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NON-DEGENERATE MIXED FUNCTIONS
Murtsuo Oka
Abstract
Mixed functions are analytic functions in variables zj,...,z, and their conjugates
Zl,...,Zn. We introduce the notion of Newton non-degeneracy for mixed functions and

develop a basic tool for the study of mixed hypersurface singularities. We show the
existence of a canonical resolution of the singularity, and the existence of the Milnor
fibration under the strong non-degeneracy condition.

1. Introduction

Let f(z) be a holomorphic function of n-variables zj,...,z, such that
f(0)=0. As is well-known, J. Milnor proved that there exists a positive
number & such that the argument mapping f/|f]: SZ"""\K, — S! is a locally
trivial fibration for any positive ¢ with ¢ <& where K, = f~1(0)NS>~1 ([12)).
In the same book, he proposed to study the links coming from a pair of real-
valued real analytic functions ¢g(x,y), A(x,y) where z=x+yi. Namely putting
f(x,y) :== g(x,y) + ih(x,y) : R — C, he proposed to study the condition for
f/1f]: S2""\K, — S! to be a fibration. This is an interesting problem. In
fact, if one can find such a pair of analytic functions g, 4, it may give an
interesting link variety K, whose complement S2"~!\K, is fibered over S! where
K, cannot come from any complex analytic links. The difficulty is that for an
arbitrary choice of g, A, it is usually not a fibration. A breakthrough is given by
the work of Ruas, Seade and Verjovsky [20]. After this work, many examples of
pairs {g,h} which give real Milnor fibrations have been investigated. However
in most papers, certain restricted types of functions are mainly considered (|5, 6,
22, 19, 11, 18, 3]).

The purpose of this paper is to propose a wide class of pairs {g, %} such that
the corresponding mapping f = g + ih defines a Milnor fibration. We consider
a complex valued analytic function f expanded in a convergent power series of
variables z = (zy,...,z,) and Z= (Z1,...,Z,)

f(zv Z) = Z Cvﬁ/tzviﬂ
Vi
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where 2" =z'---z)» for v=(vi,...,v,) (respectively z*=2z"---z;" for u=

(#1,--.,1,)) as usual. Here Z; is the complex conjugate of z;. We call
[f(z,Z) a mixed analytic function (or a mixed polynomial, if f(z,Z) is a polynomial)
of zj,...,z,. We are interested in the topology of the hypersurface V =
{ze C"| f(z,z) =0}, which we call a mixed hypersurface. Here we use the
terminology hypersurface in order to point out the similarity with complex
analytic hypersurfaces. We will see later that codimg V' =2 if V' is non-
degenerate (Theorem 19). We denote the set of mixed functions of variables
z, Z by C{z,z}. This approach is equivalent to the original one. In fact, writing
z=x+iy with z; = x;+1iy; j=1,...,n, and using real variables x = (x1,...,X,)
and y = (y1,..., yu), and dividing f(z,Z) in the real and the imaginary parts so
that f(x,y) = g(x,y) + ih(x,y) where g:=Rf, h:=S3f, we can see that V' is
defined by two real-valued analytic functions g(x,y), A(x,y) of 2n-variables
X1, V1y--->Xn, yn. Conversely, for a given real analytic variety W = {gy(x,y) =
h(x,y) = 0} which is defined by two real-valued analytic functions g, h, we can
consider W as a mixed hypersurface by introducing a mixed function f(z,z) =0

where
_ Z7+7Z 71—1 (ZT+7Z 71—1
R R ]

The advantage of our view point is that we can use rich techniques of complex
hypersurface singularities. For complex hypersurfaces defined by holomorphic
functions, the notion of the non-degeneracy in the sense of the Newton boundary
plays an important role for the resolution of singularities and the determination
of the Milnor fibration ([10, 23, 14, 15, 16]). We will introduce the notion
of non-degeneracy for mixed functions or mixed polynomials and prove basic
properties in §2 and §3.

In §4, we will give a canonical resolution of mixed hypersurface singularities.
First we take an admissible toric modification 7 : X — C”. This does not resolve
the singularities but it turns out that we only need a real modification or a polar
modification after the toric modification to complete the resolution (Theorem 24).

In §5, we consider the Milnor fibration of a given mixed function f(z,z). It
turns out that the non-degeneracy is not enough for the existence of the Milnor
fibration of f. We need the strong non-degeneracy of f(z,z) which guarantees
the existence of the Milnor fibration (Theorem 33, Theorem 29). We show that
the Milnor fibrations of the first type and of the second type,

f/If]: S\K, — §' and [ :0E(r,0)" — S},

are equivalent (Theorem 36). We also show that for a polar weighted homo-
geneous polynomial, the global fibration is equivalent to the above two fibrations
(Theorem 33).

In §6, we will see that the mixed singularities are much more complicated
than the complex singularities and that the topological equivalence class is not a
combinatorial invariant even in the easiest case of plane curves.
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In §7, we discuss Milnor fibrations for non-isolated mixed singularities under
the super strong non-degeneracy condition (Theorem 52).

In §8, we give an A’Campo type formula for the zeta function of the Milnor
fibration in the case of mixed curves (Theorem 60).

This paper is a continuation of the previous one [17] and we use the same
notations. This paper consists of the following sections. We hope this paper
provides a systematical method to study mixed singularities.

Contents
Section 1. Introduction
Section 2. Newton boundary and non-degeneracy of mixed functions
Section 3. Isolatedness of the singularities
Section 4. Resolution of the singularities
Section 5. Milnor fibration
Section 6. Curves defined by mixed functions

Section 7. Milnor fibration for mixed polynomials with non-isolated singularities
Section 8. Resolution of a polar type and the zeta function
Below are notations we use frequently in this paper:
S-S, ={z=(z1,...,2,) e C"|||z|]| = r}, (sphere of the radius 7)

Il =1z + -+l

B, B, ={z=(z1,...,2,) € C"|||z|| <r} (ball of the radius r)
CI:{Z:(Zl,...,Z,,)|Zj:0,j¢I}, Bl ={zeC!||z| <1}
C'={z="(z1,...,2,) |z =0 j¢ I}

Cc"=C*, B =B with I ={1,...,n}

R ={(x1,...,x,) eR"|x; 20, =1,...,n}

(z,w) = z;Ww; + -+ - + z,W, : hermitian inner product

R(z,w) = R(zy W + --- + z,w,) : real Euclidean inner product
Do) = {neC|ly| <4}, D©)" :={neC|0< |y| <3}

Sy == {neCly| =9}

2. Newton boundary and non-degeneracy of mixed functions
2.1. Polar weighted homogeneous polynomials

2.1.1.  Radial degree and polar degree. Let M = z"Z" be a mixed monomial
where v=(vi,...,v), = (,...,4,) and let P="'(py,...,p,) be a weight
vector. We define the radial degree of M, rdegp M and the polar degree of M,
pdegp M with respect to P by

n n
rdeg, M = ij(vj +4), pdegp M = ij(vj — 1)-
j=1 J=1
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2.1.2. Weighted homogeneous polynomials. Recall that a polynomial /i(z)
is called a weighted homogeneous polynomial with weights P ="(p1,...,pu) if
p1,--.,pn are integers and there exists a positive integer d so that

f("z,... t"z,) =t'f(z), teC.

The integer d is called the degree of f with respect to the weight vector P.
A mixed polynomial f(z,%) :Zi/:l c;iz"z* is called a radially weighted

homogeneous polynomial if there exist integers ¢i,...,q, >0 and d, > 0 such
that it satisfies the equality:
F(tDzy, .tz 10 192, =t f(2,Z), teR".

Putting Q = “(q1,...,4¢xa), this is equivalent to rdeg, z"z* =d, for i=1,...,/
with ¢; #0. Write f = g + ih so that g, h are polynomials with real coefficients
of 2m-variables (xi, yi1,...,X, ¥u). If f is a radially weighted homogeneous
polynomial of type (q1,...,qu;d;), g(x,y) and h(x,y) are weighted homogeneous
polynomials of type (q1,q1,-..,qn qn;d:) (ie., degx; = deg y; = ¢;).

A polynomial f(z,z) is called a polar weighted homogeneous polynomial if
there exists a weight vector (pi,...,p,) and a non-zero integer d, such that

FAPzy, Wz Az ) = A% (), AeCr, |Al=1

where gcd(pi,...,p,) =1. Usually we assume that d, > 0. This is equivalent
to

pdegp 27" =d,, i=1,...,¢.

Here the weight p; can be zero or a negative integer. The weight vector
(p1,---,pn) is called the polar weights and d, is called the polar degree
respectively. This notion was first introduced by Ruas-Seade-Verjovsky [20]
and Cisneros-Molina [4]. In [17], we have assumed that a polar weighted
homogeneous polynomial is also a radially weighted homogeneous polynomial.
Although it is not necessary to be assumed, we will only consider such
polynomials in this paper.

Recall that the radial weights and polar weights define R*-action and S'-
action on C”" respectively by

toz=(t"z,...,t%z,), toz=(t"z,...,t%z,), teR”

Joz=(Pzy,...,)z,), JoZ=loz, lLeS'cC

)

In other words, this is an R* x S! action on C”.

Lemma 1. Let f(z,Z) be a radially weighted homogeneous polynomial, V =
{zeC"| f(z,Z) =0} and V* = VNC™. Assume that V\{O} (respectively V*) is
smooth and codimg V = 2. If the radial weight vector is strictly positive, namely
g; >0 for any j=1,...,n, the sphere S, intersects transversely with V\{O} (resp.
with V*) for any r > 0.
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We are mainly considering the case that ¥\{O} has no mixed singularity in
the sense of §3.1.

Proof. This is essentially the same with Proposition 4 in [17]. In Prop-
osition 4, we have assumed that f(z,Z) is polar weighted homogeneous but we
did not use this assumption in the proof. The radial action is enough as we will
see below. Assume that three vectors dyg, dh, d¢ are linearly dependent at
2y = (Xo,¥o) € V", where f(z,Z) = g(x,y) + ih(x,y) and ¢(x,y) = >, (x] + 7).
As V\{O} (resp. V*) is non-singular, we can find real numbers o, f so
that d¢(xo,yy) = o« dg(xo,y,) + f dh(xo,y,). Here d¢, dg, dh are the respective
gradient vectors of the functions ¢, ¢, h. For example, dy(x,y)=

dg Og dg Og .
(5_361’5_J/1"”5_>€n’5_yn . Let /(t) = (toxp,t0Yy,), t€ RT be the orbit of zy by
the radial action. Let v be the tangent vector of the orbit. Then we have:

f(l) = (quXQl , lqu()], RN lq”X(),,, lq”y(),,)

d n

SHD)y = R(AH(x0,30),¥) = 2D i3 + %) > 0.
i=1

On the other hand, we also have the equality:

d
7P D)]y = oR(dg(x0, o). v) + FR(dh(x0,¥p). V)
_dg(/(1)) dh/(n)|  _
ar [:1+ﬁ dt r:l_O.
This is an obvious contradiction to the above inequality. O

2.2. Newton boundary of a mixed function. Suppose that we are given a
mixed analytic function f(z,z) =3, ¢ ,2"Z". We always assume that ¢ =0
so that Oe f71(0). We call the variety V = f~1(0) the mixed hypersurface.
The radial Newton polygon T (f;z,Z) (at the origin) of a mixed function f(z,Z)
is defined by the convex hull of

U (v+w)+R™
Cy 1 70

Hereafter we call ', (f;z,z) simply the Newton polygon of f(z,z). The Newton
boundary T'(f;z,Z) is defined by the union of compact faces of I', (f). Observe
that T'(f) is nothing but the ordinary Newton boundary if f is a complex
analytic function. For a given positive integer vector P = (pi,..., p,), wWe asso-
ciate a linear function /p on I'(f) defined by /p(v) =37 p;v; for ve I'(f) and
let A(P, f) = A(P) be the face where /p takes its minimal value. In other words,
P gives radial weights for variables zi,...,z, by rdegp z; = rdegp Z; = p; and
rdegp 2’7" = 3| pj(v; + ). To distinguish the points on the Newton bound-
ary and weight vectors, we denote by N the set of integer weight vectors and
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denote a vector Pe N by a column vectors. We denote by N*, Nt the
subset of positive or strictly positive weight vectors respectively. Thus P =
“(p1y...,pu) € NTT (respectively P e N1) if and only if p; > 0 (resp. p; = 0) for
any i =1,...,n. We denote the minimal value of /p by d(P; f) or simply d(P).
Note that

d(P; ) = min{rdegp 2'Z" | ¢, , # 0}.

For a positive weight P, we define the face function fp(z,Z) by
fr(z,Z) = Z Cy, 27",

vt+ueA(P)

Example 2. Consider a mixed function f := z37? + 2222 + z3z;. The New-
ton boundary I'(f;z,zZ) has two faces A;, A, which have weight vectors P :=
(2,3) and Q :='(1,1) respectively. The corresponding invariants are

fr(2,7) = 277 +z3z3,  d(P;f) =10
fo(2,2) = z{z3 + 235, d(0; f) =4.

FiGure 1. T'(f)

It is sometimes important to consider the convex hull of vertices A(P) in
R" x R" which is defined by

A(P) = convex hull of {(v,u) eR" x R"| cvp #0,v+peAlP)}

Let S:R"xR" —R" be the map defined by (v,u)+— v+ pu Then A(P)=
S(A(P)) by the definition. We call A(P) the mixed face of T'(f) and A(P) the
radial face of T'(f) with respect to P respectively, when the distinction is
necessary.

2.3. Non-degenerate functions. Suppose that f(z,Zz) is a given mixed func-
tion f(z,zZ). For Pe N'", the face function fp(z,Z) is a radially weighted
homogeneous polynomial of type (pi,..., ps;d) with d =d(P; f).

DermNITION 3. Let P be a strictly positive weight vector. We say that
f(z,7) is non-degenerate for P, if the fiber f5'(0) N C*™ contains no critical point
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of the mapping fp:C*” — C. In particular, f5'(0)NC* is a smooth real
codimension 2 manifold or an empty set. We say that f(z,z) is strongly non-
degenerate for P if the mapping fp:C” — C has no critical points. If
dim A(P) > 1, we further assume that fp: C*” — C is surjective onto C.

A mixed function f(z,7) is called non-degenerate (respectively strongly non-
degenerate) if f is non-degenerate (resp. strongly non-degenerate) for any strictly
positive weight vector P.

Consider the function f(z,Z) =ziZ) + - +2z,%,. Then V = f71(0) is a
single point {O}. By the above definition, f is a non-degenerate mixed function.
To avoid such an unpleasant situation, we say that a mixed function ¢(z,z) is a
true non-degenerate function if it satisfies further the non-emptiness condition:

(NE): For any Pe Nt with dim A(P,g) > 1, the fiber g5!(0) N C* is non-
empty.

Remark 4. Assume that f(z) is a holomorphic function. Then fp(z) is a
weighted homogeneous polynomial and we have the Euler equality:

PffP ZPIZz

Thus fp: C™ — C has no critical point over C*. Thus f is non-degenerate for
P implies f is strongly non-degenerate for P. This is also the case if fp(z,Z) is a
polar weighted homogeneous polynomial.

Example 5. 1. Consider the mixed function f :=z{Z} + z7z3 + z3z, which
we have considered in Example 2. Then f is strongly non-degenerate for each of
the weight vectors P = (2,3), 0 =(1,1).

II. Consider a mixed function

g(Z7i) =ziZ1+ -+ 22 — (ZH—IZ_H—I + - +Zn2n)a l<r<n-1

Then V =g~ '(0) is a smooth real codimension one variety and thus it is
degenerate for P ='(1,1,...,1).
III. Consider a mixed function

f(2,2) =z} +az1z,+ 7, aeC.

Then f is non-degenerate if and only if a # +2.
IV. Finally we give an example of a mixed function which is non-degenerate
but not strongly non-degenerate. Consider a mixed function

f(2,2) = 1/4zf —1/4z] + 2121 — (1 + i) (21 + 22) (21 + 22)
= g(x1,x2, y1, y2) + ih(x1,x2, y1, y2)
where g(x1,%, y1,12) = X + y{ = (x1 + x2) = (1 + 32)°
h(x1, %2, y1,y2) = X131 — (x1 4 x2)° = (31 + 2)°
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f is a radially homogeneous polynomial of degree 2 but it is not polar weighted
homogeneous. One can check that f is non-degenerate for the weight vector
P ="(1,1) but it is not strongly non-degenerate. In fact, it has two families of
critical points

ZH(x17x2aylvy2):(la_tailv$l)7 0<1

with the critical values (2 + i)#>.

PrROPOSITION 6. Let ¢(z,z) be a radially weighted homogeneous polynomial
and let M := 72" be a mixed monomial and put h:= Mg(z,Z). Then 0 is a
regular value of g : C*"" — C if and only if 0 is a regular value of h: C" — C.

The assertion is immediate from the definition because g~'(0)NC* =
F~1(0)NC*" and the tangential map dh,, : T4C*" — ToC is equal to M dg,, for
any we g '(0)nC™.

Recall that for a subset /< {l,...,n}, we use the notations C’ =
{zeC"[z=0,j¢I} and f7 = fle.

PROPOSITION 7.  Assume that f(z,Z) is a non-degenerate (respectively strongly
non-degenerate) mixed function. Assume that f! is not constantly zero for some
I<{1,2,...,n}. Then f! is a non-degenerate (resp. strongly non-degenerate)
Sfunction as a function of variables {z; z;, |i e I}.

Proof. The proof is exactly parallel to that of Proposition 1.5, [16]. Take
a compact face A of I'(f’). There is a strictly positive weight vector P =
“(pi);c; € NT such that A =A(P, 7). We consider a strictly positive weight
vector Q = (qi1,...,q,) such that ¢; = p; for ie I and ¢; =v for i ¢ I. It is easy
to see that fy(z,Z) = f{(z1,7;) if v is sufficiently large. Here f{ = (f1),. Now
by the assumption, 0 is not a critical value of fp:C™ — C (respectively
Jo:C™ — C has no critical points). As fp contains only variables z;, i€,
0 is not a critical value of f{:C* — C (resp. f{:C* — C has no critical
points). O

For a complex valued mixed function f(z,Z), we use the notation ([17]):
Y AN e e (A AN on
a’f(z,z)_<a—21,...,6zn>eC7 df(z,z)_(a—z_l,...,azn eC

We use freely the following convenient criterion for a given point to be a critical
point as a function to C in this paper.

ProrosiTiON 8 (Proposition 1, [17]). The following two conditions are
equivalent. Let we C".
(1) w is a critical point of f:C" — C.
(2) There exists a complex number o with |o| =1 such that df(w,w)=
o df (w,w).
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Hereafter we use the simplified notation df (w,w) for df (w,w).

Example 9. Let us consider the following mixed polynomials
= 2 - - _ 2 22
fi=z1Z1 — 23, =21 —nh, f[=z21Z1—155

and the corresponding mixed varieties V; = f;71(0), i = 1,2,3. Each of them has
an isolated singularity at the origin. In fact, as real varieties, they are described
as follows.

) [X7 + 3 = x5 — 3, x20, = 0}
X ¥) Xt + 3 = x3, 32 =0}
V)X 4+ 2 =33+ »3), dimg V=3
z1,22) | z1 = r1 exp(i6)),z2 = 1y exp(if),r1 = r2, 01 = 65}

21,22) |Z] — 2 20}.

V3 is a special case of polynomials which has been considered in [20]. f, f3 are
non-degenerate but f> is a degenerate mixed function as it is not surjective (onto
C) and dimg V> =3. Note also that df; = df; = (z1,—z2). fi is not a polar
weighted homogeneous polynomial (as the monomial z;Z; can not have a positive
degree) while f3 is a polar weighted polynomial of type (1,1;1).

2.4. Some useful functions. Let J be a subset of {l,...,n} and consider
the J-conjugation map 1; : C" — C”" defined by:

zi j¢éJ
oz, ze) e (W, W), Wy :{Z; ji]
Of course, we define 1;(Z;) = 1,(z;).

Let f(z,z) be a mixed function. We call that f(z,z) is J-conjugate holomor-
phic if f is an analytic function of the variables {z;|j ¢ J} and {Z |k e J}, or
equivalently f oi;(z) is a holomorphic function.

A mixed polynomial f(z,z) is called a J-conjugate weighted homogeneous
polynomial if foiy(z) is a weighted homogeneous polynomial. Let P =
(p1,-..,pn) be the weight vector of foiy(z) and let d be the degree. We
say that f(z,z) is a J-conjugate weighted homogeneous polynomial of the weight
type (p1,--.,pn;d). The following is obvious by the definition.

ProOPOSITION 10.  Assume that f(z,Z) is a J-conjugate weighted homogeneous
polynomial of the weight type (pi,...,pn;d). Then f(z,Z) is a polar weighted
polynomial with the polar weight type (1;P;d) where

lJP:(p{,,p;,)7 pj/:{pjj ]¢J
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Furthermore f(z,Z) is also a radially weighted homogeneous polynomial of the
radial weight type (pi,...,pn;d).

Let M =2z"7z* be a mixed monomial and let ¢(z,z) = M - f(z,Z) where
f(z,z) is a J-conjugate weighted homogeneous polynomial. We say ¢(z,z) is
a pseudo J-conjugate weighted homogeneous polynomial if pdegp g # 0 where
P’ =1, P is the polar weight vector of f(z,Z). Note that g o1,;(z) need not to be
holomorphic. Further, if J = 0, we say that g is a pseudo weighted homogeneous
polynomial. Then ¢ takes the form M f(z) where f a weighted homogeneous
polynomial and M is a mixed monomial.

PrOPOSITION 11.  Assume that f(z,Z) is a J-conjugate weighted homogeneous
polynomial of the weight type (p1,...,pn;d). Let M =12"7" be a monomial and
assume that ¢(z,z) = Mf(z,z) is a pseudo J-conjugate weighted homogeneous
polynomial, namely pdegps M +d #0. Then g: C™ — C has no critical points if
and only if f:C" — C has no critical points.

Proof. As ¢g(z,Z) is a polar weighted polynomial, the only possible singular
fiber is g~'(0). Thus the assertion is immediate as ¢g~'(0) = f~'(0) in C*.
O

Example 12. Let f(z,Z) =z} +---+2z2 ,+2Z. Then f is a J-conjugate
weighted homogeneous polynomial of the weight type (3,...,3,2;6) with J = {n}.
A mixed polynomial ¢(z,zZ) = 2'7"f(z,Z) is a pseudo J-conjugate weighted ho-
mogeneous polynomial if

n—1

3N (vi— ) =200 — 1) + 6 #0.

J=1

DeriNiTION 13, Let f(z,zZ) be a mixed function. We say that f is a
Newton pseudo conjugate weighted homogeneous polynomial if for any Pe N+,
there exists a subset J(P) = {I,...,n} such that the face function fp(z,Z) is a
J(P)-pseudo conjugate weighted homogeneous polynomial. Here J(P) can differ
for each P. For a Newton pseudo conjugate weighted homogeneous function,
the non-degeneracy condition is easily checked by Proposition 11.

Example 14. 1. Let f(z,Z) =z} + z{Z; + zi'z3 with m > 2. Then the New-
ton boundary has two faces and the corresponding weights are P = (2,3) and
Q = (m,2). The face functions are

fr(z,7) = 2323 + 23),  folz,7) = 22(z3 + 2)

and f is a Newton pseudo conjugate weighted homogeneous polynomial if
m # 2. Note that for m = 2, the polar degree of fp(z,Z) is 0. See also the next
example. We give a class of functions which can not be non-degenerate.
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II. Consider the radially weighted homogeneous polynomial

[ll(l *
E ¢z 'z, i, .., 0 eCT

where ay, ..., a, are positive integers. This is very special as z;"z’ =z |2"’ > 0.
Let Q 7{2 locjc]|oc] >0} be the open cone of the complex numbers C
generated by cp,...,c

ProposITION 15.  Let f(z,Z) be as above. The image of f:C" — C is Q
and f is a submersion on Q.

Proof. As zz/ >0 for z;#0, f(C™) cQ. For an neQ, write 5 as
n=>",%¢ with o; > 0. Take w; so that |wj|*¥ = ;. Then w= (wi,...,w,) €
f~' ()N C™. Thus the image of f is onto Q. We identify Ty)C w1th C by

0 0
oca—+ﬁ—<—> o+ iff. Here the coordinates of C are x+iy. Then it is easy

to see that the tangent vector of the j-th radial hne rj(t,w) defined by
t— (Wi,...,twj,...,w,) is mapped by dyf to 2a;|w| ”fc] This implies that
f:C"— C is a submersmn onto Q. O

s COROLLARY 16. Ler f(z,Z) = Y[ ¢jz'Z = Y 1L, ¢jlzj|* as in Proposition
(1) If 0eQ, V= f"10) = C" is smooth and non-empty.
(2) f(z,Z) is not a true non-degenerate mixed function.

Proof. The first assertion is immediate from Proposition 15. For the
second assertion, take any two dimensional subspace C’ of C" with I = {i, j},
the open cone Q(c;,¢;) generated by ¢;, ¢; cannot be the whole C. Considering
the weight vector S so that degg Zk = N, k #1i,j and degS zr =1 for k=1,],
we see that fs(z, z) = ¢i]z|* +cj|z,| % as long as N is sufﬁcwntly large. If
dimg Q, ., =2, it is easy to see that 0¢ Q. .. Thus (f! ) (O)HC*I 0. If
dimg Q. ., =1, either 0 ¢ Q. , or 0 € Q. If0¢Qc,c, (fhH” (O)QC*I 0 as
above. If0e Qc o> AT ¢ +aArg ¢ = 0 and the real dimension of (fHtoync*?
is 3 and any point of (f )71(()) is a critical point. Thus in any case f/ is not
true non-degenerate. [l

Example 17. Consider
n 2 m 2 n 2
=Yl bz =I5 = Y 5™
Jj=1 Jj=1 Jj=m+1

with 1 <m <n. Then the image of g and % are the strictly positive half real
line {x >0} and the whole real line R respectively and ¢g~!(0)NC*" =@ and
dimg A71(0) =2n — 1.
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2.5. Pull-back of a polar weighted homogeneous polynomial. Let ¢ =
(pj) = (P1,...,P,) be a unimodular matrix where P; = '(pyj,...,py) is the j-
th column vector. Consider the toric morphism

U, : C"—=C", w—z=(z1,...,2,)

I | Dj .
zp=w -ewhn o j=1,...,n

See §4.1 for more details. Let f(z,Z) :Z}i] ¢y v2"Z" be a polar weighted

homogeneous polynomial of type (pi,...,pu;d,) and let (qi,...,q,;d,) be the
radial weights. Then they satisfy the equality:

n n

Z(ﬂj —V)pj = dy, Z(Vj +v)g=d j=1,..m
Jj=1 j=1

where P ='(p,...,ps) and Q ='(q1,...,q,). Consider the pull-back

m m
W W) =S e (292Y) =Y e WHWY
a ) VYo K

=1 =1

o I, . 1
where p; = po, v =vjo and w;, v; are considered raw vectors. We define
P':=¢ 'P. Then we see that

(4 +v))Q" = (1 +vj)oo ' Q = d;
(1 =V))P' = (w; — vj)oo ' P = d,

for any j=1,...,m. Thus

Lemma 18. Let f(z,7Z) be a polar weighted mixed polynomial of the radial
weight type (q1,...,qn;dy) and of the polar weight type (pi,...,pn;dy). Then
g(w, W) == f(W,W) is also a polar weighted homogeneous polynomial. The
radial weight type and the polar weight type are (qi,...,q,;d,) and (pi,...,p,;d,)
respectively where

/ !

a4 q1 4 P1
= o-_] . ) . = O-_l .
lel qn P,ﬁ Dn
Two fibrations are isomorphic by i, using the following commutative diagram.

;

C*n C*

e

C*n g C*

(The commutativity implies that VW, is a fiber preserving diffeomorphism.)
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3. [Isolatedness of the singularities

Let f(z,2) =3, uCvu2'2". As we are mainly interested in the topology of
a germ of a mixed hypersurface at the origin, we always assume that f does not
have the constant term so that O e f~1(0). Put V = f~1(0) = C".

3.1. Mixed singular points. We say that we V is a mixed singular point if
w is a critical point of the mapping f : C" — C. We say that V is mixed non-
singular if it has no mixed singular points. If V' is mixed non-singular, V' is
smooth variety of real codimension two. Note that a singular point of V' (as
a point of a real algebraic variety) is a mixed singular point of ¥V but the
converse is not necessarily true. For example, every point of the sphere S =
{z1Z1 + -+ z4Z, = 1} is a mixed singular point.

3.2. Non-vanishing coordinate subspaces. For a subset J = {1,2,... n}, we
consider the subspace C’ and the restriction f/ := f |c7. Consider the set

NV =T < {1,...,n}| £ £0}.
We call A7(f) the set of non-vanishing coordinate subspaces for f. Put

vt= ) wvnc
Te NV (f)

THEOREM 19. Assume that f(z,Z) is a true non-degenerate mixed function.
Then there exists a positive number ry such that the following properties are
satisfied.

(1) (Isolatedness of the singularity) The mixed hypersurface V#N B, is

mixed non-singular. In particular, codimg V# = 2.
(2) (Transversality) The sphere S, with 0 < r < rq intersects V#* transversely.

Proof. We prove that the origin is an isolated mixed singularity. Or
V#N B,, has no mixed singularity, if r is sufficiently small. Denote the mixed
singular locus of V' by %,,(V). Assume the contrary. Using the Curve Selection
Lemma ([12, 7]), we can find a real analytic curve z(z) e C", 0 < <1 so that
2(t) € X, (V)NV# for t #0 and z(0) = O. Using Proposition 8 we can find a
real analytic family A(7) in S! = C such that

(1) df (2(1),2(1)) = (1) df (2(1), 2(1)).
Put 7 ={j|z(r) #£0}. As z(t)e V#, I e AV (f), the restriction f! = f|cr is
not constantly zero. We may assume that / = {1,...,m} and we consider f’

and the Taylor expansion of z(f):

z;(t) = b;it“ + (higher terms), b; #0 i=1,...,m
A(t) = Ao + 21t + (higher terms), ZgeS' < C.
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Put 4= (aj,...,a,) and we consider the face function f/ of f/(z,z). Let
d=d(A;f1) >0 and b= (by,...,b,) e C*". Then we have

AL -]

1(1(1‘),2([)) = a{A (b,b)t"% 4 (higher terms), j=1,....m

0z 0zj

2 1

i(z(z),i(t)) = af_A (b,b)z?~% 4 (higher terms) j=1,...,m.

0z 0z;

Observe that by the equality (1), we have the following equality:

! I
%(Z(Z),Z(Z)) = ord, aéfff (z(1),Z(1)), j=1,...,m.

ord;

Thus by (1), we get the equality:
df{(b,b) = 2o df{(b,b).

On the other hand, the equality f/(z(s)) =0 implies that f(b,b) =0. This
implies that b e C* is a critical point of e C*! — C, which is a contradiction to
the non-degeneracy of f/(z,7).

The second assertion is the result of a standard argument (Corollary 2.9,

[12]). U

We say that f is k-convenient if Je A7 (f) for any J = {1,...,n} with
|J| =n—k. We say that f is convenient if f is (n — 1)-convenient. Note that
V# = V\{O} if f is convenient. For a given / with 0 < / < n, we put W(¢/) =
{ze C"||I(z)| < ¢} where I(z) = {i|z; =0}. Thus W(n—1)=C". If f is /-
convenient, VN W (/) = V*.

COROLLARY 20. Assume that f(z,Z) is a convenient true non-degenerate
mixed polynomial. Then V = f~1(0) has an isolated mixed singularity at the
origin.

Remark 21. The assumption “true” is to make sure that V* = f~1(0)NC*"
is non-empty.

4. Resolution of the singularities

We consider a mixed analytic function f(z,z) and the corresponding mixed
hypersurface V' = f~'(0). We assume that O € V is an isolated mixed singu-
larity, unless otherwise stated.

If f is complex analytic, a “resolution of f” is usually understood as a
proper holomorphic mapping ¢ : X — C" so that

(i) E:=¢'(0) is a union of smooth (complex analytic) divisors which
intersect transversely and ¢ : X — E — C" — {O} is biholomorphic,

(ii) the divisor (¢*f) is a union of smooth divisors intersecting transversely
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and we can write (p*f) = VUE where V is the strict transform of V (= the
closure of ¢~ !(V —{0})),

(iii) for any point Pe E; NV with I = {i,...,i}, there exists an analytic
coordinate chart (ui,...,u,) so that the pull-back of f is written as U x u{"" - - i
where U is a unit in a neighborhood of P, E; = {uy =0} (k=1,...,5s—1) and
V ={u;=0}. Here E; := ﬂEiel\Uj¢115/.

For a mixed hypersurface, a resolution of this type does not exist in general.
The main reason is that there is no complex structure in the tangent space of V.
Nevertheless we will show that a suitable toric modification partially resolves such
singularities.

4.1. Toric modification and resolution of complex analytic singularities. For
the reader’s convenience, we recall some basic facts about the toric modifications
at the origin. We use the notations and the terminologies of [14, 15, 16] and
§2.2.

4.1.1.  Toric modification. Let A= (a;;) € GL(n,Z) with det 4 = +1. We
call such a matrix a unimodular matrix. We associate to 4 a birational morphism

lpA . C*I/l N C*n

which is defined by yy,(z) = (z;"" -+ z"",...,z{" -+ z""). If the coeflicients
of A are non-negative, }, can be defined on C". Note that y, is a group
homomorphism of the algebraic group C™ and we have

Vil =, Y ovs =Yy

We consider the space of integer weight vectors N and we denote weight

vectors by column vectors. Here the coordinates z = (zy,...,z,) is fixed. The
space of the weight vectors with coefficients in R is denoted by Ng.
Now we consider the subspace of positive weight vectors Ng. Let Py, ..., P,

be vectors in Ng. The polyhedral cone generated by Pi,..., P, is defined by
Cone(Py,...,Py) :={tiP1+ - -+ tyPneN|t;eR t; >0,i=1,...,m}.
The interior of Cone(Py,...,P,) is called an open cone and it is defined as
IntCone(Py,...,Py) :={tiPr+ -+ tuPneN|t;eR,t; >0,i=1,... ,m}.

The cone Cone(Py,...,P,) is called a simplicial cone if {Py,...,P,} are linearly
independent. We consider only the case where Py,..., P, are integer vectors.
We call Py,...,P, the vertices of the cone, if Py,...,P, are chosen to be
primitive integer vectors, by multiplications of rational numbers if necessary. It
is called a regular simplicial cone if {Py,...,P,} can be a part of Z-basis of
N. For a regular simplicial cone ¢ = Cone(Py,...,P,) of dimension n with
vertices Pi,...,P,, we associate a unimodular matrix 4 whose j-th column is
P;. By an abuse of notation, we also denote 4 by ¢. Let Ej,...,E, be the
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standard basis of N. (E; ='(0,...,1,0,...,0) where 1 is at the j-coordinate.)
Then Cone(Ej,...,E,) is a regular simplicial cone and it is nothing but Ny.

We consider a simplicial cone subdivision X* of the cone Cone(E\, ..., E,)
for which every cone is regular. Such a subdivision is called a regular fan.
Suppose that X* is a regular fan. Let % be the set of n-dimensional cones and
let ¥"© be the set of strictly positive vertices. For simplicity, we assume that
the vertices of £* are the union of {E|,...,E,} and ¥"*. For each o€ ¥,
we consider a copy of a complex Euclidean space C. with coordinates u, =
(tg1,-..,Usn) and the morphism 7, :C) — C" defined by n,(u,) =y, (u,).
Taking the disjoint sum [, C, we glue together [], ., C” under the following
equivalence relation:

u, ~u, if ., is well-defined at u, and .1, (u,;) = u,.

We denote the quotient space [[,.,C,/~ by Xz-. Then X3+ is a complex
manifold of dimension » and the morphisms 7z, : C — C", g € & are compatible
with the identification and thus they define a birational proper holomorphic
mapping

7% : Xz* — Cn.

The restriction # to Xz-\7~!(0) is a biholomorphic onto C"\{0}. We call
#: Xs- — C" the toric modification associated with the regular fan X* [14, 16].
The irreducible exceptional divisors correspond bijectively to the vertices P e 7~ +
and we denote it by E(P). Then 27'(0) = J,_,+ E(P).

The easiest non-trivial case is when ¥ " = {P="/(1,...,1)}. In this case,
Xs- is nothing but the ordinary blowing-up at the origin of C”.

4.1.2. Dual Newton diagram and admissible toric modifications. Let
f(z,2) =3, ,¢,2'Z" be a germ of mixed function in n variables zi,...,z,.
We introduce an equivalence relation in Ny by

P~ 0, PvQEN]i g A(P’f):A(Q7f)

The set of equivalence classes gives an open polyhedral cone subdivision of Ng
and we denote it as ['*(f;z) and we call it the dual Newton diagram. Let ¥* be
a regular fan which is a regular simplicial cone subdivision of T'*(f). If X" is a
regular simplicial cone subdivision of I'*(f), the toric modification # : X3+ — C”"
is called admissible for f(z,z). The basic fact for non-degenerate holomorphic
functions is:

THEOREM 22 ([14, 15, 16)). Assume that f(z) be a non-degenerate convenient
analytic function with an isolated singularity at the origin. Let 7 : Xy — C" be
an admissible toric modification. Then it is a good resolution of the mapping
f:C"— C at the origin.

This is a starting observation of the present paper.
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4.2. Blowing up examples. We consider some examples.

Example 23. A. Let C; = {(z1,22) e C* |z} — 23 = 0}}, V1 = {(z1,72) € C?|
fi(z,Z) =0} and V> = {(z1,22) € C*| f(2,Z) = 0} where f(z,Z) =z} —z3 and
f(2,Z) =212 — z%. C) is a union of two smooth complex line, V/; is a union of
two smooth real planes, Z; + z, =0 and V5 is an irreducible variety. Consider

7%1:X1—>C2

where 7, : X; — C? is the toric modification associated with the regular fan
generated by vertices

=)= ()= (2)

Geometrically, 7; is an ordinary blowing up. Note that for the complex curve
Cy, the two components are separated by a single blowing up #;. We will see
what happens to the two other mixed curves ¥}, V5. In the toric coordinate Ci
with ¢ = Cone(P, E) and the toric coordinates (u1,uz), the strict transform V7,
V, of Vi, V5 are defined in the torus C;Z as

cin C;z ={(u,m) € C;z | “12 — ulzug = u12(1 — uf) =0}
ViNC? = {(u1,ur) € C2 it — ubu3 = 0},
I}z ﬂC;z = {(ul,uz) (S C;z | ul(ﬁl — ulug) = 0}

The first expression shows that C is already smooth and separated into two
peaces. Unlike the case of holomorphic functions, we observe that

{(M],uz) EC02|L712 —u%ug :0} 2 IA/l, {(ul,ug) eC§|a| —ulug = 0} 2 I}z

as E(P) = {u; =0} ¢ Vi, i =1,2. In both cases, we see that the 1-sphere [u,| = 1
appears as their intersection with the exceptional divisor E(P). Tt is easy to see
that for Vi, both irreducible components Li = {(u1,u2) € C:Z | + wuy =0}
satisfy the limit equality " N E(P) = {(0,u2) | || = 1} withe = +. Thus L, N L_
is the l-sphere |u;| =1 and the ordinary blowing up does not separate the two
smooth components. For V5, we will see later that it has two link components.
See §6 for the definition of the link components. This illustrates the complexity
of the limit set of the tangent lines in the mixed varieties.

B. We consider an ordinary cusp (complex analytic) C, = {z3 — z; = 0} and
a mixed curve V3= {z3 —z}z; = 0} with the same Newton boundary and an
admissible toric blowing up 7 : X» — C? which is associated with the regular

simplicial fan:
. 1 2 1
22: E17P: 1 7Q: 3 7R: 2 7E2
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3 2
pull back of the defining polynomials are defined in this coordinate chart as

GNC2 = {(ug, ) € C2 | ubu3 (uy — 1) = 0}
1238 C;z ={(u1,m) € C;z | ufug(ulzug — ﬁfﬂz) =0}.

Observe that C, is smooth and transverse to the exceptional divisor E(Q) =
{uy = 0}. The strict transform V3 is defined by uju? — @?i, =0 in C}>. We
see again that for V3, a sphere |up| =1 appears as the intersection with the
exceptional divisor. We observe that V3N E(Q) = {(0,u2) | |[ua]| = 1}.

The above examples show that the toric modification does not resolve the
singularities of non-degenerate mixed hypersurfaces. To get a good resolution of
a mixed hypersurface singularity, we need to compose a toric modification with
a normal real blowing up or a normal polar modification which we introduce
below.

21
Let (u1,uy) be the toric coordinate of C2 with ¢ = (Q, R) = ( > Then the

4.3. Normal real blowing up and normal polar blowing up of C. Consider
the complex plane with two coordinate systems z = x4+ iy and z = rexp(if).
We can consider the following two modifications.

(I) Let g : C\{O} — C x RP' defined by z=x+iy— (z,[x:y]) and let
ZAC be the closure of the image of ig. This is called the real blowing up. %C
is a real two dimensional manifold which has two coordinate charts (Up, (X, ¢))
and (Ui, (s,p)). These coordinates are defined by X =x, t=y/x and y =y,
s =x/y. The canonical projection wg : ZC — C is given as wg (%, ) = x(1 + it)
and wgr(s,7) = j(s+i). Note that wi'(0) = RP' and wg : #C\{0} x RP' —
C\{0} is diffeomorphism.

(I1) Consider the polar embedding 1, : C\{O} — R" x S! which is defined
by 1,(rexp(0i)) = (r,exp(6i)). Here R" = {xeR|x>0}. Let #C=R" x §!
and @, : #C — C be the projection defined by w,(r,exp(0i)) = rexp(0i). We
can see easily that @, '(0) = {0} x S' and w, : ZC\{0} x S — C\{0} is a diffeo-
morphism. Note that 2C is a manifold with boundary.

4.3.1. Canonical factorization. There exists a canonical mapping
Y : 2X — #C which is defined by

(x,t) = (rcos 0,tan 0), 0 # ig
(s,7) = (cot O,rsin ), 0#0,xn

W (r,exp(0i)) =

It is obvious that  gives the commutative diagram

2c . ac

LT

C —— C
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Note that the restriction of y over the exceptional sets is a 2: 1 map:

Y : {0} x S' — {0} x RP', exp(0i) — [cos(0) : sin(0)]

4.4. Resolution of a mixed function. Let f(z,Z) be a mixed function and
let V' = f71(0) and we assume that ¥ has an isolated mixed singularity at the
origin and the real codimension of V is two. (Note that if ' is non-degenerate,
it has a real codimension two by the definition of non-degeneracy and Theorem
19.) Let Y be a real analytic manifold of dimension 2n and let ® : ¥ — C" be a
proper real analytic mapping. We say that ® : Y — C" is a resolution of a real
type (respectively a resolution of a polar type) of the mixed function f if
(1) Let E=®'(0) and let E = E;U---UE, be the irreducible components.
Each E; is a real codimension one smooth subvariety.

(2) Y is a real analytic manifold of dimension 2n. For a resolution of a
real type, Y has no boundary while for a resolution of a polar type Y is
a real analytic manifold with boundary and 0Y = E.

(3) The restriction @ : ¥ — E — C"\{O} is a real analytic diffeomorphism.

(4) Let ¥ be the strict transform of ¥ (= the closure of ®'(V\{0})).
Then V is a smooth manifold of real codimension 2 in an open neigh-
borhood of E. R

(5) For I = {it,...,i;}, put Ef == (,_, E\, ¢, Ej- For Pe Ef NV, there
exists a local real analytic coordinate system (U, (uy,...,us,)) centered at
P such that

O f (w) = " - v (U1 + dtrin)

so that UNE; = {u; =0} for j=1,...,tand UN V ={ups + ity = 0}.
In the case of a resolution of a polar type, we assume also that YN U =
{u1 > 0,...,u, > 0}.
For example, assume that 1 =1 for simplicity. Then the condition (5) says the
following. If we are considering a resolution of a real type,

Ux=R* or B, E, ={u =0}, ®Ff(u)=u"(u+iu3),
if we are considering a resolution of polar type,
U=R"N{u =0}, E,={u =0}, @F(u)=u"(u2+ius).

See the next section for more details.

4.4.1. Normal real blowing up. Let X be a complex manifold of dimension
n with a finite number of smooth complex divisors Ei,...,E, such that the
union of divisors E = Ui/:l E; has at most normal crossing singularities. Then
we can consider the composite of real modifications for the normal complex 1-
dimensional subspaces along the divisor Ej,...,E,. Putit as wg: ZX — X and
we call it the normal real blowing up along E. 1t is immediate from the definition
that



20 MUTSUO OKA

(1) 2X is a differentiable manifold and wg : ZX\wg!(E) — Y\E is a diffeo-
morphism.

(2) Inverse image E; := wg!(E;) of E; is a real codimension 1 variety which
is fibered over E; ! with a fiber S°. / Here E! is the normal real blowing
up of E; along U, ., ENE;. Putting Ej := ﬂlGIE\U”“E E; =

wgr' (E;) is fibered over E; with fiber (S & where k=I|.
Take a point Pe E; and choose a local coordinate (W, (uj,...,u,)) so that
I={1,....m} and E; = {u; =0}, j=1,...,m. Then wg!' (W) is isomorphic to
(2C)" x C"™™ covered by 2™ coordinates W, ., = U, x---x U, x C"™
where ¢; =0 or 1. For example, W1, o has the coordinates (as a real analytic
manifold) (s1, J;, %2, 2, - ., Xmy bty U1, - - - , Upn) SO that the projection to the coor-

dinate chart ue W is given by
uy :jzl(sl + i), Uy = }?,'2(1 + itz), oy Uy = )z'm(l + i[m).

In this coordinate chart, the exceptional real divisor Ej, j <m is defined by
E ={j =0} and E; = {x; =0} for 2< j <m.

4.4.2. Normal polar blowing up. We can also consider the composite of the
polar blowing ups along exceptional divisors, which we denote as w, : X — X.
In the same coordinate chart (W, u), u= (u,...,u,) as in the previous discus-

sion, w,'(W) is written as

w,' (W) =R" xS x - x (R" x §") x "™
with coordinates (ry,exp(ify), ..., rm,exp(i0y), Um+1, - - ., u,) and the projection is
given by

(Vlanp(i01)7 H '7rm>exp(i0m)7um+la H '7”}1) = (u17 cee 7”11)7

u=r;exp(it;), j=1,....,m

Note that 2X is a manifold with boundary and w, (E;) is the boundary com-
ponent which is given by {r; = 0}.

4.5. A resolution of a real type and a resolution of a polar type. Now we
can state our main result for the resolution of non-degenerate mixed singularities.
Assume that f(z,z) =}, ¢, ,2"Z" is a non- degenerate convenient mixed func-
tion and consider the mixed hypersurface V = f~1(0). Let I'(f) be the Newton
boundary and let ['*(f) be the dual Newton diagram. Take a regular simplicial
cone subdivision in the sense of [16] and let 7: X — C" be the associated toric
modification. Let ¥"" be the set of strictly positive vertices of £* and let E(P),
P e ¥ be the exceptional divisors. We may assume that the vertices which are
not strictly positive are the canonical bases {Ei,..., E,} of N by the convenience
assumption where E; =*(0,...,1,...,0). Put E Upe E(P). Then we take
the normal real blowrng -ups wg : 22X — X along the exceptlondl divisors of E.
Then we consider the composite
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D=rowg: AX B X 5 C", & i(or(E)).
Put E(P) := wg'(E(P)) with Pe v+,

Tueorem 24. @ : 2X — C" gives a good resolution of a real type of f at the
origin and the exceptional divisors are E(P) for P€ ¥"*.  The multiplicity of E(P)
of the function ®*f along E(P) is d(P;f).

Let f(z,Z) = g(x,y) + ih(x,y) be the decomposition of f into the real and
the imaginary part. Then the above assertion for the multiplicity is equivalent
to: the mutiplicities of ®*g, ®*h along E(P) are the same and equal to d(P; f).

Proof. We use the same notations as those in [14, 15, 16]. Let ¥, ¥ be the
strict transforms of V into ZX and X respectively.

O Ax 2, x ., "

U U U

v 2y .y
Take any point e VN® '(0) and consider & =®(&)e V. Assume that &
is in a toric coordinate chart C] with ¢ = (P, Ps,...,P,) which is a uni-
modular matrix. Assume that & € E(Py, Py,...,P;)" where E(P,Py,...,Ps)" =
N, E(P)\\,.,E(P;). For simplicity, we assume that s=1 and e E(P)",
leaving the other cases to the reader, as the argument is exactly the same. We

denote the coordinates in this chart as (ug1,...,U4s,) and us ; = Xgj + iy, For
simplicity, we write simply u;, x;, y; for u,, Xxg, ys respectively. By the
assumption, &= (0,¢&,,...,¢&,) with & #0, j>2 in the toric coordinate space

C". We may assume that &e (C"),. The coordinates of (C"), are given by

(X1,41,u2,...,u,). The divisor E(P;) is given by {% =0} and the projection
wr | (C)), — C_ is given as
(X1, t, Uy ey tty) = (U, uy),  up = X1 (1 +i).
Let A=A(P;). Take an arbitrary monomial z'z#. Then we observe that
i (2'7") = uf’l(") euP0) gf’lW) A
n

wpr(2'7") = 7 (L i) O (1 — i) PO T a1,

<

j=2
Here we recall that Pi(v) =3 ", psv;. By the definition of d(Py), for any
monomial z'zZ* which appears in f(z,Z), we have

Pi(v)+ Pi(u) =2d(Py), and
Py(v)+Pi() =d(P1) < v+pelA(P).
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Thus we can write the pull-back function as
Of (%), 0,0)) = 2P £ (%1, 10,u))
O fu (. w) = & xSy (0, w)
f;(il,tl,u(’,) EfAJ(tl,u;_) modulo (7).

where u/, = (u,...,u,). The important point here is that £, , does not contain

the variable x. In the above notation, the strict transform V is defined by
f (%1,t1,u)) =01n (C}),. Let E= 0,71,&,,...,&,) in the coordinates (X, #;,u)).
Using the expression f(z,Z) = g(X,y) + ih(X,y) and fa(z,Z) = ga(X,y) + iha(X,y),
we write these functions f, fA,U as the sum of real-valued functions:

fa(gl ) Zl?x;" yz,T) = gAﬂ()Ncl ) tle!ﬂyZ;) + iha(il ) tl7xtlf7y(/7)
fAﬂ(Zl,xt/ﬂyt/y) = gA7a<t1ﬂX;7yé) + ihA,U(tthﬂY(/f)a

where x! = (x2,...,%:), Yo = V2., Vn)-

The main assertion in Theorem 24 is that the rank of the Jacobian matrix of the
functions X1, §,, hs:

- 1 0
X1, Aa’ah Pt Y
J = %(f) = « )
b ’ya é(llaxé-ayglr)

&)
is 3, which is equivalent to

a(gavil ) z _
rank(a(t ) (f)) —
Note that ga 5(&) = ha »() =0 and
9o —9gre =0, hy—ha, =0 modulo (X)

therefore

a(gmha) P 5(9A mhAAJ)
2 _ ; :
@ Snxgy) = B Xy

Now recall that g 4, /A, does not contain the variable X;. Define a modified

pomt &e(Ch, by & =(1,11,&,...,&,) and put & 7wR(é)eC;” and wy =
n,(&") e C”. Put wo = Xg + iy,. (Recall that 7, : C — C" is the projection of

the toric modification in this chart.) Then as ga ,(¢') = ga.o(¢') =0, we have

rank (%m (5)) = rank (QI;AU—J’I;:)) (& ))

q
 rank (e e) )

(X 17X/7y(7)

©).
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Now we consider the hypersurface
Vi ={zeC"[fa(z) = 0}
={x+iye C"[ga(x,y) = ha(x,y) = 0}
where z; = x; + iy, j=1,...,nand X = (x1,...,%,), Yy = (J1,..., yu). Note that

woe Vi, As fa(wp) =0 and ® =owg : ®'(C™) — C* is a diffeomorphism,
we see that

~d(Py) ~d(Py)
rank( aEgA,mhA,fi) ) (E/)) — rank (a(xl gA oy X hA,o) (5/)>

5(361,11,)9’77)’{; a(xl,tlaxéaytly)

= rank <653£Z}A(:§lf§) (Xo, y0)> =2

where wy = x¢ +iy,. The first equality is the result of ga,(&') = has(&") = 0.
The last equality follows from the non-degeneracy condition which assumes that
fa:C" — C has 0 as a regular value. ]

We can also use the normal polar blowing-up W, : X — X along E(P),
Pe 7" and the composite @, : #X — C". Put E(P):=®,'(E(P)), Pe V"

THEOREM 25. Under the same assumption as in Theorem 24, ®, : X — X
gives a good resolution of a polar type of f(z,Z) where ®, is the composite

p

o, 72x L x5,

The multiplicity of E(P) of the function ®,f along E(P) is d(P; f). There is
a canonical factorization 1 : X — AX so that w, = wron and ®, =D oy.

Proof. The proof is almost the same as that of Theorem 24. For an
arbitrary monomial z'z#. Then we observe that
) Py(v)

- P _p _
ai(27) = ul" P s g P and

w;n; (z'7") = },IPI (v+u) exp(Py (v — w)04i) H u]f’j(\’)ajf’j(ﬂ)'
J=2
Thus we simply replace (X1, 71,u.) by (r1,01,u)) with u, = ry exp(i0) = %, (1 + ity)
in the previous calculation. The factorization follows from §4.3.1. ]

Remark 26. The assertion of Theorem 24 and Theorem 25 says that the
strict transform V' is a “Cartier divisor” in the sense that it is locally defined by a
single complex-valued real analytic function in X, although V is not a Cartier
divisor in X. Note also that the pull-back of g and / are real-valued functions
which have the same multiplicity d(P) along E(P), Pe 7.
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Example 27. We consider two modifications:
7AZ12X1*>C2, ﬁz:XzHCZ

where 7; : X; — C? is the toric modification associated with the regular fan I
(j=1,2) which are defined by the vertices as follows.

si-fi(3)r-() - ()
s-fur-()o-()o-(1)

1. Let Vy = f(z,Z) = 2} —z3 = 0. Thisi is 2 union of two smooth real planes
zy +2Z; = 0. In the toric coordinate chart C with ¢ = Cone(P, E,), the strict
transform V; of Vi is defined in C*2 by

Via? — utud = 0.

We have seen that ViNE(P) ={u; =0||uz] = 1}. Now take the normal real
blowing up along E(P), wg : #X — X. The strict transform is defined in (C?),
as

Vi = {1, 0,u) eR?2x C|(1 —it)* — (1 4 ity)*u3 = 0}
= {(1,51,u2) €R? x C| (s1 — i)> — (s1 + i) ’u3 = 0}
Note these equations give two smooth components L., ¢ = +1 which are disjoint:
{(X%1,t1,u2) e R x C| (1 —ity) + (1 + ity )uy = 0}.

This expression shows that the strict transform is embedded in the cylinder
lun| =1. Let us see this in a normal polar modification w, : 2X — X. Now
2X is locally diffeomorphic to the product of S' x RT x C and the strict
transform is now defined in a simple equation

Vi = {(r1,exp(0i),uz) | us = Fexp(—20i)}

and it has two link components. This shows that the strict transform is a

product (it does not depend on r;) and for a fixed ri, they are parallel torus knots

in S' x S' =S x {|u] = 1}. Observe that the direction of twisting is opposite

in the first and the second S'’s with respect to the canonical orientation of S'.
2. Let us consider another mixed curve:

Vyi{zi1z) — z% =0}
Equivalently ¥, is defined by
{(vr, 71,32, 72) € R X 4y = x5 — y3, 3292 = 0}
This can be defined as
Vo= {(x1, 71,2, 72) € R | 32 = 0,55 = x{ + »i}.
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This curve is real analytically (or real algebraically) irreducible at the origin (see
[2] for the definition) but we can see that F>\{O} has two connected components
zy =|z1| and zp = —|z;|. Thus for the geometrical study of real analytic varieties,
especially for the study of real analytic curves, it is better to see the connected
components of f~!(0)\{O}. We apply the same toric modification 7#; and we
consider its strict transform on the toric chart Cone(P, E,) where we use the same
notation as in Example 27.

172 Di — ulug =0.
Again we see that V> N E(P) = {(0,u) | |uz] = 1}. Take the normal real blowing
up along E(P). The strict transform is defined in (C?2), as
Va = {(%1,11,u2) e R* x C| (1 —ity) — (1 + it )u3 = 0}
={(F1,51,u2) e R* x C| (s — i) — (s + i)u3 = 0}

which is non-singular. They have two real analytic components:

{(F1,01,u2) eR* x Cluy + (1 —ity)/y/1 4+ 2 =0} or
{(71,51,12) e R x Cluy % (51 — i)/y/s] + 1 =0}

Note that (/1 + 7 is a real analytic function, although ,/x?+ y? is not an
analytic function at O. The above expression says that V> is a product

{(ti,un) |\/1+ 3ur + (1 —it)) =0} xR

where the second factor is the line with coordinate x;. Using the resolution of a
polar type, V> is simply written as

V2= {(r1,01,12) € R* x $1 x C|uy + exp(—0ri) = 0}

Again we observe that it is a product of torus knots and R¥.

3. Next we consider V3 ={z3 +z7z; =0}. The Newton boundary is the
same with that of the cusp singularity z3 + 213 =0. Thus we use the toric mod-
ification 7, : X, — C2. Let (u1,up) be the toric coordinate of the chart o =

21
(O,R) = < 3 2). Then the pull back of f is defined in this coordinate chart as

flur, ) = @ud)* + (W) (@) = utd (Wbl + adiay)

Thus the strict transform can be written as ufu3 + iji; = 0. Thus again we see
that V3NE(Q) ={(0,u)||uz| =1} and S' appears as the limit of V3N E(Q)
where E(Q) is the exceptional divisor corresponding to Q. We take a normal
polar modification w, : X, — X, and consider this in the coordinate chart
coljl(Cg) with coordinates (rj,exp(6,i),r,exp(6i)) with u; =r exp(61i), up =

ry exp(62i). Then V3 is defined by
173 = {}"2 exp(392i) + exp(—401i) = 0}



26 MUTSUO OKA

which implies that r» = 1 and 36, = —46;, mod 2z. We see that V3 ﬂE'(Q) is a
torus knot but the orientations for 6; and 0, are reversed.

In the resolution of a real type, the equation is apparently a little compli-
cated. In the chart C, o, I73HE(Q) is given by g(t1,52,%2) = h(t1,52,%2) =0
where

g(11,82,)~62) =Xy — )Ezs% — 4Xt18) — )Ezllz + )Zzllzsg +1—2t15 — l%
h([l,S2, Xp) = —2X280 — 2%2t) + Zle‘lsg + 2)?2[12S2 + 5 + 2t — t12S2.

Taking the resultant of (1, 52, X2) and h(t1,s2, %) in 1, we see that s3x3 + 53 = 1
which corresponds to r, =1 in the polar resolution.

4.5.1.  Pseudo weighted homogeneous hypersurface. Suppose that f(z,Zz) is
a convenient non-degenerate mixed function, let #: X — C” be an admissible
toric modification and let wg: #X — X be a real modification along the
exceptional divisors as in Theorem 24. Suppose that for a strictly positive
weight P, fp(z,z) is a pseudo weighted homogeneous polynomial. Write it as
fp(z,Z) = Mh(z) where M is a mixed monomial and /(z) is a weighted homo-
geneous polynomial with #~!1(0) N C*" being smooth. Take a toric coordinate
chart o = (Py,...,P,) with P=P,. Putdy = rdegp M and d;, = rdegp h. Then
rdegp f =dy +d,. Then the strict transform V in the toric coordinates C. is
already non-singular. Using the same notation as in the proof of Theorem 24,
we have

2 fp(uy, 0,) = 2° (M7 h(u,) = M'u"h(u)

where M’ is a mixed monomial and /A(u’) is a polynomial of u,. oy U Let
E(P))={u' €C""|h(u!) =0} be the exceptional divisor. Then V is diffeo-
morphic to the product C x E(P;). Now we take the normal real modification.
The defining equation of the strict transform ¥ in (C,), is given as f (X, t;,u.) =0
where

fy(F1,to,0)) = fp ,(%1,15,0) modulo (%)
(I)*fp()zl sl ll(;) = X'ld(Pl)fPﬂ(fél s oy ll(;)

FroEtowl) = (L+ 60) (1= 010) h(uga, . .. tigm).

Thus we see that V' is a product ZC x E(P;). The modification w, : 2X — X is
simply the polar modification of the trivial factor C.

5. Milnor fibration

In this section, we study the Milnor fibration, assuming that f(z,z) is a
strongly non-degenerate convenient mixed function. We have seen in Theorem
19 that there exists a positive number ry such that ¥ = f~!(0) is mixed non-
singular except at the origin in the ball Brzo” and the sphere S?*~! intersects



NON-DEGENERATE MIXED FUNCTIONS 27

transversely with V' for any 0 <r <ry. The following is a key assertion for
which we need the strong non-degeneracy.

LemmA 28. Assume that f(z,Z) is a strongly non-degenerate convenient
mixed function. For any fixed positive number ry with r| < ry, there exists positive
numbers 3y < ry such that for any 5 #0, || <o and r with ry <r <ry, (a) the
fiber V, = f~Y () has no mixed szngularlty inside the ball B} and (b) the
intersection 'V ﬂSz” U is transverse and smooth.

Proof. As the assertion (b) follows from the compactness argument, we
show the assertion (a) by contradiction. We assume that (a) does not hold.
Then using the Curve Selection Lemma ([12, 7]), we can find an analytic path
z(7), 0 <t <1 such that z(0) = O and f(z(¢),z(¢)) #0 for 1 #0 and z(7) is a
critical point of the function f : C" — C. The proof is similar to that of Theorem
19 as we will see below. Using Proposition §, we can find a real analytic family
A(f) in S' = C such that

3) df (2(1),2(1)) = A1) df (a(1),2(1)).

Put I = {j|z(t) #0}. We may assume that I = {1,...,m} and we consider f7.
As f(z(1),z(1)) = f(2(1),z(t)) # 0, we see that f7 # 0. Consider the Taylor ex-
pansions of z(¢) and A(¢):

z;(t) = b;jt“ + (higher terms), b; #0 i=1,...,
A(t) = Ao + 21t + (higher terms), JgeS' < C.

m

Let 4= (a1,...,an), b= (b1,...,b,) and we consider the face function fA’ of
f'(z,Z). Then we have

af 7 afA dfa, :

oz (z(1),2(1)) = o, (b)t“~% + (higher terms),

a (z(1),Z(1)) = %(B)td"’/ + (higher terms), d =d(4;f7).

621 0z;

Observe that we have the following equality for any j by the equality (3):
of! _
(Z( ), (1))
%y

ord, =— o (z(1),z(t)) = ord; =—
Thus by (3), we get the equality: df/(b,b) =/ df}(b,b) and beC*. This
implies that b is a critical point of £} : C* — C, which is a contradiction to the
strong non-degeneracy of f7/(z,7). O

5.1. Milnor fibration, the second description. Put

Do) ={neC|0< |yl <d}, S5 =0aD(o)" ={neC|lnl =0}

e

E(r,00)" = f~1(D(00)" )N B, 9E(r,00)" = f~'(S;,) N B;".
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By Lemma 28 and the theorem of Ehresman ([24]), we obtain the following
description of the Milnor fibration of the second type ([8]).

THEOREM 29 (The second description of the Milnor fibration). Assume that
f(z,Z) is a convenient, strongly non-degenerate mixed function. Take positive
numbers ry, r1 and oy such that r <ry and 6y <ry as in Lemma 28. Then
S E(r,d0)" — D(0o)" and f : GE(r,00)" — S5 are locally trivial fibrations and the
topological isomorphism class does not depend on the choice of oy and r.

5.2. Milnor fibration, the first description. We consider now the original
Milnor fibration on the sphere, which is defined as follows:

p: S NK = Sz 0(z) = f(2,2)/|f(2.2)]

where K, = VNS>, The fibrations of this type for mixed functions and
related topics have been studied by many authors ([20, 21, 5, 22, 19, 3]). But
most of the works treat rather special classes of functions. The mapping ¢ can
be identified with ¢(z) = —R(i log f(z)), taking the argument 6 as a local

coordinate of the circle S!. We use the basis = 1,...,n} of the

0
6 a
tangent space T,C" ® C. For a mixed function g( ,Z), we use two complex
“gradient vectors” defined by
- (dg dg
== (a—ZI, e ,a—z_n> .

(g dg
dg = (621 52,7)’
Take a smooth path z(f), —1 <r<1 with z(0)=weC"\VV and put v=

d
az 0) e T,C". Then we have

dt ( 4
_E(%(i log f(z(1),Z(?))),_

:_%(;{ggwmi;;(owj—g "G }/fww>

= R(v,id log f(w,W)) + R(V,id log f(w,W))
= R(v,id log f(w,W)) + R(v, —id log f(w,W))
=R(v,i(d log f —d log f)(w,W)).

Namely we have

) jz( (i log f(2(1), Z(1))),_g = R(v,i(d log f — d log f)(W, W)).

Thus by the same argument as in Milnor [12], we get
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LemMA 30. A4 point z € S?"\K, is a critical point of ¢ if and only if the two
complex vectors i(d log f(z,z) — d log f(z,Z)) and z are linearly dependent over R.

The key assertion is the following.

Lemma 31.  Assume that f(z,Z) is a strongly non-degenerate mixed function.
Then there exists a positive number ry such that the two complex vectors
i(dlog f(z,Z) —dlog f(z,7Z)) and z e S,\K, are linearly independent over R for
any r with 0 <r <.

Proof. We do not assume the convenience of f(z,z) for this lemma. We
proceed as the proof of Lemma 4.3 [12]. Assuming the contrary, we can find an
analytic path z(z), 0 <7 <1 such that

(a) z(0) = O and z(¢) e C"\V for ¢ > 0.

(b) i(d log f — d log f)(2(¢),Z()) = A(£)z(¢) for some A(z) such that A(¢) is a

real number.
As dlog f —dlog f does not vanish outside of f~!(0) near the origin by
Lemma 28 and Proposition 8, we see that A(¢) #0. Consider the subset I =
{jlzi(#) #0} = {l,...,n}. For simplicity, we may assume that 7 = {1,...,m}.
Consider the Taylor expansions:

zj(t) = a;t” + (higher terms), a; #0, p; >0, jel.

Put P="(p1,...,pm), a=(ai,...,a,) € C* and d =d(P;f’). Then we con-
sider the expansions:

f(z(1),2(1)) = f1(z(1),2(t)) = at? + (higher terms), ¢>d, o #0

1 !

Zi(z(t),i(t)) = (gf—P(a,ﬁ)td’I’/ + (higher terms), 1< j<m
Zj Zj

oft off

T (a(0) 240)) = L2 (a2 + (higher terms), 1< j<m
J J

A(t) = Aot® + (higher terms), Ao €R™.
The assumption (b) implies that for 1 < j <m,
T " 0 d—p —qg< .
(Lawm-Lwaya) -{ oA
0z 0z dodj, d —pj—q=s5+p;

Define J < {1,...,m} by J:={j|d—pj—q=s+p;}. Assume that J=0.
Then we have the equality

dfl(a,a) :gx df'(a,a), j<m

which implies f} : C* — C has a critical point at z = a by Proposition 8. This
is a contradiction to the strong non-degeneracy. Thus we have shown that
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J #0. We consider the differential:

QUAREI AP L)
Ly 1
f Z o, D2 Z oz di

NI

N

= qcxl"’l + (higher terms).

The two terms of the right side of the first row can be written as follows.

(dl( ) L df T (2(1), %( ))) = (Pa,df{(a,a))r"" + (higher terms),

S

(dil(tt) ’ _[(z(t), i(l)) = (Pa, ‘713[(5" ﬁ))1d71 + (higher terms)

where Pa = (p1ay,..., pmay) and Pa = (p1ay,..., pmay,). Thus we get
qot?~! + (higher terms) = ((Pa,c?}(a, a)) + (Pﬁ,c?if(a, a)))r?~! + (higher terms).

Observe that
S Tel(a &
éR(Pa,idfP (_a’a)> +§R(Pﬁ,i7dfp (_a’a)>
x x

_%< Aia) df;!(ma))

= §R(X:'10|af|21'2/> =J0 Y lajl’p; #0

jeJ jeJ
as J #0. Thus we see that
(Pa, dfP a,a)) + (Pa, dfP (a,a))

(( dfP aa) <Pa dfP(Pa a)>>;&0.

This implies that ¢ =d (namely f/(a,a) # 0) and

g = (Pa,df#(a,3)) + (Pa,df{(a,3)), or
qi = (Pa 177}(1)1( _)> + <P§ l;jfpl(fl7 ﬁ)>.
a o

Taking the real part of the last equality, we get an obvious contradiction:

= 3“3<§:7»0|aj|21)j> = Jolayl*p; #0.

jeJ jelJ

O
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OBSERVATION 32. Let we f~'(5), n#0 be a smooth point. Then the
tangent space Twf~'(n) is the real subspace of C" whose vectors are orthogonal
in R* to the two vectors

i(dlog f —dlog f)(w,W), (dlog f+dlog f)(w,W).

Proof. Assume that z(t), —e<t<e¢ is a smooth curve in f~!(y) with
z(0) =w and 7' (w) =ve T,/ '(y). The assertion follows from the next cal-
culation.

% log /(z(r),2(1)) = %8 f(dzt(t)j(t))

o 2 R(itog 1(a(0),7(0),o

=R(v,(d log f + d log f)(w,W))
+ R(v,i(d log f — d log f)(w,W)). O

Now we are ready to prove the existence of the Milnor fibration of the first
description.

THEOREM 33 (Milnor fibration, the first description). Let f(z,Z) be a strongly
non-degenerate convenient mixed function. There exists a positive number ry such
that

o=f/If1: S \K, — S

is a locally trivial fibration for any r with 0 <r <.

Proof. Taking ro, r1, &y sufficiently small so that f~!(5) and S?"~! intersect
transversely for any 7 € C* with || <Jp and r; <r <ry by Lemma 28. Com-
bining with Observation 32, the transversality implies that the three vectors

z, i(dlog f —dlog f)(z,Z), (dlog f+dlogf)(z %)

are linearly independent over R on {z € S, |0 < |f(z,Z)| <Jp}. Therefore we can
construct a horizontal vector field 7~ for ¢ on S '\K, so that

(1) R(¥(z),i(d log f —dlog f)(z,zZ)) =1 and R(7/(z),z) =0 for any ze

§2=1 _ K,, and moreover

(2) R(7"(z),(d log f +dlog f)(z,Z)) =0 for ze S, with |0 < |f(z,Z)| < .
We show that the integral curve of ¥~ does not approach to K,. In fact, assume
that z(¢), —e < ¢ < ¢ be an integral curve with z(0) =w, ¥ (w) =v. As we have
seen in Observation 32,

(5) % log|f (2(1),Z(1))| = R(v, (d log [ + d log f)(w,W)).

Therefore the condition (2) guarantees that ¥7(z) is tangent to the level real
hypersurface of real codimension 1, |f],:={we C"||f(w)| =|f(z)|}. Thus it



32 MUTSUO OKA

is obvious that 7 is integrable for any finite time interval and we get the local
triviality by the integration of 7. O

5.3. Equivalence of two Milnor fibrations. Take positive numbers r, dy with
09 < r as in Theorem 29. We compare the two fibrations

f:aE(V,éo)—)Sél(), w:Srznil\K’_)Sl

and we will show that they are isomorphic. However the proof is much more
complicated compared with the case of holomorphic functions. The reason is
that we have to take care of the two vectors

i(dlog f —dlog f), dlog f+dlog f

which are not perpendicular. (In the holomorphic case, the proof is easy as
the two vectors reduce to the perpendicular vectors id log f,d log f.) Consider

a smooth curve z(t), —1 < ¢ <1, with z(0) = we B*\V and v = dj;’) (0). Put
v=(vi,...,0,). First from (4) and (5), we observe that !
log f(2(1),2(1)) | _ x~(, 0logf . dlogf

= R(v, (d log f +d log f)(W,W))
+ iR(v,i(d log f —d log f)(wW,W)).
Define two vectors on C" — V'
vi(z,Z) = d log f(z,Z) + d log f(z,7%)
v2(z,Z) = i(d log f(z,Z) — d log f(z,%))
The above equality is translated as

» log /200, 20)

= R(v,vi(W,W)) + iR(v, v2 (W, W)).
=0

The following will play the key role for the equivalence of two fibrations:

LemMMA 34. Under the same assumption as in Theorem 33, there exists a
positive number ry so that for any z with ||z|| < ry and f(z,Z) # 0, the three vectors

z, vi(z,Z), Wv2(z,Z)

are either (i) linearly independent over R or (ii) they are linearly dependent over R
and the relation can be written as

(7) z=av((z,Z) + bvy(2,Z), a,beR.

and the coefficient a is positive.
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Proof. First observe that the pairs
P = {Vl(zv 2)7"2(17 Z)}v P = {Z,VQ(Z, Z)}

are respectively linearly independent over R by Lemma 28, Lemma 31 and the
above equality. Assume that the assertion does not hold. Consider the real
analytic variety W where the three vectors are linearly dependent over R. Let us
consider the open set U = C"\VV. Then W N U has a finite number of connected
components. The sign of the coeflicient @ in (7) is constant on each component,
as long as they are near enough to the origin. This is the result of the linear
independence of z, v»(z,zZ). We will show that this sign is positive. We use the
Curve Selection Lemma ([12, 7]) to find an analytic curve z(¢), 0 < ¢ <1, such
that z(0) = O and z(¢z) ¢ V for ¢ # 0 and there exist real valued functions A(z),
u(t) so that

z(t) = A()vi(z,Z) + u(t)va(z,Z).

Let I ={j|z(t)#0}. We may assume that I ={1,...,m} and we do the

argument in C’. We consider the Taylor expansions of z(¢) and f(z(),Z(t)),
and the Laurent expansions of A(r) and u(z):

zj(t) = a;t” 4 (higher terms), a;eC*, pjeN, 1 <j<m,
f(z(2), ( )) = at’ + (higher terms), aeC*,/eN

A(t) = Apt™ + (higher terms), AyeR*, vieZ
u(t) = ot + (higher terms), p,€R*, v € Z.

First we consider the equality:

o Zj(t):;°(l)<g/f+%/f>(1(t) (1
(az]/f_azj/f> j=1,...,m.

Put P= (p1,...,pm), a=(ay,...,a,) and d = d(P, f). Then we observe that

T o(0), 20)F (al0), 2(0) = (5% (a, a)/a) -7~/ 4 (higher terms),

%(z(l),i(l)))/f(z(l),Z(l)) <6fP (a, a)/oc) tr=l (higher terms)

Thus comparing the equality (8), we see that

pi=min{vi +d—p,—{,v2+d—p;—(}.
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To avoid the repetition of the similar argument and to treat the cases v, = vy,
vy < v; and v > vy simultaneously, we put vy = min(v;,v,) and we rewrite the
expansions as A(#), u(t) as

Mty =rot"™ +---, rpeR
ﬂ(l):mol"‘—i—---, mgy € R.

Here we have ro =0 or ryp = 4y (respectively my =0 or my = u,) according to
v > vy or v =y (resp. v2 > vy or v, =19). By (8), we get

Jo <ﬁ o+t "o a)/a) +ln40<ﬂfp (a,8)/7 —5—‘!<a,ﬁ>/a>
dz; 0z
_{aj pj:d—pj-i-vo—/
|0 pi>d—pitv—{.

More precisely we assert

ASSERTION 35. Put ppy, =min{p;|iel} and K={iel|p; = pmin}. Then
we have

A i _ oy
Ao| = a o moi x—
) o(azj (a,3)/%+=-(a,a)/ >+ 0 (ag, (a,2)/% — =2 : (a,a) /o )

J
_[a4p jeK
|0 jéK.

Proof. We examine the equality (8). The order of ||z(?)|| is pum. On the
other hand, the order of j-th component of the right side of (8) is greater than or
equal to d — p; + vy — ¢ and the coefficient of t9=2~" is given by the left side
of (9). If there is an index j ¢ K such that this coefficient is non-zero, then the
order of the right side of (8) is strictly smaller than d — p,,;, + vo — ¢ and the limit
of the normalized vector of the right side has 0 coefficient on any j e K and we
have the contradiction to (8). O

Thus we have proved (9). Now we examine the next equality more
carefully:

o) 0.0) z";(@f(z(r),i(r)) d=i(0) | of (2(0).7(1) dzj@)_

= 62]' dt 62} dt

The left hand side is simply

df (2(1),2(1))

0 = a/t"~! + (higher terms).
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35
We introduce the complex vectors
V= (V1,5 0m), 0 = /Difs
W= (Wi, W)Wy = \/Djf5
A (o - oy
where f; :E(am), ff_a—z_j(a,a), l1<j<m
The order of the right hand side of (10) is greater than or equal to d — 1. Let R
be the coefficient of #?~! of the right side

By an easy calculation, we have

R=_apfi+ Y anf;
j=1 j=1

-Sonrfio(fed)em(G-1)

m

Sorfeld) (D)

l'm m }v im
_“Z p,|f,| +p1‘f‘ )<| (|) ﬁ)-ﬂx ijfjfj—<—0__0)
Jj=1 7

2 2
1 A o

ing (A0 img
= (I + W) <_|+W> + 2w (% 12)

Consider two complex numbers:

IR o iy [ 2o o aw [P0 Mo
= (¥ + ||><||+||> i 27 (- 23)

Using the Schwartz inequality, we see that

\/ A8+ md \/ S+ ml
y| = 2T|(W7V)| < 2THVH |

[wll
and by comparing with |f], we get
\/Ag +md
- 2
1Bl =7l = T (I¥lF = fiwl)* = 0.
For the equality |B| = |y|, it is necessary that ||V|| = ||w|| and |(w,¥V)| = ||V]| x ||w]|,
or

w=uv, JueS'cC.



36 MUTSUO OKA

FIGURE 2. If 29 <0, |8 < |y

Note that this is equivalent to (fi,...,fs) = u(fi,..., fn) which implies
df (a,a) = u df(a,a). This is a contradiction to the non-degeneracy assumption
for f!(z,z). Thus we conclude that |#| > |y| and R # 0.

Now the equality (10) says, / —1=d —1 and

loo=off +ay, or

A A
£ = (124 I {2+ 7% )+ 2w, 9) (25— 7%
T 2y
We now assert that Agp > 0. Assume 49 <0. Then R(f) <0 and to get the

equality / = f 4y, we must have |y| > |f|. This is impossible as we have seen
that || > |y|. See Figure 2. O

Now we are ready to prove the isomorphism theorem:

THEOREM 36. Under the same assumption as in Theorem 33, the two
fibrations

f: 0E(r,09) — S(;ov p: S N\K, — S!
are topologically isomorphic.
Proof. The proof is done as in the case of Milnor fibrations of a holomor-
phic function ([16]). We will construct a vector field ¥~ on
E“(r,0¢) := B\Int(E(r,09)) = {z € B, | |f(z,Z)| = o}
so that

(z)
(11) RV (2),v1(2,7)) > 0,

Assume for a moment that we have constructed such a vector field. Along the

integral curve A(¢,w) of 7~ with 4(0,w) = w, the argument of f(h(z,w),h(z,w)) is
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constant and the absolute value |f(h(z,w))| and the norm ||/(¢, w)|| are monotone
increasing. The integral curve is well-defined as long as /(¢, w) is inside E(r,dp).
For each w e E¢(r,dy), there exists a unique 7(w) such that ||z(z(w))|| =r. Thus
this gives a topological isomorphism  : 0E(r,dy) — S?"~'\ N, which is defined by
Y(w) = h(z(w),w)

$»"\Int N, —— &

where N, = S 1N {z||f(z)| <do}. As N, = D()" x K, with D(5p)" = { € C|
0 < |y| <}, the restriction ¢: S "\N, — S! is isomorphic to the Milnor
fibration ¢ : S \K, — S!.

For the construction of ¥, we use Lemma 34. Take a point we E“(r,0p).
If the three vectors vi(w,W), vo(w,W), w are linearly independent over R, it is
also linearly independent over a small open neighborhood U(w). It is easy to
construct locally ¥~ on U(w), satisfying the above property (11). If the three
vectors are linearly dependent over R, consider the expression:

w=avi(w,W) + bvy(w,W), a,beR,
with a > 0, we construct ¥~ on a neighborhood U(w) of w so that
R(7(2),v2(z,2)) =0, R(7(2),vi(z,Z)) > 0.
on U(w). Note that
R(w, 7" (w)) = aR(vi(w, W), (w)) >0
If U(w) is sufficiently small, this inequality holds on U(w). Consider the open
covering % = {U(w) |w e E(r,d9)}. Taking a locally finite refinement %’ of this

covering, we glue together vector fields constructed locally on each open set in %’
using a partition of unity as usual. O

5.4. Polar weighted homogeneous polynomial and its Milnor fibration.
Consider a mixed polynomial f(z,z) which is a radially weighted homogeneous
polynomial of type (¢, ...,qn;d;) and a polar weighted homogeneous polynomial
of type (p1,-..,pu;dy). Put V= f71(0) as before. Then f:C"\V — C" is a
locally trivial fibration [17]. We call it the global fibration. On the other hand,
the Milnor fibration of the first type:

o= f/Ifl: S\K; — Sla Kr:fil(o)ﬂsr

always exists for any r > 0 and the isomorphism class does not depend on the
choice of r. This can be shown easily, using the polar action. We simply use
the polar action to show the local triviality:

VB go_l(@) x (0 —mn60+n)— (p_l((ﬁ—n,ﬁ—i—n))
W(z,0+n) = (z1 exp(ipin/d,), ..., zs exp(ip.n/d,))
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Now we have the following assertion which is a generalization of the same
assertion for weighted homogeneous polynomials.

THEOREM 37. Let f(z,Z) be a polar weighted polynomial as above. We
assume that the radial weight vector '(q1,...,qy) is strictly positive. Then the two
fibrations

ffil(S()l)HS()H ¢:f/|f|:Sr2n717K"*>S17
are isomorphic for any r >0 and 6 > 0.

Proof. First, observe that the isomorphism class of the global fibration
ff7NS5) = 85

does not depend on 6 > 0. This follows from the commutative diagram:

F) = )
Jf lf, bs: (2,7) — Vo (2,7)
A

where d =rdeg f and o denotes the R* action by the radial weights. Now
the global fibration f:f~!(S}) — S} is isomorphic to the second fibration
p: S \K, — S! as follows. For any ze f~!(S}), consider the orbit of the
radial action 7 — 1oz = (t7z,...,7%z,), t > 0. There exists a unique positive
real number 7 = 7(z) so that ||z(z) oz| =r by the strict positivity assumption
of Q. Put y:fY(S})H — S NK, by Y(z)=1(z)oz and &:S; — S; by
E(m) =n/o. Then we have a canonical commutative diagram which gives an
isomorphism of two fibrations.
sUsH) —— s

0

!

Sanfl\Kr L} Sl 0

The following is an important criterion for the connectivity of the Milnor
fiber of a polar weighted mixed polynomial.

ProposiTION 38. Let f(z,Z) be a polar weighted mixed polynomial of n
variables z = (z1,...,z,). We assume that f~'(0) has at least one mixed smooth
point.  Then the fiber F := f~'(1) = C" is connected.

Proof. Put V = f~1(0). Take two points P,Q e F. Connect P, Q by a
path 7 in C"\V. Then fx(/) is a closed path in C* based at 1 € C* and let s
be the rotation number of fx(/) around the origin. Take a smooth point R in V'
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and take a small lasso w around V in the normal plane at R. Connect w to P in
C"\V to get a closed path @’ at P. The image of w’ by f is a closed loop with
the rotation number 1 around the origin. Take a new path /' =’ *o/. Then
the image of /' has 0 rotation number around the origin and thus it is homotopic
to the constant loop at 1 € C* by a homotopy k, : f ow’ ~ ¢;, where ¢ is the
constant path at 1. Now lift this homotopy by the radial and the polar actions
to get a path ky from P to Q. Obviously f ok; is the constant path ¢;. Thus
ki is a path in the fiber F which connects P and Q. (For a holomorphic case,
this assertion follows from the Kato-Matsumoto theorem, [9]). O

6. Curves defined by mixed functions

In this section, we focus our study to mixed plane curves (n =2).

6.1. Holomorphic plane curves. Assume that C is a germ of a complex
analytic curve defined by a convenient non-degenerate holomorphic function
f(z1,22) and let A;, j=1,...,r be the ldimensional faces and M,, My,...,
M,_y, M, be the vertices of I'(f) such that A; = M;_{M; and M,, M, are on the
coordinate axes. Then each face function fA/ can be factorrzed as

Sa(z1,22) = cjz1 22 H z1 '+ oy ,zg’ ged(py,q) =1

where o;1,...,0;, are mutually distinct. Then any toric modification with
respect to a regular simplicial cone subdivision >* of the dual Newton diagram
*(f) gives a good resolution of f : (C? 0) (C,0). Let P; be the weight
vector of the face A;. Each vertex P of ¥ gives an exceptional d1V1sor E(P) and
the strict transform C intersects with E(P) if and only if P = P; for some
j=1,...,r. In the case P =P, E( )ﬂC is v; point which corresponds to
1rreducrble components associated with fa;. The vertices My, ..., M, do not
contribute to the irreducible components. The number of 1rreducible compo-
nents of (C,0) is given by >.I v, Note that 1+ > 7 v; is the number of
integral points on I'(f) ([16]). The situation for mixed polynomials is more
complicated as we will see later.

6.2. Mixed curves. Now we consider curves defined by a mixed function
with the same Newton boundary as in the previous subsection. Let f(z,Z) be a
non-degenerate convenient mixed function with two variables z = (z;,z,) and let
C=f710). Let

(p:Y(—U>X—ﬁ>C2

(Y=2X, o=wr or X and o = w,) be the resolution map, described in
Theorem 24 and Theorem 25. Let E(P) = w '(E(P)) for a vertex P of L*.
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6.2.1. Simple vertices. A vertex M = (a,b) e T(f) is called simple if fy

contains only a single monomial zf‘zé"z‘fzz‘é’z such that a = a; + a2, b = by + bs.

Otherwise we say M is a multiple vertex of T'(f).

Example 39. Let f(z,Z) = z; + tz}z; +z3. Then I'(f) has one face with
edge vertices M} = (3,0) and M, = (0,2). f(z,Zz) is a radially weighted homo-
geneous polynomial of type (2,3;6). The vertex M; is a multiple vertex as
S, (2,Z) = 23 + 1232,

Lemma 40.  Suppose M = (n,0) and let fy(z1,71) = > 1, ¢z]Z 7. Con-
sider the  factorization  fy(z1,21) = ][ (z1 — Z1). Then V*:={zeC"|

Su(z1,21) =0} is empty if and only if |uj| #1 for any j=1,...,n.

Proof. Let V;*:={z1 € C"|zy =oyz1}. Then V* =[], V/*. Itis easy to
see that V7" is not empty if and only if [oy| = 1. ‘ O

Note that f3s(z1, ) is non-degenerate if and only if ¥* =§. For an inside
vertex M; (namely, M; is not on the axis), the criterion for non-degeneracy of the
function fj(z,z) is not so simple.

Example 41. Consider

C:= {Z € C2 |fM(Z,2) =1z122 + 2122 + Z_lzz}.

We assert that

ASSERTION 42, f3,'(0) = C*2 is non-empty if and only if |t| < 2.  fy is non-
degenerate if and only if || >2 or 0 < |f] <2.

Proof. Put
z1 = py exp(0i), zx = p, exp(ni), =& exp(oi).
Then we see that C is radially homogeneous and it is defined by
C: 2 cos(—0+ ) + '@t =g,
For the existence of non-trivial solutions, we need to have:

o+0+n=mn, Imel
2cos(—0+n)+&(-1)"=0
(13) or £=0, cos(—0+#n) =0

(12) E=11 <2, {

Assume that ¢ # 0, |7 < 2. The equation (12) has 8 solutions with 0 < 0,7 < 2n
for ¢ < 2 and 4 solutions for £ =2 or 0. We can show that V = f;,(0) is non-
singular for 0 # & < 2, using Proposition 8. In fact, assume that df (z) = A df (z)
with |A] = 1. Then we have
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12y + 2y = Azp, 21 +z1 =2z1, (z12p+ (2122 + 2122) =0
This implies that 2> = +1 and |f| =0 or |7 = 2. O

6.2.2. Link components. Let f(z,Z) be a mixed function with two variables
z=(z1,z5) and let C = f~1(0). The link components at the origin are the compo-
nents of >N C for a sufficiently small &. We are interested in ﬁndlng out how to
compute the number of the link components of C at the origin. Let us denote
this number by lkn(C, O) and we call Ikn(C, O) the link component number. Let
us denote the number of components which are not the coordinate axes z; = 0 or
z; =0 by lkn*(C,0). In the case of f being a holomorphic function, lkn(C, O)
is equal to the number of irreducible components of (C,0), which is a com-
binatorial invariant, provided f is Newton non-degenerate, as we have seen in the
previous section §6.1. However for a generic mixed function, lkn(C, O) might be
strictly greater than the number of irreducible components (see Example 27 for
example).

THEOREM 43. Assume that f(z,Z) is a convenient non-degenerate mixed
polynomial of two variables z = (z1,z3) and let C = f~1(0). Let F be the set
of 1-faces of T(f). Assume that the vertices of U(f) are simple. Then the
number of the link components lkn(C, O) is given be the formula:

Ikn(C,0) = Y lkn*(f,'(0),0).

AeF

Proof. Let ®: #X — C? be the resolution of f by the composite of a toric
modification 7 : X — C? and the normal real blowing-up w: #X — X. The
simplicity of the vertices implies that ®~'(E(P))NC = for any P for which
A(P) a vertex of I'(f). Thus by Theorem 24, it is immediate that there is
one link component of (C,0) for every connected component of E(P)=
@ (E(P))NC with A(P)e #. The assertion follows from this observation.

U

Now our interest is finding out how we can compute lkn*(f;'(0),0). In
general, it is not so easy to compute this number but there is a class for which the
link number is easily computed.

6.2.3.  Good Newton polar boundary. Suppose that f(z,z) is a mixed
function of two variables and let A be a face of the Newton boundary. Suppose
that fi(z,Z) is also a polar weighted homogeneous polynomial. Let Q = (¢, ¢2)
and P = '(py, p>) be the radial and the polar weight vectors and d,, d, be the
respective degree. In general, the mixed face A(Q) is two-dimensional as the
possible monomial z;'z,*z{1Z5? satisfies two linear equations

i +u)g+ 2+ ) =d, (Vi —wy)p1+ (va — ) p2 = dp.
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We say that fa(z,Z) is a good polar weighted polynomial if dim A =1 and fa(z,7)
factors as

k
(14) Ia(z,z) = cz™ H 2222 121 )ﬂ

with @ # a’, b # b' and ged(a,a’,b,b’) = 1. Note that in this case, p;(b—b') =
p2(a — a’) and non-zero. We say that f (z7 zZ) has a good Newton polar boundary
if for every face A of T'(f), fa(z,Z) is a good polar weighted polynomial.

LemmA 44. Assume that fa(z,Z) is a good polar weighted polynomial and
assume that a factorization of fa(z, 2) is gwen as (14). Then fa(z,Z) is non-
degenerate if and only if uy=---=

Proof.  Assume that g, >2 for some ;. Then it is easy to see that
df (2,2) = df (2,2) =0 on z{z}' — 4z§z§' =0. Thus it is degenerate. Assume
that w =1 for any j. As fa is polar weighted, we only need to show that
et )ﬁC*2 is mlxed non-singular. Take a point we f;1(0)NC** such that

w§wg — Aiw?wP" =0 for example. Then we have
k
df (w,w) = cw W”H wiwd — awlml) x (=bawi ot awdlwg")
J=2

Kk
df (w,w) = cw"w H(wng — b’y x (b ywhwl Tt a'wgwg T
=2
Suppose that df (w,w) = u df (w,w) for some u with |u| = 1. This implies that
b=0>b', a=a’'. This does not happen as we have assumed that a # a’, b # b'.
U

Example 45. Let f(z,Z) =z} + Z1z2(z} — 23) + 5. Then I'(f) has three 1-
faces and the corresponding face functions are

2555 v ), Eiz(e —23), 233 (-4 +2,'5).
Thus f has a good Newton polar boundary.

624 Good binomial polar weighted polynomial. A polynomial f(z,z) =
z§z§" — Azbzb" with a#da', b#b', 2 #0 and ged(a,a’,b,b’) =1 is called an
irreduczble bznomial polar weighted homogeneous polynomial. 1t is irreducible as
a mixed polynomial. By Lemma 44, this is a basic polar weighted polynomial

for our purpose. Put ¢; =b— b’ and ¢ =a —a’. Then the associated Laurent
polynomial in the sense of [17] is

g(z1,22) = 23> — Az},



NON-DEGENERATE MIXED FUNCTIONS 43

Let C={f =0} and C' = {g =0}. Note that ¢|,c; # 0 by the polar weighted-
ness.

LEMMA 46. We have the equality:
lkn*(C, 0) = ged(c1, ¢2) = #(C')

where #(C') is the number if irreducible components of C'.

Proof. 1t is easy to see that the number of irreducible components of C’
in C*2 is ged(cr,c2). We know that CNC** and C’NC*? are homeomorphic
by the same argument as in [17]. We will show that lkn*(C,0) = ged(cy, ¢3)
without using this isomorphism. We consider components of C in C*2. For
this purpose, we use the polar modification. So we put z; = r; exp(6,7) and
2 = rp exp(6,i). Considering the conjugation diffeomorphism, we may assume
that ¢;,¢; > 0. For brevity we put r; =s> and A= p® exp(ni) for some s,
p>0. Thus

f(2,Z) = ry* exp(c260ai) — Ar{* exp(c16:i)
= r5? exp(c20ai) — p2(s")? exp((c161 + n)i)
Thus we have r, = ps;' and
exp(c26hi) — exp((c101 +1)i) = 0.

Put ¢y = ged(ci, ¢2) and write ¢; = ¢oc] for i = 1,2. The above equation is solved
as follows.
r=sy'p, b, =c10 +n modulo 2z.

The last equality can be solved so that the component C; of C is given as
Gy i={(s{'p exp(0ri), 5§ exp(02))] 02 = ¢4(01),0 < 0 < 257}

where ¢,(01) :==c101/cy —n/c2+2kn/c; for k=0,1,...,co—1. For k = ¢,
write k = cok; + ko, 0 < ko < cg. Then ¢k(01) = ¢k0(01 + 2k17[) and C; = Cko
as we have

= {(ry exp(61i), 2 exp(d(61)i)|0 < 0) < 2¢5m}
{(ry exp(010), 2 exp(¢y(01)i)) | 2kim < 01 < 2¢5m + 2k m}
= {(r1 exp((0h + 2kom)i), r> exp(dy, (01 + 2kom)i) | 0 < 0> < 2¢3m}
= Cp.
Thus we get lkn*(C, O) = ¢. O

COROLLARY 47. Let fa(z,Z) be a good polar weighted polynomial which is
factored as

=~

faz1) = a2 [[(#2 — iztel)

J=1
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with ged(a,a’,b,b') =1, a#a', b#b' as in Lemma 44 and let C = f,'(0).
Then lkn*(C) =k gcd(a —a',b—b").

6.2.5. Newton pseudo conjugate weighted homogeneous function. Assume
that f(z,Z) is a non-degenerate Newton pseudo conjugate weighted homogeneous
function. Then for any face A, we can write

fa(z,z) = Mh(z,z)

where M is a mixed monomial and % is a J-conjugate weighted homogeneous
polynomial for some J < {1,2}. Thus we can factorize / as

k
1;h(z,z) = cl_[(zé’1 —Az?), ¢#0
=1

with ged(pi, p2) = 1. In this case, it is easy to see that
Ikn* (£ (0) = k.

Thus we obtain a similar formula:

PrOPOSITION 48.  Assume that f(z,Z) is a non-degenerate convenient Newton
pseudo conjugate weighted homogeneous function. Then

lkn(f1(0)) + 1 = number of integral points on T(f).

6.2.6. Example of a radially weighted homogeneous polynomial with a non-
simple vertex. The link number for a radially weighted homogeneous polynomial
with a non-simple vertex is more complicated, as is seen by the next example.
Consider the radially weighted homogeneous polynomial

f(2,7) =z} + cz17} — 23
and put C = f~1(0). Then I'(f) consists of a single face with vertices (3,0),
(0,3). It is easy to see that f is non-degenerate if and only if |c| # 1. The
vertex (3,0) is not simple. For |c¢| <1, we have
2 =10/ (1 4 cexp(—40i)'3,  j=0,1,2

where w =exp(2ni/3), =z =rexp(0i) and lkn(C,0)=3. The function
(I+c¢ exp(—49i))1/ 3 is a well-defined single-valued function of ¢, z; with |¢| < 1
so that it takes value 1 for ¢=0. Considering the family f(z,Z,¢) =
z3 +c1z12} — z3 for 0 <t <1, we see that this curve is topologically the same
as z; +z;3 = 0.

Assume that |¢| > 1. Then (1+cexp(—40i))1/3 is not a single valued
function as a function of 0 < 6 <2z. However we have a better expression.
Put z; = rexp(0i) and ¢ = s exp(7i).

: —0 40i)\'
2 = 513y exp(i 3+77> (1 JreXpE:’)) . j=12,3
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where 0 < 0 <27. Note that f~!(0)\{O} is a 3-sheeted covering over {z; # 0}
and three points over 6 = 0 are cyclically permuted by the monodromy 6 : 0 — 2.
Thus this expression shows that lkn(C,0) =1. It is also easy to see that this
knot is topologically the same with zj|z|* — z3 =0. Thus we observe that the
topology of a mixed singularities is not a combinatorial invariant of T(f).

7. Milnor fibration for mixed polynomials with non-isolated singularities

We consider a true strongly non-degenerate mixed polynomial f(z,Z) which is
not necessarily convenient. Take a positive weight vector P = ‘(py,...,p;) e N*
which is not strictly positive and we put

I(P)={jlpi=0}, J(P)={jlp; #0}.

We consider the face function fp(z,Z) as a mixed polynomial in variables
{zj|j€J(P)} and we consider the other variables {z;|ie€ I(P)} are fixed non-
zero complex numbers. Thus it defines a family of mixed polynomial functions
parameterized by z;p) = (2i);cy(p):

fr: C'Pwyp) — C,  zyp) > fp(2,7).
Here
C*J(P)(w,<p)) ={ze C™"|zyp) = wyp : fixed} = (ondtel

Thus we are considering fp as a family of mixed polynomials in z;p) with
coefficients in C{z;p),Z;p)}. If d(P,f) =0, then fpe C{zp),Z1p)}.

DerFmNITION 49. We say that [ is super strongly non-degenerate if the
following condition (SSND) is satisfied.
(SSND): for any subset Pe N*, either
(a) d(P,f) =0 ie., fpeC{zyp),Zyp)} OF
(b) d(P,f) >0 and fp: C*J(P)(W[(P)) — C* has no critical points for any
W](p) eC* P>.

The following is an immediate consequence of the definition.

ProposITION 50. (1) If f(z,Z) is a convenient strongly non-degenerate mixed
function, then f(z,Z) is super strongly non-degenerate.

(2) Assume that f(z,z) is super strongly non-degenerate and I € NV (f).
Then f1 is also super strongly non-degenerate.

The assertion (2) can be proved in the exact same way as the proof of
Proposition 7. O

The following key lemma is a mixed polynomial version of Lemma (2.1.4) of
Hamm-L¢é [8].
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LemMa 51, Assume that f(z,Z) is a true super strongly non-degenerate mixed
function and consider the mixed hypersurface V and its open subset V*#. Take
a positive number 1y so that V# (0 B, is mixed non-singular and any sphere S,
intersects transversely with V# for any 0 <r <ro. Then for any fixed 0 < r < ry,
there exists a sufficiently small positive number 6 such that for any ne C with
0 < |y| <6, the fiber f~' ()N B,, is smooth and any sphere S; intersects trans-
versely with f~Y(n) for any r <s <ry and n with 0 < || <.

Proof. Assume that the assertion is not true. Using the Curve Selection

Lemma ([12, 7]), we can find a real analytic curve z(z), 0 <7 <1 such that

r<llz(l <ro, f(2(),2(0)) 0, 2(0)ef7'(0)

and the fiber f~!(x(¢)) and the sphere of radius ||z(¢)|| is not transverse at z(¢)
where o(f) = f(z(t),z(¢)). Recall that we have defined two special vectors:

vi(z,Z) = d log f(z,Z) + d log f(z,7)
vo(z,Z) = i(d log f(z,Z) — d log f(z,7))

Recall that the tangent space of the fiber T,f~'(5) is spanned by the vectors
which are perpendicular to v (z,Z) and v»(z,Z). Thus under the assumption there
exist real-valued analytic functions A(¢), u(¢) so that

2(1) = A(0)vi(2,2)) + u(1)v2(2, 7)),

as in the proof of Lemma 34. Let [ ={j|z(t) #0}. Then I e /¥ (f). We
may assume that 7 = {1,...,m} and we do the same argument in C’ as in the
proof of Lemma 34. We consider the Taylor expansions of z(¢), f(z(t),z(¢)) and
the Laurent expansions of A(z) and u(7):

zi(t) = a;t” + (higher terms), a;€eC*, p;>0,1<j<m,
f(z(t),Z(t)) = at’ + (higher terms), o«eC* /eN

A(t) = Agt™ + (higher terms), AyeR*, vieZ

u(t) = ot + (higher terms), x4, € R.

Here we understand v; = co or v, = oo if A(f) =0 or u(z) = 0 respectively. We
put vo = min{v;, 4, } and we write for simplicity as follows.

A(t) = Jot" + (higher terms), JoeR* v eZ
u(t) = iyt + (higher terms), mpeR

where iy = 40 %f "= v07
0 ifvi>w

N Uy fva=mw
Ho = .
0 ifv>w
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Note that vy < oo and (4o, fy) # (0,0) anyway. Consider the equality:

Sn-io(EfrE e
(az,/f az,/f) j=1...,m

Put P=(pi,...,pm), I(P)={jlp;=0}, J(P)={jlp; #0}, a=(ar,...,am)
and d = d(P, f'). Note that z(0) € C*'*).  Assume that I(P) e /7" (f). Then
z(0) € ¥# and it is a smooth point. Thus by the assumption, the sphere S,

intersects transversely with ¥#. Thus the same is true for S, and f~'(x(1))
for any sufficiently small z which is a contradiction to the assumption. Thus
we may assume that z(0) € V\V# and therefore I(P) ¢ /v (f!) (& I(P)UI ¢
A9°(f)). Then we observe that

6f( (6),Z(1))/f (2(),Z(t)) = (aajz: (a, a)/oc) 177~/ 4 (higher terms),
o

(a, a)/oc) t=7=" 4+ (higher terms)
Zj

az,( (0),2(0)) /1 (2(1), 2(1)) = (

By Assertion 35, we have

. Arl I

o L )/ + L m)n ) i (L oy~ L ) =0, e (),
0zj 0zj 0zj 0z

This implies that ayp 1is a critical point of the mixed polynomial

fi:CYP(ayp) — C and ff(a,a) # 0 with z;p) = ap fixed. This is a con-

tradiction to the super strong non-degeneracy of f7/. O

7.1. Milnor fibration for non-isolated singularities. Now, by Lemma 51 and
Lemma 31, we have the following non-isolated version of the Milnor fibration.
Note that ¢ = f/|f]: S* \K, — S! is a fibration using a |f|-level preserving
vector field near K, by the transversality of f~!(5) and S, for 5, || <.

THEOREM 52. Assume that f(z,Z) is a super strongly non-degenerate mixed
function. Then there exists a stable radius ro > 0 so that for any r with 0 <r < ry
and a sufficiently small number & (compared with r), we have two equivalent
fibrations:

f:0E(r,0)" — S)
o=[/If]: S "\K, — S

where K, = [~ (O)HSZ” L Moreover, if [ is a polar weighted polynomial, the
global fibration [ f~'(S}) — S} is also equivalent to the above fibration.
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a . L ial z}'Z,'z5°Z)° an  insi mial i
Example 53. 1. A monomial z{'z}'z}?z)? is called an inside monomial if

M+ Visip +v2 > 0. An inside monomial z{"Z]'z522)* is called polar admissible
if 4 #v; and u, #v2. Let g(z,Z) be a strongly non-degenerate polar weighted
mixed function of two variables z = (z},2z;) with two simple end vertices 4, B of

I'(g). We assume that

A= (my,n), B=(my,n), m <my n>n

. . . L
which come from the mixed monomials zf lzlv 125’222 and z; zllzézz2 Here

my =g +vy, N =+, mzz,u1+v1, n2:,u2+v2.

Consider P ='(1,0) for example. Then gp(z,Z) = cz#z" with some non-zero
constant ¢. Assume that m; > 0. To check if gp : C* — C”* has a critical point
or not as a function of z; variable, we can use log gp instead of gp. Now we
have

- %
d-, log gp(z Z) = 'LZLII, d-, log gp(z,7) :é.

If z7eC* is a critical point of gp for some fixed z, € C*, we must have u e S!

such that 2 = u—l. This is only possible if vj = g;. By a similar discussion for

Z1 Z1
Q =10,1), we have shown the following.

LemMA 54. Assume that ¢(z,z) is a non-degenerate polar weighled mixed

. . Yo .
polynomial whose two end monomials are z{"z['z5?2? and zl Zl‘zzzz2 with

Uy +vi <y +va. Then g(z,z) is super strongly non-degenerate if and only if
the following conditions are satisfied.
(1) Either py =v; =0 or z{”zl“zgzzzvz

(2) Either 1, =v5=0 or zflzl‘zgzz’2 is polar admissible.

is polar admissible.

Il Let f(z,Z) = 220" + 24220 + ...+ z%Z)" be a simplicial polar weighted
homogeneous mixed polynomlal We assume that ¢; > b1 > 1 for j=1,...,n
with by = b,. We assert that [ is super strongly non-degenerate.

Proof. Consider f} for some I € /¥ (f) and Pe N* and let I(P), J(P) be
as in the proof of Lemma 51. We assume that d(P, f) > 0. Suppose that z;“zé’l
is in f£. Then {1,2}NJ(P) #0. Assume that 2 e J(P) for example. Then

) ... . .
ﬁﬁ #0. If f} has a critical point as a mapping f} : Cc¥®) _ C*, we need a
22 a g
non-zero ﬁ by Proposition 7, which implies z5? zé’z must be in ff. As a > b
2
by the assumption and pja; + p2b; = praz + p3bs, this implies that 1 € J(P) i.e

Co . a
p1 # 0. This implies again that L # 0 and therefore z“"zf” must be in ff. By

0z
the same reasoning, a; > b, implies that p, > 0 and n € J(P). Then we consider
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off o o

afP and we see that n— 1€ J(P) and z/zb1 is in f£. Continuing the same
Zn

discussion, we conclude ff = f ie., I ={l,...,n}. However, f(z,Z) is polar
weighted and it has no critical point over C*. Thus f is super strongly non-
degenerate. O

8. Resolution of a polar type and the zeta function

In this section, we will study the relation between a resolution of a polar type
and the Milnor fibration of the second type. We expect a similar formula like
the formula of A’Campo ([1]) or the formula of Varchenko [23]. We will restrict
ourselves to the case of mixed curves.

8.1. Polar weighted case. Let f(z,Z) be a mixed polynomial of n variables
Z1,...,2zo and let (q1,...,qgx;d,) and (p1, ..., pn;d,) be the radial and polar weight
types. We assume that d, >0. Then f:C" — f~1(0) — C* is a fibration.
Put F = f~!(s)NC™ for se C*. Then the monodromy map /: F; — F; is
given by the polar action as

h(zi,...,zp) = (z1d?,..L zy0P"), @ = exp(@>
dy
Put F* = F;" and let y(F*) be the Euler characteristic of F*. Then the mono-
dromy has the period d, and the set of the fixed points of 4/ : F* — F* is empty
if j # 0 modulo d,, where i/ =ho---oh (j-times). Thus using the formula of
the zeta function for a periodic mapping ([12]), we get

LeEMMA 55. Under the above assumption, the zeta-function of h: F* — F* is
given as

o(1) = (1 — %))

The zeta function of the global fibration f:C™\f~'(0) — C* can be
obtained by patching the data for each torus stratum.

Let us do this for curves (n=2). Let f(z) be a non-degenerate polar
weighted homogeneous polynomial of type (pi, p2;d,). The signs of pi, p, are
chosen so that d, > 0. Suppose that the two edge vertices of I'(f) are simple.
Assume that the two end monomials are

{11 {’1252252’ Zi‘lzflzg‘zzé’z
with g +vi < i +v] and g, +v2 > ub + v,
Assume that g =v; =0 and pf = v, =0 ie. f (z Z) is convenient. In this

case the two monomials reduces to z52"?|z,|*" ”1 1|z 1?1 Let F= /Y1) <
C?, F, =FN{z =0} and F,, _Fﬂ{21 _0} Note that

By ={(,0) 127 =1, By ={(0,z) |28 = 1),
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The monodromy map is defined by

i
B F S F, (znm) e (Lof, moh), w:exp<§>
p
Note that py(u; —vi) = pa(u — v2) = d,. Therefore the fixed points set Fix(h/)
of h/ is non-empty only for j= |uj —vi|, |u, — v2|, or d, and their multiples.
Thus using the calculation through exp {(¢) as in [12], we get

LEMMA 56. Let f(z,Z) be a polar weighted convenient polynomial as above.

Let zf‘ilv‘, z522) be the end monomials and let d, be the polar degree. Then

the Euler-Poincaré characteristic y(F) and the zeta function of the monodromy
h:F — F are given as

A(F) = x(F) 4+ |y = vi| + g = wal, p=1—x(F)
(1 _ td,,)—Z(F*)/dp
(1 — =il (1 — =l

(o) =

Remark 57. By a similar consideration, if f(z,Z) is a polar weighted
polynomial which is not convenient, the assertion is true under the following
modification. Put &; = 1 or 0 according to x5 +v5 =0 or uj +v5 > 0. Similarly
& =1 or 0 according to y; +vi =0 or u; +vi >0. Then

A(F) = 2(F") +eallug —vil + el —nl, u=1-x(F)
(1— td,y)*x(F*)/dp

(1 — =il (1 — fa—nl)®

() =

8.1.1. Simplicial polar weighted polynomial. Let f(z,i)zzj";l ¢zhZY.
The associated Laurent polynomial g(z) is defined by '

m
0= 3o
J=1

Recall that f(z,Z) is called simplicial polar weighted homogeneous if m = n and
the two matrices have a non-zero determinant [17]:

My +vie o Hp Vi Hir —=vVir - My — Vi
M = : : , N=
B+ Ym0 gy Vi ot = Val gy = Vi
where 4, = (w1, ..., 45,) and v; = (vj1,..., V), j=1,...,n respectively. 1If f is a

simplicial polar weighted homogeneous polynomial, we have shown that the two
fibrations defined by f(z,z) and g(w):

f:C™MfH0) =€, g:C™\g'(0) — C*
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are equivalent ([17]). Thus the topology of the Milnor fibration is determined by
the mixed face A where A is the unique face of I'(f). In particular, the zeta
function of h: F* — F* is given as {(¢) = (1 — ldﬂ)<_1)”d/d” where d = |det(N)]
((17]). On the other hand, if f is not simplicial, the topology is not even
a combinatorial invariant of A (§6.2.6). Therefore there does not exist any
direct connection with the topology of the associated Laurent polynomial g(z).
However here is a useful lemma.

LemMa 58.  Suppose that fi(z,z), 0 <t <1 is a family of convenient, non-
degenerate polar weighted homogeneous polynomials with the same radial and
the polar weights, and assume that TU(f;) is constant. Then the Milnor fibration
fr: C"\f71(0) — C* and its restriction C*"\ f,71(0)) — C* are homotopically equiv-
alent to fo: C"\fy1(0) — C* and fy: C™\ f;71(0) — C* respectively.

Proof. Consider the unit sphere $*~! =S~ For each I = {1,...,n},
1] # 0, the intersection (f}! )71 (0)NS? is transverse and smooth for any ¢ where
S' ={z' eC' |||zl = 1}. Thus by the compactness argument, there exists a
common positive number & such that the intersection (f/)”'(7)NS’, is trans-
verse and smooth for any ¢, 0 < ¢ <1 and # with || <J. This implies by the
Ehresmann fibration theorem ([24]) that the fibrations

£ EN1L6) — Do)
are equivalent for each ¢, where
E/(1,0) = (f)'(D@)")NB', B'={z'eC||lz| <1}.
Thus we can construct characteristic diffeomorphisms
ho: £71(0) N B — f71(5 exp(0i)) N B>

for 0 <0 <2n which preserve the stratification f~'()NB!, I <{1,... n}.
Now the assertion follows from Theorem 37. O

Example 59. Consider the family of polar weighted mixed polynomials in
two variables:

fi(2,7) = —2z{% + 235 + tziZ,, teC
and let C, = f,1(0). The radial and polar weight types are (1,1;3) and (1,1;1)
respectively. Thus the critical points of f; : C> — C are the solutions of
—4z1Z) 4 2tz1z, = —20(212
(15) lo| =1, 2202 = a(z3 + 1z})
2202 + 235, + 1235, = 0.

First it is easy to see that for a solution (z,a) of (16), either z = (0,0) or
ze C*2. Secondly the equations are homogeneous in zj, z>. Thus we may as-
sume that |z| = 1. By (15), we get 22523 = 20z3z;. Thus |z1| = 1. Putz/z =
exp(0i). Then we can solve as
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— |

(1]

U1 F1 UQ

r—2

FIGURE 3. Degeneration locus =

2

z% + l‘zl2 '

Put E:= {—exp(—20i) + 2 exp(—0i)|0 < 0 <2zn}. E is the locus where f; is
degenerate. The complement C\Z has two components, U;, U, where Uj is
the bounded region with boundary E. See Figure 3. By further calculation,
we can see that lkn(C,) =1, y(F) =1, y(F*) = -1 for te U, and lkn(C,) = 3,
x(F)=—1, y(F*)=-3 for te U,. (See Appendix for the calculation.) The
associated Laurent polynomial is g¢,(z) = —2z| + 2 + tz§z;! which is non-
degenerate for ¢t # 1,0. Thus we see that y(G;) = -2 for 1 # 0,1 where G =
g ' (1)NC*? (see [16]). This example shows that Theorem 10 of [17] does not
hold for non-simplicial polar weighted polynomials.

t = —exp(—20i) + 2 exp(—0i), z1 =z exp(ti), o=

8.2. Zeta function of non-degenerate mixed curves. Let f(z,Z) be a con-
venient non-degenerate mixed polynomial and let Ay, ..., A, be the faces of I'(f).
Let Q; = “(¢j1,9,2) be the weight vector of A; for j=1,...,s. Assume that each
face function fa, is also polar weighted and the inside monomials correspond-
ing to the vertices M; =A;NA;q, j=1,...,5—1 are polar admissible. Let
(a1 +2b1,0), (0,a2 + 2b,) be the vertices of I'(f) on the coordinate axes which
come from the monomials z{" |z 1 and z§’2|zz|2b2 respectively. We call ay, a, the
polar sections of T(f) on the respective coordinate axes z; =0 and z; = 0. Let
fa,(z,Z) be the face function of A; and assume that (p;, p;m;) is the polar
weight type of fi(z,Z). Let F/ ={ze C™|fs(z,Z) =1}. Then we have the
following.

THEOREM 60. Assume that f(z,Z) is a non-degenerate convenient mixed
polynomial such that its face functions fa(z,Z), j=1,...,s are polar weighted
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polynomials. Then the Euler-Poincaré characteristic of the Milnor fiber F of f
and the zeta function of the monodromy h:F — F are given as follows.

Z){ )+ lar| + |az]

H;:l(l . lm,-)—Z(F,»*)/mi
(1 — dal)(1 — glaal)

where ay, ay are the respective polar sections and m; is the polar degree of the face
Sunction fa(z,Z), j=1,...,s as above (m; > 0).

(1) =

Remark 61. The assertion is true for non-degenerate mixed polynomials
with polar weighted face functions in two variables which may not be conve-
nient. For example, if T'(f) N {z; = 0} = 0, we eliminate |a;| and (1 — 7“l) from
the formula.

The proof occupies the rest of the section. For the proof, we use the follow-
ing multiplicative property of the zeta function. Consider an excision pair {4, B}
in the Milnor fiber F. We say {4, B} is stable for the monodromy map # if
h(A) = A and h(B) < B

ProposITION 62 (Proposition 2.8, [16]). Suppose that F decomposes into h
stable excision couple A, B so that F = AUB. Put C=ANB.  Then let {(t),
Ca(), Cp(2) and (c(t) be the zeta functions of h: F — F and hy:=h|,: A — A4,
hg:=hlg:B— B and hc :=h|.: C — C respectively. Then

Ca(0)¢s(1)
Sl

8.2.1.  Resolution of a polar type and the Milnor fibration. Let us consider

an admissible toric modification 7 : X — C? with respect to the regular fan X*

with Vertices {Po, Pi,... P/H} and we assume that Q;=P,, j=1,...,s and

Py = E; =(1,0) and Ps; = E» = '(0,1). Then we take the polar modification

cop WX — X along E(Py),...,E(P;). Put®,:2X — C? be the composite with
: X — C%. Consider the second Milnor fibration

fod,: CD;I(E(r,(S)*) — D(6)"

on the resolution space #X. Take P; for 1 < j </. There are two toric coor-
dinate charts of X which contain the vertex P;:

(o) =

gj—1 = Cone(P;j_1,P;) gives the coordinate chart (Uj_i, (uj_1,vj-1))
= Cone(P;, Pj;1) gives the coordinate chart (Uj, (u;,0;)).
Put M = (P;,P;i1) ' (P;_1,P;). Tt takes the form:

yo 1
M=(" :
(50)
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Then the two coordinate systems are connected by the relation

i |
(16) Up =" Uj-1, U= U q.

Put P; = (¢;,d;), j=1,...,/. The inverse image U, := w;l(Uj) has the polar
coordinates (r,0;,s;,7;) which corresponds to (u;,v;) with u; =r; exp(if;) and
v; = sy exp(in;). The relation (16) says that

-1
(17) si=ri_y, =01
We do not take a normal polar modification along the two non-compact divisors

up=0 and v, =0. Thus the coordinates of U, and U, are (uo, So,79) and
(r¢,0s,v07) respectively. Recall that the exceptional divisor E(P;) is defined by

rp=01in U; and by s;,_1 =0 in U;_; for 1 <j</. Note that uy =0 in U
corresponds bijectively to the axis z; =0 in the base space C?> and
1 ¢
(Po, P1) = (O 11 >7 di =1, z1=upy, z2=nup.
Similarly on Uy, v, = 0 corresponds to z» = 0 and

zZ] = uy, 22:14;1/0{7 c, = 1.

Pj
. P
Eo| 7 /04
4 0j—-1
P4
0
Eq

FIGURE 4. Regular fan X*

8.3. Decomposition of the fiber. Recall that
E(r,0)" ={(z1,22) |0 < |f (21,22, 21, 22)| <0, |[(z1, 22) | <7}

$(z) = /|21’ + 2>, B =4¢"(B)

Fs ={(z1,22) | f(z1,22,21,22) =0, (21,22) € B,} : Milnor fiber.

We denote the pull-back of a function # on C? to 22X by h for simplicity. On
2X, we consider the subsets

Wi(r.p) = {X = (r},0;.5.m;) € Ui | 1/p = 5 = p}

Ti1(p) = {1, 01,851,121 € Uyt |11 < pysjon < p}
WT;(p) = {(r7,0,55,m;) € Us | s = p,1; < p}

TWi(p) = {(rj-1,0p-1,8-1,m;1) € Uyt |1 = posj1 < p}
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and
To(p) = {(uo,50,19) € T | |o| < p, 50 < p}
Wo(r, p) = {(u0,50,10) € Uo | $(uto, 50,79) < r,|uo| = p, 50 = p}
T/ (p) := {(rs,0r,07) € Uy |17 < p, [or] < p}
W (r,p) = {(r,0r,vc) € Us |1y = p, |v/] = p, (17, 0s,0,) < 1}
Note that

B(uo, 50,19) = s0\/ 1 + |uo|*s5" > = 50 + 0(s0)

qg(r/, Or,00) =10/ 1+ |vs |r2d/ =r,+o(rs)
frja=0} | i s —0)
Winp) | 4 (o)

{521 = 0} U{r; = 0}

FIGURE 5. Decomposition of 22X

Here o(sp) implies o(so)/so — 0 when so — 0. Put

/+1
A(r UerUUT
Jj=0 Jj=0

Put E(r,6)" = @, (E(r,6)") with § < r and A(r,p,0)" = A(r,p) N f~(D}) with
o« r,p. Ttis easy to see that A(r,p,0)" = E(r,0)" as long as p < r and 6 < p,r.
We see that the choice of p does not give any effect on A(r,p,d)", as long as
0 < p<«r. Thus we can use A(r,p,d)" as the total space of the Milnor fibration:
[ A(r,p,0)" — D;. We decompose A(r,p,d)" into monodromy invariant sub-
spaces as follows.

A0 Wi p), Al p,8) N TH(p)
A(r,p,0)" NTW;(p), A(r,p,0)" N WTi(p), j=0,...,7.

8.3.1. Transversality. Assume that A(P;) = A;NA, ={M,} and that M,
comes from the monomial z; ’1\21|2/} "z“’2|22|25 2, By the definition we can write
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~ d(P,) d(Py, .
T30, 5,m) = 1! "5 exp((ones + aad;)05i)

. d(P;)+1
x exp((an¢jst + todys ;i) + O(r] )+,

Thus it is easy to see that f~1(&), || =0 1ntersects transversely with WT;(p) if
S is sufficiently small and 6 « r,p. Similarly f~ (&) intersects transversely with
TW;(p) under the same assumptions.

Fix such r 0, p.  Under the above decomposition of A(r,p,d)", the Milnor
fiber Fy:=f" (5) N B decomposes into the following strata:

ESmVV](rap)a E)mT](p)v F(;QWT}(/)), FJmTVV](p)a J=0,....7.

By the above transversality, we see that (after choosing a suitable vector field to
define the characteristic diffeomorphisms) Fs N W;(r,p), F; NT;(p), FsNTW;(p)
and FsN WT;(p) are invariant by the monodromy # : F; — F;. Now the proof
of Theorem 60 follows from the following observations.
(1) The zeta functions of h restricted on F;NTj(p) are trivial for 1<
j</—-1 )
(2) The zeta functions of & restricted on FsN Wj(r,p) with j # vi,..., v, are
trivial.
(3) The zeta functions of 4 restricted on FsN WTj(p) and FsN TW;(p) are
trivial.
(4) The zeta functions of & on FsN Ty(p) and FsN Ty(p) are respectively
given by
1 1
(1 —dal)’ (1 —dal)”

(5) (Face contrlbutlon) The zeta function of /2 : F5 N W, (p) is (1 — gy =y
where F" = fA (H)NC*? and m; is the polar degree of fa;.

8.4. Outline of the proof of the assertions (1) to (5).
(1) Consider FsNTj(p). Assume that A(P;)) =A,NA1 ={M;} and that

W 32, 2o

M; comes from the monomial z"'|zy|""z)?|z;|"* as above. Then

Fbm TV/(.”) = {("/»H/,Sjaﬂj) |rj7sj Spvf:<r]70j7sja7//) :5}
f(r/,ﬂ,,sj,nj) takes the form
£03,0,,5,m) = a5 ) exp((an¢; + aad;)05)

d +
x exp((a1 ¢ + tady ;i) + O(r! TP

(cpm, 18 a non-zero constant) and the homotopy type of this part of the Milnor
fiber is given by

{(0;,m;) € S" x S" | ear, exp(((ou1¢j + anady)0; + (o ¢100dy1)n,)i) = 1}

which is a finite union of copies of S! by the following.
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OBSERVATION 63. Let a, b be integers with (a,b) # (0,0) and let
F = {(exp(0i),exp(ni)) € S' x S' |exp((ab) + by)i) = 1}.
Then F is a disjoint union of copies of S' and the number of S' is ged(a,b).

The monodromy acts as the permutation of the components and we see that
the characteristic polynomials on the 0-th homology and the 1-th homology is the
same. Thus the zeta function is trivial. The assertion (3) can be shown in the
same way.

Let us see the assertion (2). By the same argument,

EsNWi(p) = {f(r;.0;,5.m) =3.1/p > 5, > p}

and by throwing away higher terms, we may consider that f is again homotopi-
cally defined by

cu, exp((on¢j + and;)0;i + (w1 c1 + andr)n;i)

Again we see that the Milnor fiber is fibered over the interval {p <s; < 1/p} =
[p,1/p] with fiber being a finite union of S'’s. Thus the zeta function is again
trivial.  (Recall that r;_; = 1/s;.)

(4) Let us consider the fibration restricted on Ty(p). The situation is differ-
ent from that of (3). Let My =T(f)N{z; =0} and assume it comes from the

monomial z§2|zz|2b2. The pull back function takes the form:

F(w0,50,1m0) = s explaxnoi) + O+
and throwing away the higher term and putting cy, = 70 exp(&i), we see that
FsN Ty(p) consists of a-contractible components:

FsN To(p) = {(uo,5,70) | t0s8" = 6,& + axmy = 0 modulo 27}

More precisely, ‘throwing away’ implies the following standard discussion.
Consider the family of functions
fi(uo, 50,10) = cMOsg”z’72 exp(axnyf) + rO(s(‘)‘ﬁzsz), 0<t<l
In the level of the original function f, this corresponds to the family f; =
ez + 7(f(2,Z) — cp,z™).  Consider the strata of the respective Milnor fibers

restricted in this neighborhood Ty(p) and their union:

Fé,‘f = {(uov 50, 770) | f:t(uov 50, 770) = 57 (u07 50, ’70) € TO(p)}

3%6 = {(MO,S07770,T) |]i(u(),S0,770) =0, (u()vSOv’]OaT) € To(p) X [07 1]}
Taking ¢ sufficiently small, we may assume that Fjs. is smooth and intersects
transversely with the boundary of To(p) for any 0 <7 <1. Now we apply the
Ehresmann fibering theorem ([24]) to the projection z: %5 — [0, 1] and we con-
clude that the Milnor fibers Fj ., 0 < v < 1 are diffeomorphic to F5o. (We apply

this argument to each case (1) to (5).)
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Thus using the Milnor fiber F570, we see that each component is homeo-
morphic to a disk {ug | |uo| < p}, as the above equation has a, solutions for 7.
The monodromy is acting cyclically among these components. Thus the zeta
function of this restriction is 1/(1 — 7®/).

We see also that F; N Wy(p) =0 if § < p.

The other edge T/(p) gives the term 1/(1 — fal).

(5) Now we consider the restriction of W, (p). Then the principal part
takes the form

03, 0,57.15) = fa (17, 03,5 my) + OG0
where ord,; fa, (r,,(?,,sj,n]) d(P,) and the Milnor fibering restricted on this
stratum W, (p) is determined by the principal part fA (15, 0;,87,1;).  The last work
for us is to determine this contribution.

Consider the curve C; = { fA (z,Z) =0} and its polar type resolution by
the same mapping @, JX — C%. By the polar admissibility assumption of the
inside vertices, the Mllnor fibration of the second description exists and it is
equivalent to the Milnor fibration of the first description by Theorem 52. Then
combining the assertions (1) to (4) applied for C;, we see that the above contribu-
tion is nothlng but the zeta function of the monodromy of fa, : C*2\ fA (0) — C*,
which is given by (1 — ) #5)/™ a5 we have seen in Lemma 55 and Theorem
52. Note that FsN Wy(p) =0 and FsN W,.1(p) = 0. This completes the proof
of Theorem 60.

8.5. Topology of a polar weighted polynomial and Kouchnirenko type formula.
We consider a non-degenerate polar weighted mixed polynomial fa(zi,z2,Z1,22)
with A = AB where A4, B are polar admissible simple vertices. Let (py, p2;ma)
be the polar weight type. Let Fp = f'(1) be the fiber of the global fibration,
Fi=FyNC* and let Ky = f;'(0)NS>. Note that Fy is diffeomorphic to the
fiber of the Milnor fibration fa/|fa| : S*\Ka — S! or fa : 0E(r,0)" — S}, as fa is
super strongly non-degenerate by Theorem 52. The Milnor fiber is connected by
Proposition 38. Let P;(¢) be the characteristic polynomial of the monodromy at
the i-th homology for i =0,1. Then P(¢) ={(1)(1 —¢) as Po(t) = (1 —1). We
consider the Wang sequence of the Milnor fibration:
0 —— Hy(S> — Kp) —— Hy(Fa) “2S Hy(Fp) — H{(S? — Kp) — Z —— 0.
Put r; = lkn*(f;'(0)). Thus Hy(Ka) = Z'3*Y) where ¢(A) is the number of
coordinate axes which are a subset of f;!'(0). Thus &A) =0,1,2 according to
the two vertices 4, B are either on the axis or not. Let u, and u; be the
multiplicities of the factor (#—1) in P;(¢) and ((¢) respectively. Then by the
equality Pi(7) ={(¢)(1 —¢) and Lemma 56 and Remark 57,

fa = 1y 1,y = —(F§)/ma — 2+ 6(A).
On the other hand by the Alexander duality, we have the isomorphism:
Hy(S® — Kp) = H'(S?, Ky) = H(Ky).
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As the monodromy map A, is periodic, we have
VZ +6(A) —1=dim Ker{h* —id : Hl(FA) — Hl(FA)} = Up-

Thus we obtain

LemMMa 64. The Euler-Poincaré characteristic and the link component number
satisfy the following equality:

ry = —x(Ex)/ma.

Usually it is easier to compute r; and we can compute y(F,) by Lemma 64.
Now we can state our Kouchnirenko type formula:

THEOREM 65. Let f(z,Z) be a non-degenerate convenient mixed polynomial
as in Theorem 60. Let Ay, ..., A be faces of T'(f) and we assume that fx(z,Z)
is a polar weighted homogeneous polynomial with polar degree mj;. Let r; =
lkn*(fAzl(O)) for j=1,...,s. Then the Milnor number u(F) = b\(F) is given by
the formula:

u(F) =" rimj — |ar] — |az| + 1.
=1

Here myj is the polar degree of fa, and we assume that m; > 0. ay, ay are the polar
sections of T'(f) on the respective coordinate axes.

As a special case, the following is a formula for a good polar weighted
mixed polynomial (see §6.2.3 for the definition) which corresponds to the Orlik-
Milnor formula [13] for a weighted homogeneous isolated singularity.

COROLLARY 66. Assume that f(z,Z) is a good polar weighted polynomial
which is factored as

k
(18) f(2.2) = c[ [l = 4za ), ¢ #0
j=1

with a#0, b#0. Let r=gcd(|a|,|b|). The polar weight is given by P =
“(pre1, p2&2) where py =|a|/r, pa=|b|/r, &1 =b/|b|, & =a/la| and the polar
degree d, is given as d, = |a||blk/r, Ikn(f~1(0)) = rk and

p= lal [blk? — k(|al + [b]) + 1 = (k|a| = 1)(k|b| = 1) and

(1— )™

O =T =y

8.6. Appendix: Calculation of Example 8.1.2. We give the detail of the
calculation for Example 8.1.2. Let
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fil2,7) = —223% 4+ 232 + 1235, teC
Vi={(z1,22) € C?| fi(z,Z) = 0}
Fi={(z1,2) € C?| fi(z,2) = 1}.

and we compute link components. As f; is radially weighted, we may assume
that |z;] = 1. Thus we compute the section with |z2| = 1. We put

Z1 =X1+ i, zZa =X+ »i, xy=cos(a), y,=sin(0),
Then f;(z,Z) =0 can be rewritten as f; = f, =0 where
fi = =2x7 —2x1¥? + (cos(a))? + cos(a)(sin(a))? + tx? cos(a)
4 2tx1 y1 sin(a) — ty7 cos(a)
fr = =2x2y1 — 2y} 4 (cos(a))? sin(a) + (sin(a))’® — rx? sin(a)
+ 2tx1 y; cos(a) + 1y} sin(a)
The resultant R of f; and f, in y; takes the form R = g;g, where
g1 = 2x; — (cos(a))’ — tx? cos(a)
ga = 1*x? — (sin(a))* — 2 cos(a)x; 1> + (cos(a))? + (sin(a))?

U;: Assume that t=0. Then g» =1. The equation ¢g; =0, fi=f,=0
has a unique solution

x; = 12%3 cos(a)
y1 =12%3 sin(a) 0<a<2nm
Xy = cos(a), y» = sin(a),

This can be also observed by [20].
U,: Consider the case t = 3 as a model of V;, t € U;. First, g, g» takes the
following form.

g1 =2x;] — (cos(a)) — 3x7 cos(a)
g> = 81x7 — 26(sin(a))? — 18 cos(a)x; + (cos(a))*

Over g; =0, we have one component parametrized as

x| = (% /3 + 2\/54—% \3/%72\/54— %) cos(a)
sin(a)

(B+2v2)"? — 3+ 2v2)*V2 - V3 + 22+ V3 +2V2V2

0<a<2n
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Over g, =0, we have two components parametrized as

1 1
x=g cos(a) + §\/% sin(a)

1

Y= 534 (V26 sin(a) + 26 cos(a))v26, 0 <a <2n.

Thus we have shown that lkn(¥Vp) =1 and lkn(V3) = 3.

It is my pleasure to thank to the referee for the careful checking of the first

draft and a nice suggestion to make our paper more understandable.
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