paper, all the
fields K that we consider are extensions of a base field k and all the valuations n
of K are k-valuations. We consider the field extension L ¼ KðxÞ. In the case
where x is transcendental over K we say L=K is of transcendental type, and when
x is algebraic over K we say L=K is of algebraic type. We assume m is a (not
necessarily divisorial) valuation on L extending n, i.e., ðK ; nÞH ðL; mÞ. If L=K is
of algebraic type, we denote the minimal polynomial of x over K by PðXÞ (X is a
new variable transcendental over K), and assume deg PðX Þ ¼ N. Notice that in
the algebraic type case we have L ¼ K ½X �=ðPðX ÞÞ, and every element y A L has
a unique representative yðXÞ A K ½X � of degree strictly less than N. For y A L we
define deg y ¼ deg yðXÞ.

The valuation ring of the valuation n is denoted by Rn; It is the ring
consisting of nonzero elements whose value is b 0, and the zero element. It is
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a local ring with maximal ideal mn ¼ fy A Rn : nðyÞ > 0g. The residue field of

the valuation n is by definition equal to the field kn ¼
Rn

mn
. Let R be an integral

domain, and suppose n is centered on the ring R, which means RJRn. In this
situation the center of the valuation n over the ring R is defined to be the ideal
p ¼ mn VR. By defenition, in the case n is centered on the local ring ðR;mÞ the
center of the valuation over R is equal to m. A valuation n with value group
isomorphic to Z, centered over a local domain ðR;m; kÞ is called divisorial if
tr:degðkn=kÞ ¼ dim R� 1. For f A R; set

PfðRÞ ¼ fx A R j nðxÞb fg;
Pþ

f ðRÞ ¼ fx A R j nðxÞ > fg;
where we agree that 0 A Pf for all f; since its value is larger than any f; so that
by the properties of valuations the Pf are ideals of R:

The graded algebra associated with the valuation n over the ring R is defined
as

grn R ¼ 0
f AR

PfðRÞ=Pþ
f ðRÞ:

See [12] for the foundational facts about this graded ring and its role in the
local uniformization problem.

For each non-zero element x A R; there is a unique f A R such that x A
PfnPþ

f ; the image of x in the quotient ðgrn RÞf ¼ Pf=P
þ
f is the initial form innðxÞ

of x.

Definition 2.1. A sequence of key polynomials for the extension ðL; mÞ
of ðK ; nÞ, with respect to a ring RJRm, is a well-ordered set U ¼ fUigiaa HR,
where a is an ordinal number, which has the following properties: For each
b A R the additive group PbðRÞ is generated by all the products of the form
c
Q

iaa U
ai
i , where c A K and ai ¼ 0 except for a finite number of i, such that

nðcÞ þ
P

iaa aibi b b, where bi ¼ mðUiÞ. Moreover, the set U is minimal with
this property.

For any ia a we define Ua
½i� :¼

Q
jai U

aj
j , where a A N i and aj ¼ 0 except for

a finite number of j. All the sequences of key polynomials of the extension
ðL; mÞ=ðK ; nÞ that we study are sequences of key polynomials with respect to the
ring R ¼ K ½x�. From now on, we simply call them the sequence of key
polynomials of the extension ðL; mÞ=ðK ; nÞ.

Next we define a combinatorial sequence of weighted polynomials of the ring
K½x�, called a weighted basis of K ½x�. We will see that the sequence of key
polynomials associated to a valuation extension ðK ; nÞH ðL; mÞ in [7], [13], and
[3], are also a weighted basis of K ½x�. But the converse is not true in general
(See the discussion before Theorem 2.6). However, the notion of the weighted
basis simplifies the combinatorial part of the description of the extension of the
valuation ðK ; nÞ.
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Definition 2.2. A sequence of weighted polynomials U ¼ fUigiaa HK ½x�, a
an ordinal, with weights oðUiÞ ¼ bi A R, is called a weighted basis for K ½x� with
respect to the valuation ðK ; nÞ, when it satisfies the following conditions.

(a) For every ia a we have

Uiþ1 ¼ Umi

i þUmi�1
i fi;mi�1 þ � � � þUi fi;1 þ fi;0;ð1Þ

where deg fi; j < deg Ui, for j ¼ 0; . . . ;mi � 1. Moreover, we have biþ1 >
mibi. In the case L=K is of algebraic type we have deg Ui aN, for
ia a.

(b) For every ia a and every f A L there exists expansions (called i-adic
expansions of f )

f ¼
X
l

clU
al
½i� ;ð2Þ

where cl A K , al A N i, al; j < mj for j < i. In the case that j is a limit
ordinal, and the set Eð jÞ ¼ f j 0 : j 0 < j; j 0 þ o ¼ j;mj 0 ¼ 1g is non-
empty, we allow at most for one j 00 a j 0 < j that al; j 0 < mj, where j 00
is the first element of the well-ordered set Eð jÞ. And in the case L=K is
of algebraic type we have

P
jai al; j deg Uj aN.

(c) For any ia a we define a weight map oi : K ½x� ! R as follows: For
any f A K ½x�

oið f Þ ¼ minl nðclÞ þ
X
jai

al; jbj

( )
;ð3Þ

where f ¼
P

l clU
al
½i� , is an i-adic expansion of f . Then we have

oið fi; jÞ þ jbi ¼ mibi;ð4Þ

for j ¼ 0; . . . ;mi � 1 in the equation (1). In other words, all the compo-
nents in the right hand side of the equation (1) are of the same oi-weight.

(d) When L=K is of transcendental type we have aao2. In this case: If
a ¼ o, either degi!o Ui ¼ y, in which case we write Uo ¼ 0. Or, there
exists a natural number i0 such that for jb i0 we have deg Uj ¼ deg Ui0 ,
in which case we have

Uo ¼ lim
i!o

Ui A K̂K ½x�:ð5Þ

The field K̂K is, by definition, the completion of K with respect to the
valuation n. Moreover, in this case bo ¼ limi!o bi ¼ y.

(e) For any i < a we have biþ1 > mibi (As a result, for any j < i we have
bi > ð

Q
jaj 0<i mj 0 Þbj).

2! is the ordinal type of the set of natural numbers.
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The existence of the i-adic expansions is a result of the Euclidean division
algorithm ([7], [13], [3], [8]): Given an element f A L, by successive division of f
with Ui one can write

f ¼ U r
i fj þ � � � þUi f1 þ f0;ð6Þ

where deg fj < deg Ui. Now, for any fj let j 0 be the largest index such that
deg fj b deg Uj 0 , and repeat the same procedure for fj and Uj 0 . This produces
the i-adic expansion of f in the equation (2). This algorithm shows that in the
i-adic expansion we have al; i 0 < mi 0 , for i 0 < i.

For ia a a monomial of i-adic form is a product cUa
½i�, such that aj < mj, for

j < i and c A K . Thus equation (2) shows that every element f A L has a unique
expansion in terms of the monomials of i-adic form.

Remark 2.3. (i) We have deg Uiþ1 ¼ mi deg Ui.
(ii) When L=K of algebraic type, in the construction of [3] the key

polynomial Uiþ1 is obtained by lifting to L of the minimal polynomial
of in Ui (which is an element of a suitable graded ring), so, in general
the key polynomials can have degree N. Some times we consider the
reduced form of the Ui, denoted by Ui, which are the unique
representations of the Ui of degreeaN � 1 (we get Ui after dividing
Ui by the minimal polynomial of x over K). Notice that if degðUiÞ < N
then Ui ¼ Ui. For an adic expansion

P
i MiðUÞ we define the reduced

form of the adic expansion by replacing every Uj by Uj, in every adic
monomial MiðUÞ.

(iii) For any j > i it is not necessarily true that the j-adic expansion of Ui is
itself (For example if mi ¼ 1 then Uiþ1 ¼ Ui � fi;0, and the ði þ 1Þ-adic
expansion of Ui is equal to Uiþ1 þ fi;0); However, we have ojðUiÞ ¼ bi.

(iv) If deg f < deg Ui then for any jb i the j-adic expansion and i-adic
expansion of f are identical. Thus, we have ojð f Þ ¼ oið f Þ.

(v) For any i < a we have oið f Þ < oiþ1ð f Þ, for any f A L.
(vi) For ia a any expansion f ¼

P
a caU

a
½i�, for a A N i and without any

restriction on aj, is called an i-expansion of the element f .

The main result of the theory of the key polynomials clarifies the relation
between the totality of the extensions ðK ; nÞH ðL; mÞ and the weighted bases of
K½x� with respect to the valuation ðK ; nÞ.

Theorem 2.4 ([7], [13], [3]). Given a valuation extension ðK ; nÞH ðL; mÞ, such
that ðK ; nÞ is divisorial, there exists a weighted basis U of K ½x�, with weights
oðUiÞ ¼ mðUiÞ, which is at the same time a sequence of key polynomials for m.
Moreover, if L=K is of transcendental type (resp., if L=K is of algebraic type)
for this valuation the weight maps oi are valuations of the field L (resp., of the
field KðXÞ, where X is a new variable) extending ðK ; nÞ; We have o1ð f Þ <
o2ð f Þ < � � � < oað f Þ, for any f A L, and we have m ¼ oa.
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We remark that Theorem 2.4 is valid without the assumption of ðK ; nÞ being
divisorial (see [13] and [3]). One of the technical subtleties of the construction of
the key polynomials is in the case of key polynomials indexed with limit ordinals.
Later we show that in the course of extending divisorial valuations ðK ; nÞ to
divisorial valuations ðL; mÞ we do not meet limit ordinals, provided that n is
centered over an analytically irreducible domain ðR;mÞHK .

Remark 2.5. We have:
(i) In the case L=K is of algebraic type for i < a the valuations ðKðX Þ;oiÞ

are not valuations of the field L (in general). But for any element f A L
if the initial of the i-adic expansion is equal to the initial of its i þ 1-adic
expansion then for ia ja a we have ojð f Þ ¼ oað f Þ ¼ mð f Þ. In other
words, the i-adic expansion of such elements su‰ces to determine the
value of f .

(ii) The converse of theorem 2.4 is not true, i.e., it is not true that to every
weighted basis fUi; bigiaa of K ½x� one can associate a valuation extension
ðK ; nÞH ðL; mÞ such that m ¼ oa. More precisely, in general the weight
maps oi associated to a weighted basis U are not valuations of the field L.

In the construction of key polynomials of [3], only the last weight map will
be a valuation of L. This gives a class of examples of weights maps which are
not valuations, when L=K is of algebraic type. When L=K is of transcen-
dental type the situation seems to be di¤erent; We have a su‰cient algebraic
condition of MacLane for weights to be valuations. But, it is not clear whether
MacLane’s condition is automatically satisfied by any weighted basis or not.

Theorem 2.6 ([7] Theorem 4.2, and [13], Theorem 1.2). Suppose fUigiaa is
a weighted basis of K ½x� with respect to the (not necessarily divisorial) valuation
ðK ; nÞ. Suppose for some i < a, when L=K is of transcendental type (respectively,
when L=K is of algebraic type) all the weight maps oi are valuations of the field
L (respectively, are valuations of the field KðXÞ). If inoi

ðUiþ1Þ is irreducible in
groi

K ½x� and of minimal degree (in the sense that if for some f A K ½x� we have
inoi

ðUiþ1Þ j inoi
ð f Þ then degð f Þb degðUiþ1Þ) then the weight map oiþ1 is a valua-

tion of the field L, when L=K is of transcendental type, and a valuation of the field
KðX Þ, when L=K is of algebraic type.

A su‰cient combinatorial condition for oi to be a valuation can be given.
Suppose fUi; bigiaa is a weighted basis of K ½x� with respect to the (not necessarily
divisorial) valuation ðK ; nÞ. Let Fi ¼ ðnðKÞ; b1; . . . ; biÞHR be the group gen-
erated by the first i-weights. Set ni ¼ ½Fi : Fi�1�. Note that we must have

mi ¼ ni pi;ð7Þ
for some pi A N (mi is defined in (1)) and moreover equation (1) should be of the
form:

Uiþ1 ¼ U
ni pi
i þU

niðpi�1Þ
i fi;niðpi�1Þ þ � � � þU ni

i fi;ni þ fi;0:ð8Þ
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Theorem 2.7. With the notation of the last paragraph, if mi ¼ ni then the
weight maps oi are valuations.

Proof. The proof of Theorem 4.7 of [8] can be adapted to this situation.
r

In the special case where K ¼ kððyÞÞ, where k is algebraically closed, we
have a complete combinatorial characterization of the weighted bases of K ½x�
which correspond to the key polynomials. In [1], Chapter 3, Favre and Jonsson
give an explicit construction of the key-polynomials of the K ½x�. In our settings,
they show that any weighted basis of K ½x� corresponds to a valuation only if
mi ¼ ni (See [1], Corollary 2.5, and Theorem 2.29). Thus, we have

Theorem 2.8. In the case where K ¼ kððyÞÞ, and k is algebraically closed,
the converse of Theorem 2.7 is true, i.e., if fUi; bigiaa is a weighted basis of K ½x�
such that the corresponding weight maps oi are valuations then mi ¼ ni.

Definition 2.9. Let a be an ordinal. Let us denote by K ½U � the poly-
nomial ring K ½U1; . . . ;Ua�. We define a sequence ~ooi of Gauss valuations on the
fields KðU1; . . . ;UiÞ as follows: Fixing values ~ooiðUjÞ ¼ bj , for ja a, we extend
~ooi to f ðUÞ ¼

P
l clU

al
½a� A K ½U1; . . . ;Ui� by

~ooið f ðUÞÞ ¼ minl nðclÞ þ
X
jai

al; jbj

( )
:

The valuation ~ooi defines a weight map on the space of the i-expansions
of the elements of K½x�. More precisely, if f1 ¼

P
a caU

a
½i� is an i-expansion of

the element f A K ½x� then we define ~ooið f1Þ ¼ ~ooið
P

a caU
a
½i�Þ. Notice that ~ooið f Þ, is

not well-defined for an element f A K½x�. The next theorem gives an algorithm
to get the adic expansion of the elements of K ½x� without making divisions
(Although being general, we explain the algorithm only in the case of finitely
many key polynomials, which is the case we will use later).

Theorem 2.10. Suppose fUi; bigiaa, a A N, is a weighted basis of K ½x� with
respect to the valuation ðK ; nÞ, and let f A K½x�. Then we have:

(i) If f0 ¼
P

a caU
a, where a A N i, is the i-adic expansion of f then the

ði þ 1Þ-adic expansion of f can be obtained by the following algorithm:
(a) In f0 replace any occurrence of U mi

i by its ði þ 1Þ-adic expansion:

Umi

i ¼ Uiþ1 �Umi�1
i fi;mi�1 � � � � �Ui fi;1 � fi;0:ð9Þ

Suppose f1 ¼
P

b cbU
b, where b A N iþ1, is the resulting expansion of

f .
(b) In f1, for any ja i replace any occurrence of U

mj

j by its ð j þ 1Þ-adic
expansion. Suppose f2 A K ½U � is the resulting expansion of f .

(c) Iterate step (b), as far as possible.
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(ii) If f0 ¼
P

a caU
a, where a A N iþ1, is the ði þ 1Þ-adic expansion of f then

the i-adic expansion of f can be obtained by the following algorithm:
(a) In f0 replace any occurrence of Uiþ1 by its i-adic expansion:

Uiþ1 ¼ Umi

i þUmi�1
i fi;mi�1 þ � � � þUi fi;1 þ fi;0:ð10Þ

Suppose f1 ¼
P

b cbU
b, where b A N iþ1, is the resulting expansion of

f .
(b) In f1 for any j < i replace any occurrence of U

mj

j by its ð j þ 1Þ-adic
expansion. Suppose f2 A K ½U � is the resulting expansion of f .

(c) Iterate step (b), as far as possible.
Both algorithms stop after a finite number of steps and in both cases they generate
a sequence of expansions for f : f1; f2; . . . ; ft, where t A N. In the case (i), ft is
equal to the ði þ 1Þ-adic expansion of f , and in the case (ii), ft is equal to the i-adic
expansion of f . Moreover, in the case (i), we have ~ooiþ1ð f1Þa ~ooiþ1ð f2Þa � � �a
~ooiþ1ð ftÞ ¼ oiþ1ð f Þ, where ~ooiþ1 is the valuation of the ring K½U1; . . . ;Uiþ1�, defined
in Definition 2.9, and oiþ1 is the weight map associated to the weighted basis
fUi; bigiaa in Definition 2.2. And in the case (ii), we have ~ooið f1Þa ~ooið f2Þa � � �a
~ooið ftÞ ¼ oið f Þ.

Proof. The proof of Proposition 3.10 of [8] can be adapted to this situation
(See also Lemma 6.5 of [9]). r

3. Finiteness of key polynomials

There are delicate relations between valuations over a local domain ðR;mÞ
and its (possible) extensions to the m-adic completion ðR̂R;mR̂RÞ. In general, such
an extension need not exist and in case of the existence, such extensions are far
from being unique and the classical invariants of the extension may change in
general [2], [12], and [4]. However, in the case of divisorial valuations, centered
over an analytically irreducible local domain, such extensions exist and are
unique. The local domain ðR;mÞ is called analytically unramified (resp., analyti-
cally irreducible) if the m-adic completion ðR̂R;mR̂RÞ does not contain nilpotent
elements (resp., is a domain).

Lemma 3.1 ([5], Lemma 1.1). Let ðR;mÞ be an analytically irreducible
domain. Then every divisorial valuation, centered over ðR;mÞ, extends naturally
to a divisorial valuation centered over ðR̂R;mR̂RÞ, where R̂R is the m-adic completion
of R.

Proposition 3.2. Suppose n is a valuation of rank 1, centered over the
Noetherian local domain ðR;mÞ. Assume that n extends to a valuation m of rank
1, centered over the local ring ðR̂R;mR̂RÞ, where R̂R is the m-adic completion of
R. Then such an extension is unique. Moreover, given any 00 f ¼ f figi AN A R̂R,
where fi is a Cauchy sequence in R, there exists i0 A N such that for all jb i0 we
have mð f Þ ¼ nð f Þ.
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Proof. As ðR;mÞ is Noetherian nðmÞ > 0 exists. Choose i0 A N such that
i0nðmÞ > mð f Þb 0. We have f � fj A m j . Thus, for jb i0 we have mð f � fjÞ >
mð f Þ, which shows that mð f Þ ¼ mð fjÞ ¼ nð fjÞ. r

The last two results give us:

Corollary 3.3. Let ðR;mÞ be an analytically irreducible domain. Then for
every divisorial valuation centered over ðR;mÞ there is a unique extension of n to a
divisorial valuation centered over ðR̂R;mR̂RÞ.

Here we mention an obvious result

Theorem 3.4. Let n be a divisorial valuation centered over an analytically
irreducible local domain ðR;mÞ. Then Rn is analytically irreducible.

Here, we notice an easy consequence of the commuting of the completion
with the quotient:

Lemma 3.5. Suppose R½x� is an analytically irreducible local domain, and K
is the quotient field of R. Assume that x is algebraic over K. Let S (resp., R̂R) be
the completion of R½x� (resp., the completion of R) with respect to their (respective)

maximal ideals. And, assume that K̂K is the quotient field of R̂R. Then, the min-
imal polynomial of the element x A R over K is identical to the minimal polynomial
of x A S over K̂K .

Finally, we are ready to prove the finiteness result:

Theorem 3.6. If ðK ; nÞH ðL; mÞ is a valuation extension and fUi; bigiaa is a
weighted basis of K ½x� with respect to ðK ; nÞ such that m ¼ oa and n, m be divisorial
valuations. Moreover, assume that m is centered over an analytically irreducible
domain ðR;mÞHL. Then the number of key polynomials of the divisorial valua-
tion ðL; mÞ is finite, i.e., we have a < o.

Proof. As ðK ; nÞ is a divisorial valuation, we have dim n ¼ tr:degk kn ¼
tr:degk K � 1. Suppose we have abo. As the extended valuation m is discrete,
we see that aao (bo b limi!o bi ¼ y). Thus, we only need to consider the
case a ¼ o. We distinguish the two cases of the transcendental and algebraic
type:

� If L=K is of transcendental type, and a ¼ o, we show that

dimk km ¼ dimk kn ¼ tr:degk L� 2:ð11Þ
Hence ðL; mÞ cannot be a divisorial valuation (because if m was a divisor-
ial valuation then dimk km ¼ tr:degk L� 1). To prove equation (11) first
notice that as ðL; mÞ is an extension of ðK ; nÞ, we have kn J km. It is
su‰cient to show that km is an algebraic extension of kn. Consider the
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natural map i : Rm ! km. Clearly, it is su‰cient to prove i
caU

a
½i�

cbU
b
½i�

 !
is

algebraic over kn, for any i < a and a; b A N i such that
caU

a
½i�

cbU
b
½i�

A Rm. We

prove this by induction on i. Note that, without loss of generality, we can
assume ai > 0 and bi ¼ 0. Suppose the claim is proved for i � 1, we prove

it for i. Let M ¼ i
caU

a
½i�

cbU
b
½i�

 !
0 0. Write nibi ¼ b0 þ

P
j<i mjbj, where 0a

mj < nj and b0 A nðKÞ, and set A ¼ cUm1

1 � � �Umi�1

i�1 , where nðcÞ ¼ b0. As
M0 0, we have mðcaUa

½i�Þ ¼ mðcbUb
½i�Þ which shows that ai ¼ niqi, for some

qi A N. Set B ¼
caA

qiUa
½i�

U ai
i

. Notice that
B

cbU
b
½i�
;
caU

a
½i�

B
A Rm and we have

M ¼ i
B

cbU
b
½i�

 !
i

caU
a
½i�

B

� �
¼ i

B

cbU
b
½i�

 !
i

U ni
i

A

� �qi

:

By the induction hypothesis, the factor i
B

cbU
b
½i�

 !
is algebraic over kn.

Hence, we should only show that Z ¼ i
U ni

i

A

� �
is algebraic over kn.

Dividing both sides of equation (8) by Api , we have (notice that by
(7): mi ¼ ni pi)

Zpi þ i
fi;nið pi�1Þ

A

� �
Zpi�1 þ � � � þ i

fi;ni
Api�1

� �
Z þ i

fi;0

Api

� �
¼ i

Uiþ1

Api

� �
¼ 0:ð12Þ

Notice that, by the induction hypothesis, the coe‰cients of equation (12)
are algebraic over kn. Thus (12) shows that Z is algebraic over kn.

� If L=K is of algebraic type and a ¼ o. By Theorem 3.4 the valuation ring
Rm is analytically irreducible, thus the valuation m extends uniquely to a
valuation (denoted again by m) to the mm-adic completion cRmRm. We con-
struct a non-zero element Uy A cRmRm which is a coe‰cient-wise limit for the
sequence of the reduced key polynomials fUigi AN (Remark 2.3.(ii)). There
is some i0 A N such that for ib i0 we have mi ¼ 1 (Suppose this is not the
case, so there are infinite number of i such that mi > 1, but by Definition
2.2.(e) we have bo > ð

Q
i<o miÞb1. Thus, we have nðUoÞ ¼ bo ¼ y which

is a contradiction). For ib i0, we set Ui ¼ ai;N�1x
N�1 þ � � � þ ai;1xþ ai;0,

where ai; t A K (Recall that N is degree of the minimal polynomial of the
element x over K). For ib i0, consider the equality Uiþ1 ¼ Ui þ fi;0 (The
reduced form of equation (1)). Let fi;0 ¼

P
j ci; jU

ð jÞ
½i� be the reduced i-adic

expansion of fi;0. As mk ¼ 1, for kb i0, the power of Uk is zero in

any adic monomial U
ð jÞ
½i� of fi;0. So, for these adic monomials we have
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oiðU
ð jÞ
½i� Þa

P
k<i0

ðnk � 1Þbk ¼ b�
i0
. But, we have bi ! y ði ! oÞ, so for

any j, we have nðci; jÞ ! y ði ! yÞ. Now, for any taN � 1 we have
aiþ1; t � ai; t A hci; jij. This shows that for any taN � 1 the sequence
fai; tgi AN is a Cauchy sequence for the n-adic topology in cRnRn. But, the

ring cRnRn is complete for the cmnmn-adic topology, so by [12], Proposition
5.10, it is complete for the n-adic topology as well. Thus, we have
ay; t :¼ limi!o ai; t A cRnRn HcRmRm is well-defined. In consequence, the element

Uy :¼ ay;N�1x
N�1 þ � � � þ ay;1xþ ay;0 A cRmRm is well-defined. Moreover,

by Lemma 3.5 the element Uy is non-zero, and thus mðUyÞ is finite. By
the construction of Uy, it is clear that for ib i0 we have inoi

ðUyÞ ¼ Ui.
So, we have oiðUyÞ ¼ bi. This shows that mðUyÞb limi!o bi ¼ y which
is a contradiction. r

Remark 3.7. The proof shows that in the case L=K is of transcendental type
we do not need the analytical irreducibility condition to meet the finiteness result.

Here we give an example that shows that the analytical irreducibility is
necessary in the case L=K is of algebraic type3:

Example 3.8. Assume that charðkÞ0 2. Let K ¼ kðyÞ, n the y-adic valua-
tion. Let L be the field of fractions of the integral domain k½x; y�=ðx2 � y2 � y3Þ.
Then n admits two extensions to L; their value groups can both be identified with
Z, which we view as the value group of n. Let m be the extension characterized
by the fact that mðxþ yÞ ¼ 2. Let

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
¼
Py

i¼0 bi y
i be the Taylor expansion

of
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
. Set U1 ¼ x. Then the construction of the key polynomials gives an

infinite sequence Ui ¼ xþ
P i�1

j¼1 bj�1 y
j, for ib 2. One can show that mðUiÞ ¼

bi ¼ i, for i A N. This gives us an infinite sequence of key polynomials
fUi; bigi AN for the valuation m. There does not exist any finite subsequence of
the key polynomials of this infinite sequence.

4. Izumi’s Theorem

For any two rank one valuations m and m 0 of a field K with a common
center in a subring R of K , if there exists c A R such that mðyÞa cm 0ðyÞ, for any
y A R, then we write ma cm 0. In such situation we define cRðm; m 0Þ to be the
minimum of such constants c; We call it the Izumi constant of the valuations
m, m 0. When the ring R is clear from the context we denote the Izumi constant
by cðm; m 0Þ.

Through this section L is a field extension of a given field K=k, which is of
the form L ¼ KðxÞ, such that L=K is either of transcendental type or algebraic
type.

3 I am grateful to the referee for pointing out this example.
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Remark 4.1. The following are immediate from the definition of the Izumi
constant.

(i) If both m and m 0 are centered over R with the ideal p as center then
cRp

ðm; m 0Þ exists provided that cRðm; m 0Þ exists. Moreover, we have
cRp

ðm; m 0Þ ¼ cRðm; m 0Þ.
(ii) For any three valuations o, o 0, o 00 of a field K , such that all of them

are centered over a ring RHK, if cRðo;o 00Þ and cRðo 00;o 0Þ exist then
cRðo;o 0Þ exists and we have

cRðo;o 0Þa cRðo;o 00ÞcRðo 00;o 0Þ:ð13Þ

Definition 4.2. Let n be a valuation of K . For b A Rþ, we define ordn;b to
be the Gaussian valuation extending n to a valuation of L with ordn;bðxÞ ¼ b. In
other words, for f ¼

P
cix

i A K ½x� we have

ordn;bð f Þ ¼ minifnðciÞ þ ibg:

In the case L=K of algebraic type, this is a valuation of KðX Þ which we call it a
pseudo-valuation of L (See Remark 2.5.(i)).

Theorem 4.3. Suppose ðL; mÞ is a valuation extending the divisorial valuation
ðK ; nÞ. Assume that fUi; bigiaa, a A N, is a weighted basis of K ½x� with respect to
ðK ; nÞ such that, with the notation of Definition 2.2, we have m ¼ oa. Moreover,
assume that n is centered over the local ring RHK. Then:

(i) We have ojðU l
iþ1Þ ¼ ð

Q i
k¼ j mkÞ:lbj, for l A N, and j < ia a.

(ii) For j < i A N, the Izumi constant cR½x�ðoiþ1;ojÞ exists and we have

cR½x�ðoiþ1;ojÞ ¼
biþ1

ð
Q i

k¼j mkÞ:bj
.

Proof. For (i): We prove it for the case l ¼ 1. The general case is similar.
Notice that Umi

i þUmi�1
i fi;mi�1 þ � � � þUi fi;1 þ fi;0 is the i-adic expansion of

Uiþ1. We have deg Uiþ1 ¼ deg Umi

i and deg fi; j < deg Ui. On the other hand,
in the algorithm of getting the ði � 1Þ-adic expansion of Uiþ1 from its i-adic
expansion, the degree considerations shows that Umi�1mi

i�1 , which is generated in the
first step of the algorithm, never cancels in the process of the algorithm. In fact,
this is the unique monomial of degree equal to deg Uiþ1 in the ði � 1Þ-adic
expansion of Uiþ1. Thus, the monomial Umi�1mi

i�1 appears in the ði � 1Þ-adic
expansion of Uiþ1; It has the least ~ooi�1-weight (because it appears starting from
the first step of the algorithm). By induction, we reach to the following: The
monomial U

mj ���mi

j appears in the j-adic expansion of Uiþ1; It has the least ~ooj-
weight. Thus, we have proved ojðUiþ1Þ ¼ ð

Q i
k¼ j mkÞbj .

For (ii): First we prove the claim when j ¼ i. Let us assume that M ¼
caU

a
½iþ1� A K ½U1; . . . ;Uiþ1� is a monomial of adic form. Then oiþ1ðMÞ ¼ nðcaÞþP iþ1

j¼1 ajbj. Suppose M1; . . . ;Mt is the sequence of i-expansions of M generated

in the algorithm of getting i-adic expansion of M from its i þ 1-adic expansion.

27on izumi’s theorem on comparison of valuations



We have ~ooiðM1Þ ¼ nðcaÞ þ
P i

j¼1 aibi þ aiþ1mibi. Set l ¼ nðcaÞ þ
P i

j¼1 aibi. On

the other hand oiðMÞ ¼ ~ooiðMtÞb ~ooiðM1Þ. Thus, we have

oiþ1ðMÞ
oiðMÞ a

lþ aiþ1biþ1

lþmiaiþ1bi
a

biþ1

mibi
:

Now, assume that f ¼
P

j Mj is the i þ 1-adic expansion of an element f A R½x�.
Suppose that for i0 we have oiþ1ð f Þ ¼ oiþ1ðMi0Þ. Then we have

oiþ1ð f Þ
oið f Þ

a
oiþ1ðMi0Þ
oiðMi0Þ

a
biþ1

mibi
:

This proves cðoiþ1;oiÞa
biþ1

mibi
. On the other hand, by (i) we have

oiþ1ðUiþ1Þ
oiðUiþ1Þ

¼

biþ1

mibi
which shows that cðoiþ1;oiÞb

biþ1

mibi
. Thus, we have cðoiþ1;oiÞ ¼

biþ1

mibi
.

For the general case, using (13) and the case j ¼ i, we have cðoiþ1;ojÞaQ i
k¼ j cðokþ1;okÞa

biþ1

ð
Q i

k¼ j mkÞ:bj
. But (i) shows that cðoiþ1;ojÞb

biþ1

ð
Q i

k¼ j mkÞ:bj
.

Hence, we have the equality. r

Lemma 4.4. Suppose n and n 0 are valuations of a field K and both are
centered on the ring R such that the Izumi constant cRðn; n 0Þ exists. Then the
Izumi constant cR½x�ðordn;b; ordn 0;b 0 Þ exists and we have:

(i) We have cR½x�ðordn;b; ordn 0;b 0 Þa b

b 0

� �
cRðn; n 0Þ, where

b

b 0

� �
¼

b

b 0 when b > b 0

1 otherwise:

8<:ð14Þ

(ii) Suppose ðK ; nÞH ðL; mÞ then cR½x�ðordn;b; mÞa
b

mðxÞ

� �
.

Proof. For (i): If M ¼ cxl A R½x� is a monomial then one can easily check

that ordn;bðMÞa b

b 0

� �
cðn; n 0Þ ordn 0;b 0 ðMÞ. Now, assume that f ¼

P
i Mi A R½x�.

Suppose that ordn;bð f Þ ¼ ordn;bðM0Þ and ordn 0;b 0 ð f Þ ¼ ordn 0;b 0 ðM1Þ. Then we
have

ordn;bð f Þ ¼ ordn;bðM0Þa ordn;bðM1Þa
b

b 0

� �
cðn; n 0Þ ordn 0;b 0 ðM1Þ;

which shows that ordn;bð f Þa
b

b 0

� �
cðn; n 0Þ ordn 0;b 0 ð f Þ.
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For (ii): Set mðxÞ ¼ b 0. It is clear that cðordn;b 0 ; mÞ ¼ 1. By (i) and Remark
4.1.(ii) we have

cðordn;b; mÞa cðordn;b; ordn;b 0 Þcðordn;b 0 ; mÞa b

b 0

� �
: r

Theorem 4.5. Suppose that m and m 0 are two divisorial valuations of the field
L ¼ KðxÞ. Suppose fUi; big

n
i¼1, where n A N is a weighted basis of K ½x� such that

on ¼ m. Assume that mjK ¼ n, m 0
jK
¼ n 0, and n and n 0 are both centered over a

ring R, and both m and m 0 are centered over the ring R½x�. Moreover, suppose
cRðn; n 0Þ A Rþ exists. Then cR½x�ðm; m 0Þ exists and we have

cR½x�ðm; m 0Þamax
1

mðxÞ ;
1

m 0ðxÞ

� �
cRðn; n 0Þ

mðUnÞ
deg Un

:

Proof. Set b ¼ mðxÞ and b 0 ¼ m 0ðxÞ. By (iii) of Theorem 4.3 and Lemma
4.4, the three Izumi constants cR½x�ðm; ordn;bÞ, cR½x�ðordn;b; ordn 0;b 0 Þ, and
cR½x�ðordn 0;b 0 ; m 0Þ exist. So, by Remark 4.1.(ii) the Izumi constant cR½x�ðm; m 0Þ
exists and we have

cðm; m 0Þa cðm; ordn;bÞcðordn;b; ordn 0;b 0 Þcðordn 0;b 0 ; m 0Þ

a
mðUnÞ

deg Un:b

b

b 0

� �
cðn; n 0Þ:

Now it is su‰cient to note that
b

b 0

� �
1

b
¼ max

1

mðxÞ ;
1

m 0ðxÞ

� �
. r

Proof of Theorem 1.1. By Corollary 3.3 we can assume that R is
complete. By Cohen’s structure theorem we have RG k½½X1; . . . ;Xn��=I . We
prove the result by induction on n. Set S ¼ k½½X1; . . . ;Xn�1��=ðI V k½½X1; . . . ;
Xn�1��Þ. First, notice that if I ¼ h fiii¼0;...;d , after a polynomial change of

coordinates (if necessary), we can assume that fið0; . . . ; 0;XnÞ0 0 for any ia d.
Now, by Weirestrass’ preparation, we can assume that fi A k½½X1; . . . ;Xn�1��½Xn�.
This shows that RG dðS½Xn�=ðIVS½Xn�ÞÞðS½Xn�=ðIVS½Xn�ÞÞ, where the completion is taken with
respect to the maximal ideal of the origin. Set R1 ¼ S½Xn�=ðI VS½Xn�Þ. By Cor-
ollary 3.3, to show that cRðm; m 0Þ exists, it is su‰cient to show that cR1

ðmjR1
; m 0jR1

Þ
exists (In fact, by the same corollary we have cRðm; m 0Þ ¼ cR1

ðmjR1
; m 0jR1

Þ). But,
by the induction hypothesis the Izumi constant cSðmjS; m 0jSÞ exists. So, by
Theorem 4.5 the Izumi constant cR1

ðmjR1
; m 0jR1

Þ exists. r

Remark 4.6. Instead of considering R as the totally ordered group that
contains all the value groups of divisorial valuations, one can fix a copy of Z as the
value group of all valuations (this is the assumption of [5]). In this situation, as
mðxÞb 1 for any ðL; mÞ, we can make the bound of cR½x�ðm; m 0Þ sharper; This bound

does not depend on m 0. In this case cR½x�ðm; m 0Þa cRðn; n 0Þ
mðUnÞ
deg Un

.
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[11] G. Rond, Lemme d’Artin-Rees, théorème d’Izumi et fonction de Artin, J. Algebra 299

(2006), 245–275.

[12] B. Teissier, Valuations, deformations, and toric geometry, Valuation theory and its appli-

cations, II (Saskatoon, SK, 1999), Fields Inst. Commun. 33, Amer. Math. Soc., 2003, 361–

459, ArXiv: Math/0303.5200.
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